中考数学代数选择题

合集下载

初中数学代数式经典测试题附解析

初中数学代数式经典测试题附解析

初中数学代数式经典测试题附解析一、选择题1.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.2.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.3.下列运算错误的是( )A .()326m m =B .109a a a ÷=C .358⋅=x x xD .437a a a +=【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;故选:D.【点睛】此题考查合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.4.(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,则m的值是()A.0 B.23C.﹣23D.﹣32【答案】C【解析】试题解析:(x2﹣mx+6)(3x﹣2)=3x3﹣(2+3m)x2+(2m+18)x﹣12,∵(x2﹣mx+6)(3x﹣2)的积中不含x的二次项,∴2+3m=0,解得,m=23 ,故选C.5.下列运算正确的是()A.2m2+m2=3m4B.(mn2)2=mn4C.2m•4m2=8m2D.m5÷m3=m2【答案】D【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算后即可解答.【详解】选项A,2m2+m2=3m2,故此选项错误;选项B,(mn2)2=m2n4,故此选项错误;选项C,2m•4m2=8m3,故此选项错误;选项D,m5÷m3=m2,正确.故选D.本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题关键.6.下列运算正确的是 ( )A .()236a a a -⋅=-B .632a a a ÷=C .()2222a a =D .()326a a =【答案】D【解析】【分析】 根据幂的乘方与积的乘方的运算法则和同底数幂的乘除法运算法则对各选项进行计算,最后进一步判断即可.【详解】A :()523a a a -⋅=-,计算错误;B :633a a a ÷=,计算错误;C :()2224a a =,计算错误;D :()326a a =,计算正确;故选:D.【点睛】比特主要考查了幂的乘方与积的乘方的运算和同底数幂的运算,熟练掌握相关运算法则是解题关键.7.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑了,得到正确的结果变为2412a ab -+( ),你觉得这一项应是( )A .23bB .26bC .29bD .236b 【答案】C【解析】【分析】根据完全平方公式的形式(a±b )2=a 2±2ab+b 2可得出缺失平方项.【详解】根据完全平方的形式可得,缺失的平方项为9b 2故选C .【点睛】本题考查了整式的加减及完全平方式的知识,掌握完全平方公式是解决本题的关键.8.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( )A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】 试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .9.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.10.如图,是一个运算程序的示意图,若开始输入x 的值为81,则第2018次输出的结果是( )A .3B .27C .9D .1【答案】D【解析】【分析】 根据运算程序进行计算,然后得到规律从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3,然后解答即可.【详解】第1次,13×81=27, 第2次,13×27=9, 第3次,13×9=3, 第4次,13×3=1, 第5次,1+2=3,第6次,13×3=1, …,依此类推,偶数次运算输出的结果是1,奇数次运算输出的结果是3,∵2018是偶数,∴第2018次输出的结果为1.故选D .【点睛】本题考查了代数式求值,根据运算程序计算出从第4次开始,偶数次运算输出的结果是1,奇数次运算输出的结果是3是解题的关键.11.下列计算正确的是( )A .236a a a ⋅=B .22a a a -=C .632a a a ÷=D .236()a a =【答案】D【解析】【分析】根据同底数幂的乘除法公式,合并同类项,以及幂的乘方公式逐项计算得到结果,即可作出判断.【详解】A 、235a a a ⋅=,不符合题意;B 、22a 和a 不是同类项,不能合并,不符合题意;C 、633a a a ÷=,不符合题意;D 、236()a a =,符合题意,故选:D .【点睛】此题考查了同底数幂的乘除法,合并同类项,以及幂的乘方,熟练掌握运算法则是解本题的关键.12.将(mx +3)(2﹣3x )展开后,结果不含x 的一次项,则m 的值为( )A .0B .92C .﹣92D .32【答案】B【解析】【分析】 根据多项式乘以多项式的法则即可求出m 的值.【详解】解:(mx +3)(2-3x )=2mx -3mx 2+6-9x=-3mx 2+(2m -9)x +6由题意可知:2m -9=0,∴m =92故选:B .【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用整式的运算法则,本题属于基础题型.13.下列运算正确的是( )A .2352x x x +=B .()-=g 23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.14.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .15.有两个正方形A ,B ,现将B 放在A 的内部得图甲,将A ,B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形A ,B 的面积之和为( )A .7B .12C .13D .25【答案】C【解析】【分析】 设正方形A 的边长为a ,正方形B 的边长为b ,根据图形列式整理得a 2+b 2−2ab =1,2ab =12,求出a 2+b 2即可.【详解】解:设正方形A 的边长为a ,正方形B 的边长为b ,由图甲得:a 2−b 2−2(a−b )b =1,即a 2+b 2−2ab =1,由图乙得:(a +b )2−a 2−b 2=12,即2ab =12,所以a 2+b 2=13,即正方形A ,B 的面积之和为13,故选:C.【点睛】本题主要考查了完全平方公式在几何图形中的应用,解题的关键是根据图形列出算式.16.按如图所示的运算程序,能使输出y 的值为1的是( )A.a=3,b=2 B.a=﹣3,b=﹣1 C.a=1,b=3 D.a=4,b=2【答案】A【解析】【分析】根据题意,每个选项进行计算,即可判断.【详解】解:A、当a=3,b=2时,y=12a-=132-=1,符合题意;B、当a=﹣3,b=﹣1时,y=b2﹣3=1﹣3=﹣2,不符合题意;C、当a=1,b=3时,y=b2﹣3=9﹣3=6,不符合题意;D、当a=4,b=2时,y=12a-=142-=12,不符合题意.故选:A.【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.17.下列图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑥个图形中菱形的个数为()A.42 B.43 C.56 D.57【答案】B【解析】【分析】根据题意得出得出第n个图形中菱形的个数为n2+n+1;由此代入求得第⑧个图形中菱形的个数.【详解】第①个图形中一共有3个菱形,3=12+2;第②个图形中共有7个菱形,7=22+3;第③个图形中共有13个菱形,13=32+4;…,第n个图形中菱形的个数为:n2+n+1;第⑥个图形中菱形的个数62+6+1=43.故选B.【点睛】此题考查图形的变化规律,找出图形之间的联系,找出规律是解决问题的关键.18.在很小的时候,我们就用手指练习过数数,一个小朋友按如图所示的规则练习数数,数到2019时对应的指头是()(说明:数1、2、3、4、5对应的指头名称依次为大拇指、食指、中指、无名指、小指)A.食指B.中指C.小指D.大拇指【答案】B【解析】【分析】根据题意,观察图片,可得小指、大拇指所表示的数字的规律,及其计数的顺序,进而可得答案.【详解】解:∵大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.=⨯+,又∵2019是奇数,201925283∴数到2019时对应的指头是中指.故选:B.【点睛】此题主要考查了数字变化类,只需找出大拇指和小指对应的数的规律即可.关键规律为:大拇指对的数是1+8n,小指对的数是5+8n.食指、中指、无名指对的数介于它们之间.19.计算(-2)2009+(-2)2010的结果是()A.22019 B.22009 C.-2 D.-22010【答案】B【解析】(-2)2009+(-2)2010=(-2)2009+(-2)2009+1=(-2)2009+(-2)2009×(-2)=(-2)2009×[1+(-2)]=-22009×(-1)=22009, 故选B .20.下列计算,正确的是( ) A .2a a a -=B .236a a a =C .933a a a ÷=D .()236a a = 【答案】D【解析】A.2a 和a,和不能合并,故本选项错误;B.2356a a a a ⋅=≠ ,故本选项错误;C.9363a a a a ÷=≠,和不能合并,故本选项错误;D.()236 a a =,故本选项正确; 故选D.。

中考数学真题解析代数式、整式及单项式、多项式的有关概念(含答案)

中考数学真题解析代数式、整式及单项式、多项式的有关概念(含答案)

全国中考真题解析代数式、整式及单项式、多项式的有关概念一、选择题1. 已知a ﹣b =1,则代数式2a ﹣2b ﹣3的值是( )A.﹣1B.1C.﹣5D.5 考点:代数式求值.专题:计算题.分析:将所求代数式前面两项提公因式2,再将a ﹣b =1整体代入即可.解答:解:∵a ﹣b =1,∴2a ﹣2b ﹣3=2(a ﹣b )﹣3=2×1﹣3=﹣1.故选A .点评:本题考查了代数式求值.关键是分析已知与所求代数式的特点,运用整体代入法求解.2. 若(7x ﹣a )2=49x 2﹣bx+9,则|a+b|之值为何( )A 、18B 、24C 、39D 、45考点:完全平方公式;代数式求值。

专题:计算题。

分析:先将原式化为49x 2﹣14ax+a 2=49x 2﹣bx+9,再根据各未知数的系数对应相等列出关于a 、b 的方程组,求出a 、b 的值代入即可.解答:解:∵(7x ﹣a )2=49x 2﹣bx+9,∴49x 2﹣14ax+a 2=49x 2﹣bx+9,∴⎩⎨⎧=-=-9142a b a , 解得⎩⎨⎧-=-=⎩⎨⎧==423423b a b a 或, 当a=3,b=42时,|a+b|=|3+42|=45;当a=﹣3,b=﹣42时,|a+b|=|﹣3﹣42|=45;故选D .点评:本题是一个基础题,考查了完全平方公式以及代数式的求值,要熟练进行计算是解此题的关键.3.当a=3,b=2时,a2+2ab+b2的值是()A、5B、13C、21D、25考点:代数式求值;完全平方公式。

专题:计算题。

分析:先运用完全平方公式将a2+2ab+b2变形为:(a+b)2,再把a、b的值代入即可.解答:解:a2+2ab+b2=(a+b)2,当a=3,b=2时,原式=(3+2)2=25,故选:D.点评:此题考查的是代数式求值,并渗透了完全平方公式知识,关键是运用完全平方公式先将原式因式分解再代入求值.4.“比a的2倍大1的数”用代数式表示是()A.2(a+1)B.2(a-1)C.2a+1 D.2a-1考点:列代数式。

中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析)

中考数学专题《代数式》复习试卷(含解析) 2022年中考数学专题复习卷:代数式一、选择题1.以下各式不是代数式的是()A.0B.C.D.2.若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3B.6C.8D.93.某一餐桌的表面如图所示(单位:m),设图中阴影部分面积S1,餐桌面积为S2,则(A.B.C.D.4.若M=3某2﹣8某y+9y2﹣4某+6y+13(某,y是实数),则M的值一定是()A.零B.负数C.正数D.整数5.代数式相乘,其积是一个多项式,它的次数是()A.3B.5C.6D.26.已知a+b=5,ab=1,则(a-b)2=()A.23B.21C.19D.177.若|某+2y+3|与(2某+y)2互为相反数,则某2﹣某y+y2的值是()A.1B.3C.5D.78.已知a、b满足方程组,则3a+b的值为()A.8B.4C.﹣4D.﹣89.黎老师做了个长方形教具,其中一边长为2a+b,另一边为a-b,则该长方形周长为()A.6aB.6a+bC.3aD.10a-b)10.A地在河的上游,B地在河的下游,若船从A地开往B地的速度为V1,从B地返回A地的速度为V2,则A,B两地间往返一次的平均速度为()A.B.C.D.无法计算11.如图,都是由同样大小的圆按一定的规律组成,其中,第①个图形中一共有2个圆;第②个图形中一共有7个圆;第③个图形中一共有16个圆;第④个图形中一共有29个圆;…;则第⑦个图形中圆的个数为()A.121B.113C.105D.9212.如图,已知,点A(0,0)、B(4,0)、C(0,4),在△ABC内依次作等边三角形,使一边在某轴上,另一个顶点在BC边上,作出的等边三角形分别是第1个△AA1B1,第2个△B1A2B2,第3个△B2A3B3,…则第2022个等边三角形的边长等于()A.B.C.D.二、填空题13.若是方程的一个根,则的值为________.14.已知-2某3m+1y2n与7某n-6y-3-m的积与某4y是同类项,则m2+n的值是________15.若a某=2,b某=3,则(ab)3某=________16.如图是一个运算程序的示意图,若开始输入的值为625,则第2022次输出的结果为________.17.若3a2﹣a﹣3=0,则5﹣3a2+a=________.18.已知+|b﹣1|=0,则a+1=________.19.已知某=2m+n+2和某=m+2n时,多项式某2+4某+6的值相等,且m ﹣n+2≠0,则当某=3(m+n+1)时,多项2式某+4某+6的值等于________.20.若规定一种特殊运算为:ab=ab-,则(﹣1)(﹣2)________.,,,,按照这样的规律,这组21.按照某一规律排列的一组数据,它的前五个数是:1,数据的第10项应该是________.22.已知的奇数时,,,,,,,…(即当为大于1________.;当为大于1的偶数时,),按此规律,三、解答题23.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m﹣cd+m.24.先化简,再求值:已知a2—a=5,求(3a2-7a)-2(a2-3a+2)的值.25.某公园欲建如图13-2-3所示形状的草坪(阴影部分),求需要铺设草坪多少平方米?若每平方米草坪需120元,则为修建该草坪需投资多少元?(单位:米)答案解析一、选择题1.【答案】C【解析】:A、是整式,是代数式,故不符合题意;B、是分式,是代数式,故不符合题意;C、是不等式,不是代数式,故符合题意;D、是二次根式,是无理式,是代数式,故不符合题意。

中考数学题库(含答案和解析)

中考数学题库(含答案和解析)

中考数学题库(含答案和解析)一、选择题(共10小题.每小题3分.满分30分)1.(3分)﹣5的绝对值为()A.﹣5 B.5 C.﹣D.2.(3分)当x=1时.代数式4﹣3x的值是()A.1 B.2 C.3 D.43.(3分)4的算术平方根是()A.±2 B.2 C.﹣2 D.4.(3分)若一个圆锥的侧面展开图是半径为18cm.圆心角为240°的扇形.则这个圆锥的底面半径长是()A.6cm B.9cm C.12cm D.18cm 5.(3分)已知一组数据的方差是3.则这组数据的标准差是()A.9 B.3 C.D.6.(3分)如图.已知在△ABC中.CD是AB边上的高线.BE平分∠ABC.交CD于点E.BC=5.DE=2.则△BCE的面积等于()A.10 B.7 C.5 D.47.(3分)一个布袋内只装有1个黑球和2个白球.这些球除颜色外其余都相同.随机摸出一个球后放回并搅匀.再随机摸出一个球.则两次摸出的球都是黑球的概率是()A.B.C.D.8.(3分)如图.以点O为圆心的两个圆中.大圆的弦AB切小圆于点C.OA交小圆于点D.若OD=2.tan∠OAB=.则AB的长是()A.4 B.2C.8 D.49.(3分)如图.AC是矩形ABCD的对角线.⊙O是△ABC的内切圆.现将矩形ABCD按如图所示的方式折叠.使点D与点O重合.折痕为FG.点F.G分别在边AD.BC上.连结OG.DG.若OG⊥DG.且⊙O的半径长为1.则下列结论不成立的是()A.CD+DF=4 B.CD﹣DF=2﹣3 C.BC+AB=2+4 D.BC﹣AB=210.(3分)如图.已知在平面直角坐标系xOy中.O是坐标原点.点A 是函数y=(x<0)图象上一点.AO的延长线交函数y=(x>0.k是不等于0的常数)的图象于点C.点A关于y轴的对称点为A′.点C关于x轴的对称点为C′.交于x轴于点B.连结AB.AA′.A′C′.若△ABC的面积等于6.则由线段′.C′A′.A′A所围成的图形的面积等于()A.8 B.10 C.3D.4二、填空题(共6小题.每小题4分.满分24分)11.(4分)计算:23×()2=.12.(4分)放学后.小明骑车回家.他经过的路程s(千米)与所用时间t(分钟)的函数关系如图所示.则小明的骑车速度是千米/分钟.13.(4分)在“争创美丽校园.争做文明学生”示范校评比活动中.10位评委给某校的评分情况下表所示:80859095评分(分)评委人1252数则这10位评委评分的平均数是分.14.(4分)如图.已知C.D是以AB为直径的半圆周上的两点.O是圆心.半径OA=2.∠COD=120°.则图中阴影部分的面积等于.15.(4分)如图.已知抛物线C1:y=a1x2+b1x+c1和C2:y=a2x2+b2x+c2都经过原点.顶点分别为A.B.与x轴的另一交点分别为M.N.如果点A与点B.点M与点N都关于原点O成中心对称.则称抛物线C1和C2为姐妹抛物线.请你写出一对姐妹抛物线C1和C2.使四边形ANBM恰好是矩形.你所写的一对抛物线解析式是和.16.(4分)已知正方形ABC1D1的边长为1.延长C1D1到A1.以A1C1为边向右作正方形A1C1C2D2.延长C2D2到A2.以A2C2为边向右作正方形A2C2C3D3(如图所示).以此类推….若A1C1=2.且点A.D2.D3.….D10都在同一直线上.则正方形A9C9C10D10的边长是.三、解答题(本题有8个小题.共66分)17.(6分)计算:.18.(6分)解不等式组.19.(6分)已知y是x的一次函数.当x=3时.y=1;当x=﹣2时.y =﹣4.求这个一次函数的解析式.20.(8分)如图.已知BC是⊙O的直径.AC切⊙O于点C.AB交⊙O于点D.E为AC的中点.连结DE.(1)若AD=DB.OC=5.求切线AC的长;(2)求证:ED是⊙O的切线.21.(8分)为了深化课程改革.某校积极开展校本课程建设.计划成立“文学鉴赏”、“科学实验”、“音乐舞蹈”和“手工编织”等多个社团.要求每位学生都自主选择其中一个社团.为此.随机调查了本校各年级部分学生选择社团的意向.并将调查结果绘制成如下统计图表(不完整):选择意向所占百分比文学鉴赏a科学实验35%音乐舞蹈b手工编织10%其他c根据统计图表中的信息.解答下列问题:(1)求本次调查的学生总人数及a.b.c的值;(2)将条形统计图补充完整;(3)若该校共有1200名学生.试估计全校选择“科学实验”社团的学生人数.22.(10分)某工厂计划在规定时间内生产24000个零件.若每天比原计划多生产30个零件.则在规定时间内可以多生产300个零件.(1)求原计划每天生产的零件个数和规定的天数;(2)为了提前完成生产任务.工厂在安排原有工人按原计划正常生产的同时.引进5组机器人生产流水线共同参与零件生产.已知每组机器人生产流水线每天生产零件的个数比20个工人原计划每天生产的零件总数还多20%.按此测算.恰好提前两天完成24000个零件的生产任务.求原计划安排的工人人数.23.(10分)问题背景已知在△ABC中.AB边上的动点D由A向B运动(与A.B不重合).点E与点D同时出发.由点C沿BC的延长线方向运动(E不与C 重合).连接DE交AC于点F.点H是线段AF上一点.(1)初步尝试如图1.若△ABC是等边三角形.DH⊥AC.且点D.E的运动速度相等.求证:HF=AH+CF.小五同学发现可以由以下两种思路解决此问题:思路一:过点D作DG∥BC.交AC于点G.先证GH=AH.再证GF =CF.从而证得结论成立;思路二:过点E作EM⊥AC.交AC的延长线于点M.先证CM=AH.再证HF=MF.从而证得结论成立.请你任选一种思路.完整地书写本小题的证明过程(如用两种方法作答.则以第一种方法评分);(2)类比探究如图2.若在△ABC中.∠ABC=90°.∠ADH=∠BAC=30°.且D.E 的运动速度之比是:1.求的值;(3)延伸拓展如图3.若在△ABC中.AB=AC.∠ADH=∠BAC=36°.记=m.且点D.E运动速度相等.试用含m的代数式表示(直接写出结果.不必写解答过程).24.(12分)已知在平面直角坐标系xOy中.O为坐标原点.线段AB 的两个端点A(0.2).B(1.0)分别在y轴和x轴的正半轴上.点C为线段AB的中点.现将线段BA绕点B按顺时针方向旋转90°得到线段BD.抛物线y=ax2+bx+c(a≠0)经过点D.(1)如图1.若该抛物线经过原点O.且a=﹣.①求点D的坐标及该抛物线的解析式;②连结CD.问:在抛物线上是否存在点P.使得∠POB与∠BCD互余?若存在.请求出所有满足条件的点P的坐标.若不存在.请说明理由;(2)如图2.若该抛物线y=ax2+bx+c(a≠0)经过点E(1.1).点Q 在抛物线上.且满足∠QOB与∠BCD互余.若符合条件的Q点的个数是4个.请直接写出a的取值范围.参考答案与试题解析一、选择题(共10小题.每小题3分.满分30分)1.【分析】根据绝对值的概念:数轴上某个数与原点的距离叫做这个数的绝对值可直接得到答案.【解答】解:﹣5的绝对值为5.故选:B.【点评】此题主要考查了绝对值.关键是掌握绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【分析】把x的值代入原式计算即可得到结果.【解答】解:当x=1时.原式=4﹣3=1.故选:A.【点评】此题考查了代数式求值.熟练掌握运算法则是解本题的关键.3.【分析】根据开方运算.可得一个数的算术平方根.【解答】解:4的算术平方根是2.故选:B.【点评】本题考查了算术平方根.注意一个正数只有一个算术平方根.4.【分析】利用弧长公式可得圆锥的侧面展开图的弧长.除以2π即为圆锥的底面半径.【解答】解:圆锥的弧长为:=24π.∴圆锥的底面半径为24π÷2π=12.故选:C.【点评】考查了圆锥的计算.用到的知识点为:圆锥的侧面展开图的弧长等于圆锥的底面周长;5.【分析】根据标准差是方差的算术平方根.即可得出答案.【解答】解:∵数据的方差是S2=3.∴这组数据的标准差是;故选:D.【点评】本题考查了标准差.关键是掌握标准差和方差的关系.标准差即方差的算术平方根;注意标准差和方差一样都是非负数.6.【分析】作EF⊥BC于F.根据角平分线的性质求得EF=DE=2.然后根据三角形面积公式求得即可.【解答】解:作EF⊥BC于F.∵BE平分∠ABC.ED⊥AB.EF⊥BC.∴EF=DE=2.∴S△BCE=BC•EF=×5×2=5.故选:C.【点评】本题考查了角的平分线的性质以及三角形的面积.作出辅助线求得三角形的高是解题的关键.7.【分析】列表将所有等可能的结果列举出来.利用概率公式求解即可.【解答】解:列表得:黑白白黑(黑.黑)(黑.白)(黑.白)白(黑.白)(白.白)(白.白)白(黑.白)(白.白)(白.白)∵共9种等可能的结果.两次都是黑色的情况有1种.∴两次摸出的球都是黑球的概率为.故选:D.【点评】本题考查了列表法与树状图法的知识.解决本题时采用了两个独立事件同时发生的概率等于两个独立事件单独发生的概率的积.难度不大.8.【分析】连接OC.利用切线的性质知OC⊥AB.由垂径定理得AB =2AC.因为tan∠OAB=.易得=.代入得结果.【解答】解:连接OC.∵大圆的弦AB切小圆于点C.∴OC⊥AB.∴AB=2AC.∵OD=2.∴OC=2.∵tan∠OAB=.∴AC=4.∴AB=8.故选:C.【点评】本题主要考查了切线的性质和垂径定理.连接过切点的半径是解答此题的关键.9.【分析】设⊙O与BC的切点为M.连接MO并延长MO交AD于点N.证明△OMG≌△GCD.得到OM=GC=1.CD=GM=BC﹣BM ﹣GC=BC﹣2.设AB=a.BC=b.AC=c.⊙O的半径为r.⊙O是Rt △ABC的内切圆可得r=(a+b﹣c).所以c=a+b﹣2.在Rt△ABC 中.利用勾股定理求得(舍去).从而求出a.b的值.所以BC+AB=2+4.再设DF=x.在Rt△ONF中.FN=.OF=x.ON=.由勾股定理可得.解得x=4.从而得到CD﹣DF=.CD+DF=.即可解答.【解答】解:如图.设⊙O与BC的切点为M.连接MO并延长MO交AD于点N.∵将矩形ABCD按如图所示的方式折叠.使点D与点O重合.折痕为FG.∴OG=DG.∵OG⊥DG.∴∠MGO+∠DGC=90°.∵∠MOG+∠MGO=90°.∴∠MOG=∠DGC.在△OMG和△GCD中.∴△OMG≌△GCD.∴OM=GC=1.CD=GM=BC﹣BM﹣GC=BC﹣2.∵AB=CD.∴BC﹣AB=2.设AB=a.BC=b.AC=c.⊙O的半径为r.⊙O是Rt△ABC的内切圆可得r=(a+b﹣c).∴c=a+b﹣2.在Rt△ABC中.由勾股定理可得a2+b2=(a+b﹣2)2.整理得2ab﹣4a﹣4b+4=0.又∵BC﹣AB=2即b=2+a.代入可得2a(2+a)﹣4a﹣4(2+a)+4=0.解得(舍去).∴.∴BC+AB=2+4.再设DF=x.在Rt△ONF中.FN=.OF=x.ON=. 由勾股定理可得.解得x=4.∴CD﹣DF=.CD+DF=.综上只有选项A错误.故选:A.【点评】本题考查了三角形的内切圆和内心.切线的性质.勾股定理.矩形的性质等知识点的综合应用.解决本题的关键是三角形内切圆的性质.10.【分析】过A作AD⊥x轴于D.连接OA′.设A(a.).C(b.).由△OAD∽△BCO.得到==.根据反比例函数的系数k的几何意义得到S△ADO=.S△BOC=.求出k2=.得到k=﹣.根据S△ABC=S△AOB+S△BOC=(﹣)•b+=6.列出关于k的方程k2+k﹣12=0.求得k=3.由于点A关于y轴的对称点为A′.点C关于x轴的对称点为C′.得到OA′.OC′在同一条直线上.于是得到由线段′.C′A′.A′A所围成的图形的面积=S△+S△OBC′+S△OAA′=10.OBC【解答】解:过A作AD⊥x轴于D.连接OA′.∵点A是函数y=(x<0)图象上一点.∴设A(a.).∵点C在函数y=(x>0.k是不等于0的常数)的图象上.∴设C(b.).∵AD⊥BD.BC⊥BD.∴△OAD∽△OCB.∴==.∵S△ADO=.S△BOC=.∴k2=.∵S△ABC=S△AOB+S△BOC=(﹣)•b+=6.∴k2﹣=12.①当k>0时.k=﹣.∴k2+k﹣12=0.解得:k=3.k=﹣4(不合题意舍去).②当k<0时.k=.∴k2﹣k﹣12=0.解得:k=﹣3.k=4(不合题意舍去).∴k2=9∵点A关于y轴的对称点为A′.点C关于x轴的对称点为C′. ∴∠1=∠2.∠3=∠4.∴∠1+∠4=∠2+∠3=90°.∴OA′.OC′在同一条直线上.∴S△OBC′=S△OBC==.∵S△OAA′=2S△OAD=1.∴由线段′.C′A′.A′A所围成的图形的面积=S△OBC+S△+S△OAA′=10.OBC′故选:B.【点评】本题考查了反比例函数的图象的性质.系数k的几何意义.相似三角形的判定和性质.轴对称的性质.正确的理解轴对称图形的性质是解题的关键.二、填空题(共6小题.每小题4分.满分24分)11.【分析】根据有理数的乘方.即可解答.【解答】解:23×()2=8×=2.故答案为:2.【点评】本题考查了有理数的乘方.解决本题的关键是熟记有理数乘方的定义.12.【分析】根据函数图象的纵坐标.可得路程.根据函数图象的横坐标.可得时间.根据路程与时间的关系.可得答案.【解答】解:由纵坐标看出路程是2千米.由横坐标看出时间是10分钟.小明的骑车速度是2÷10=0.2(千米/分钟).故答案为:0.2.【点评】本题考查了函数图象.观察函数图象的纵坐标得出路程.观察函数图象的横坐标得出时间.利用了路程与时间的关系.13.【分析】平均数的计算方法是求出所有数据的和.然后除以数据的总个数.【解答】解:这10位评委评分的平均数是:(80+85×2+90×5+95×2)÷10=89(分).故答案为89.【点评】本题考查的是加权平均数的求法.本题易出现的错误是求80.85.90.95这四个数的平均数.对平均数的理解不正确.14.【分析】图中阴影部分的面积=半圆的面积﹣圆心角是120°的扇形的面积.根据扇形面积的计算公式计算即可求解.【解答】解:图中阴影部分的面积=π×22﹣=2π﹣π=π.答:图中阴影部分的面积等于π.故答案为:π.【点评】考查了扇形面积的计算.求阴影面积的主要思路是将不规则图形面积转化为规则图形的面积.15.【分析】连接AB.根据姐妹抛物线的二次项的系数互为相反数.一次项系数相等且不等于零.常数项都是零.设抛物线C1的解析式为y=ax2+bx.根据四边形ANBM恰好是矩形可得△AOM是等边三角形.设OM=2.则点A的坐标是(1.).求出抛物线C1的解析式.从而求出抛物线C2的解析式.【解答】解:连接AB.根据姐妹抛物线的定义.可得姐妹抛物线的二次项的系数互为相反数.一次项系数相等且不等于零.常数项都是零.设抛物线C1的解析式为y=ax2+bx.根据四边形ANBM恰好是矩形可得:OA=OM.∵OA=MA.∴△AOM是等边三角形.设OM=2.则点A的坐标是(1.).则.解得:则抛物线C1的解析式为y=﹣x2+2x.抛物线C2的解析式为y=x2+2x.故答案为:y=﹣x2+2x.y=x2+2x(答案不唯一).【点评】此题考查了二次函数的图象与几何变换.用到的知识点是姐妹抛物线的定义、二次函数的图象与性质、矩形的判定.关键是根据姐妹抛物线的定义得出姐妹抛物线的二次项的系数、一次项系数、常数项之间的关系.16.【分析】延长D4A和C1B交于O.根据正方形的性质和三角形相似的性质即可求得各个正方形的边长.从而得出规律.即可求得正方形A9C9C10D10的边长.【解答】解:延长D4A和C1B交于O.∵AB∥A2C2.∴△AOB∽△D2OC2.∴=.∵AB=BC1=1.C2=C1C2=2.∴==∴OC2=2OB.∴OB=BC2=3.∴OC2=6.设正方形A2C2C3D3的边长为x1.同理证得:△D2OC2∽△D3OC3.∴=.解得.x1=3.∴正方形A2C2C3D3的边长为3.设正方形A3C3C4D4的边长为x2.同理证得:△D3OC3∽△D4OC4.∴=.解得x2=.∴正方形A3C3C4D4的边长为;设正方形A4C4C5D5的边长为x3.同理证得:△D4OC4∽△D5OC5.∴=.解得x=.∴正方形A4C4C5D5的边长为;以此类推….C n﹣1∁nD n的边长为;正方形A n﹣1∴正方形A9C9C10D10的边长为.故答案为.【点评】本题考查了正方形的性质.相似三角形的判定和性质.求得前五个正方形的边长得出规律是解题的关键.三、解答题(本题有8个小题.共66分)17.【分析】原式利用同分母分式的减法法则计算.约分即可得到结果.【解答】解:原式===a+b.【点评】此题考查了分式的加减法.熟练掌握运算法则是解本题的关键.18.【分析】先求出每个不等式的解集.再根据找不等式组解集的规律找出不等式组的解集即可.【解答】解:∵解不等式①得:x<6.解不等式②得:x>1.∴不等式组的解集为1<x<6.【点评】本题考查了解一元一次不等式组的应用.解此题的关键是能根据不等式的解集求出不等式组的解集.难度适中.19.【分析】一次函数解析式为y=kx+b.将x与y的两对值代入求出k与b的值.即可确定出一次函数解析式.【解答】解:设一次函数解析式为y=kx+b.将x=3.y=1;x=﹣2.y=﹣4代入得:.解得:k=1.b=﹣2.则一次函数解析式为y=x﹣2.【点评】此题考查了待定系数法求一次函数解析式.熟练掌握待定系数法是解本题的关键.20.【分析】(1)连接CD.由直径所对的圆周角为直角可得:∠BDC =90°.即可得:CD⊥AB.然后根据AD=DB.进而可得CD垂直平分AB.进而可得AC=BC=2OC=10;(2)连接OD.先由直角三角形中线的性质可得DE=EC.然后根据等边对等角可得∠1=∠2.由OD=OC.根据等边对等角可得∠3=∠4.然后根据切线的性质可得∠2+∠4=90°.进而可得:∠1+∠3=90°.进而可得:DE⊥OD.从而可得:ED是⊙O的切线.【解答】(1)解:连接CD.∵BC是⊙O的直径.∴∠BDC=90°.即CD⊥AB.∵AD=DB.OC=5.∴CD垂直平分AB.∴AC=BC=2OC=10;(2)证明:连接OD.如图所示.∵∠ADC=90°.E为AC的中点.∴DE=EC=AC.∴∠1=∠2.∵OD=OC.∴∠3=∠4.∵AC切⊙O于点C.∴AC⊥OC.∴∠1+∠3=∠2+∠4=90°.即DE⊥OD.∴ED是⊙O的切线.【点评】此题考查了切线的判定与性质.解题的关键是:熟记切线的判定定理与性质定理.经过半径的外端.并且垂直于这条半径的直线是圆的切线;圆的切线垂直于过切点的直径.21.【分析】(1)先计算出本次调查的学生总人数.再分别计算出百分比.即可解答;(2)根据百分比.计算出文学鉴赏和手工编织的人数.即可补全条形统计图;(3)用总人数乘以“科学实验”社团的百分比.即可解答.【解答】解:(1)本次调查的学生总人数是:70÷35%=200(人). b=40÷200=20%.c=10÷200=5%.a=1﹣(35%+20%+10%+5%)=30%.(2)文学鉴赏的人数:30%×200=60(人).手工编织的人数:10%×200=20(人).如图所示.(3)全校选择“科学实验”社团的学生人数:1200×35%=420(人).【点评】本题考查条形统计图.解决本题的关键是读懂图形.获取相关信息.22.【分析】(1)可设原计划每天生产的零件x个.根据时间是一定的.列出方程求得原计划每天生产的零件个数.再根据工作时间=工作总量÷工作效率.即可求得规定的天数;(2)可设原计划安排的工人人数为y人.根据等量关系:恰好提前两天完成2400个零件的生产任务.列出方程求解即可.【解答】解:(1)设原计划每天生产的零件x个.依题意有=.解得x=2400.经检验.x=2400是原方程的根.且符合题意.∴规定的天数为24000÷2400=10(天).答:原计划每天生产的零件2400个.规定的天数是10天;(2)设原计划安排的工人人数为y人.依题意有[5×20×(1+20%)×+2400]×(10﹣2)=24000.解得y=480.经检验.y=480是原方程的根.且符合题意.答:原计划安排的工人人数为480人.【点评】考查了分式方程的应用.一元一次方程的应用.分析题意.找到关键描述语.找到合适的等量关系是解决问题的关键.此题等量关系比较多.主要用到公式:工作总量=工作效率×工作时间.23.【分析】(1)过点D作DG∥BC.交AC于点G.先证明△ADG 是等边三角形.得出GD=AD=CE.再证明GH=AH.由ASA证明△GDF≌△CEF.得出GF=CF.即可得出结论;(2)过点D作DG∥BC.交AC于点G.先证出AH=GH=GD.AD=GD.由题意AD=CE.得出GD=CE.再证明△GDF≌△CEF.得出GF=CF.即可得出结论;(3)过点D作DG∥BC.交AC于点G.先证出DG=DH=AH.再证明△ADG∽△ABC.△ADG∽△DGH.△DGH∽△ABC.得出=m.=m.△DGH∽△ABC.得出=m.=m.证明△DFG∽△EFC.得出=m.=m.=.即可得出结果.【解答】(1)证明(选择思路一):过点D作DG∥BC.交AC于点G.如图1所示:则∠ADG=∠B.∠AGD=∠ACB.∵△ABC是等边三角形.∴∠A=∠B=∠ACB=60°.∴∠ADG=∠AGD=∠A.∴△ADG是等边三角形.∴GD=AD=CE.∵DH⊥AC.∴GH=AH.∵DG∥BC.∴∠GDF=∠CEF.∠DGF=∠ECF.在△GDF和△CEF中..∴△GDF≌△CEF(ASA).∴GF=CF.∴GH+GF=AH+CF.即HF=AH+CF;(2)解:过点D作DG∥BC.交AC于点G.如图2所示:则∠ADG=∠B=90°.∵∠BAC=∠ADH=30°.∴∠HGD=∠HDG=60°.∴AH=GH=GD.AD=GD.根据题意得:AD=CE.∴GD=CE.∵DG∥BC.∴∠GDF=∠CEF.∠DGF=∠ECF.在△GDF和△CEF中..∴△GDF≌△CEF(ASA).∴GF=CF.∴GH+GF=AH+CF.即HF=AH+CF.∴=2;(3解:.理由如下:过点D作DG∥BC.交AC于点G.如图3所示:则∠ADG=∠B.∠AGD=∠ACB.∵AB=AC.∠BAC=36°.∴∠ACB=∠B=∠ADG=∠AGD=72°.∵∠ADH=∠BAC=36°.∴AH=DH.∠DHG=72°=∠AGD.∴DG=DH=AH.△ADG∽△ABC.△ADG∽△DGH. ∴=m.=m.∴△DGH∽△ABC.∴=m.∴=m.∵DG∥BC.∴△DFG∽△EFC.∴=m.∴=m.即=m.∴=.∴===.【点评】本题是相似形综合题目.考查了等边三角形的判定与性质、相似三角形的判定与性质、全等三角形的判定与性质、等腰三角形的判定与性质等知识;本题难度较大.综合性强.特别是(2)(3)中.需要通过作辅助线证明三角形全等或三角形相似才能得出结果.24.【分析】(1)①过点D作DF⊥x轴于点F.先通过三角形全等求得D的坐标.把D的坐标和a=﹣.c=0代入y=ax2+bx+c即可求得抛物线的解析式;②先证得CD∥x轴.进而求得要使得∠POB与∠BCD互余.则必须∠POB=∠BAO.设P的坐标为(x.﹣x2+x).分两种情况讨论即可求得;(2)若符合条件的Q点的个数是4个.则当a<0时.抛物线交于y轴的负半轴.当a>0时.最小值得<﹣1.解不等式即可求得.【解答】解:(1)①过点D作DF⊥x轴于点F.如图1.∵∠DBF+∠ABO=90°.∠BAO+∠ABO=90°.∴∠DBF=∠BAO.又∵∠AOB=∠BFD=90°.AB=BD.在△AOB和△BFD中..∴△AOB≌△BFD(AAS)∴DF=BO=1.BF=AO=2.∴D的坐标是(3.1).根据题意.得a=﹣.c=0.且a×32+b×3+c=1.∴b=.∴该抛物线的解析式为y=﹣x2+x;②∵点A(0.2).B(1.0).点C为线段AB的中点.∴C(.1).∵C、D两点的纵坐标都为1.∴CD∥x轴.∴∠BCD=∠ABO.∴∠BAO与∠BCD互余.要使得∠POB与∠BCD互余.则必须∠POB=∠BAO.设P的坐标为(x.﹣x2+x).(Ⅰ)当P在x轴的上方时.过P作PG⊥x轴于点G.如图2. 则tan∠POB=tan∠BAO.即=.∴=.解得x1=0(舍去).x2=.∴﹣x2+x=.∴P点的坐标为(.);(Ⅱ)当P在x轴的下方时.过P作PG⊥x轴于点G.如图3则tan∠POB=tan∠BAO.即=.∴=.解得x1=0(舍去).x2=.∴﹣x2+x=﹣.∴P点的坐标为(.﹣);综上.在抛物线上是否存在点P(.)或(.﹣).使得∠POB 与∠BCD互余.(2)如图3.∵D(3.1).E(1.1).抛物线y=ax2+bx+c过点E、D.代入可得.解得.所以y=ax2﹣4ax+3a+1.分两种情况:①当抛物线y=ax2+bx+c开口向下时.若满足∠QOB与∠BCD互余且符合条件的Q点的个数是4个.则点Q在x轴的上、下方各有两个.(i)当点Q在x轴的下方时.直线OQ与抛物线有两个交点.满足条件的Q有2个;(ii)当点Q在x轴的上方时.要使直线OQ与抛物线y=ax2+bx+c有两个交点.抛物线y=ax2+bx+c与x轴的交点必须在x轴的正半轴上.与y轴的交点在y轴的负半轴.所以3a+1<0.解得a<﹣;②当抛物线y=ax2+bx+c开口向上时.点Q在x轴的上、下方各有两个.(i)当点Q在x轴的上方时.直线OQ与抛物线y=ax2+bx+c有两个交点.符合条件的点Q有两个;(ii)当点Q在x轴的下方时.要使直线OQ与抛物线y=ax2+bx+c 有两个交点.符合条件的点Q才两个.根据(2)可知.要使得∠QOB与∠BCD互余.则必须∠QOB=∠BAO. ∴tan∠QOB=tan∠BAO==.此时直线OQ的斜率为﹣.则直线OQ的解析式为y=﹣x.要使直线OQ与抛物线y=ax2+bx+c有两个交点.所以方程ax2﹣4ax+3a+1=﹣x有两个不相等的实数根.所以△=(﹣4a+)2﹣4a(3a+1)>0.即4a2﹣8a+>0.解得a>.a<(舍去).综上所示.a的取值范围为a<﹣或a>.【点评】本题是二次函数的综合题.考查了待定系数法求二次函数的解析式.正切函数.最小值等.分类讨论的思想是本题的关键.。

2020年中考数学一轮《代数式》复习试卷(含答案)

2020年中考数学一轮《代数式》复习试卷(含答案)

代数式一、选择题1.下列说法正确的是()A.a表示一个正数B.a表示一个负数C.a表示一个整数D.a可以表示一个负数2.下列各式符合代数式书写规范的是()A.2nB.a×3C.D.3x﹣1个3.已知长方形的周长为20cm,设它的长为x cm,则它的宽为()A.(20﹣x)cmB.C.(20﹣2x)cmD.(10﹣x)cm4.已知x-3y=-3,则5-x+3y的值是()A.0B.2C.5D.85.已知(1﹣m)2+|n+2|=0,则m+n的值为()A.﹣1B.﹣3C.3D.不能确定6.已知:,则的值是()A. B. C.3 D.-37.在1~45的45个正整数中,先将45的因子全部删除,再将剩下的整数由小到大排列,求第10个数为何()A.13B.14C.16D.178.已知a是方程x2﹣3x﹣1=0的一个根,则代数式﹣2a2+6a﹣3的值是()A.﹣5B.﹣6C.﹣12﹣2D.﹣12+29.一列数a1, a2, a3,…,其中a1=,(n为不小于2的整数),则a100=()A. B.2 C.﹣1 D.﹣210.已知代数式的值为﹣2,那么a2﹣2a﹣1的值为()A.﹣9B.﹣25C.7D.2311.有一个数值转换器,原理如下:当输入的x为64时,输出的y是()A.8B.C.D.12.将一组数,2,,2 ,,…,2 ,按下列方式进行排列:,2,,2 ,;2 ,,4,3 ,2 ;…若2的位置记为(1,2),2 的位置记为(2,1),则这个数的位置记为()A.(5,4)B.(4,4)C.(4,5)D.(3,5)二、填空题13.用代数式表示:①甲数比乙数的2倍多4,设甲数为x,则乙数为________;②甲数与乙数的和是10,设甲数为y,则乙数为________。

14.若的值是6,则的值是________。

15.若,且,则=________.16.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数会比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m人,则该班同学共有________人(用含有m的代数式表示)17.二次三项式3x2﹣4x+6的值为9,则x2﹣x+5的值________18.按一定规律排列的一列数依次为,,,,,…,按此规律排列下去,这列数的第n个数是________.(n是正整数)19.某公司的年销售额为元,成本为销售额的50%,税额和其它费用合计为销售额的 n%,用表示该公司的年利润________元.20.如图,用灰白两色正方形瓷砖铺设地面,第n个图案中白色瓷砖数为________.21.下列图形都是有几个黑色和白色的正方形按一定规律组成,图①中有2个黑色正方形,图②中有5个黑色正方形,图③中有8个黑色正方形,图④中有11个黑色正方形,…,按此规律,第n个图中黑色正方形的个数是________.22.下面由火柴杆拼出的一列图形中,第1个图形由1个五边形组成,第2个图形由2个五边形组成,第3个图形由3个五边形组成,第4个图形由4个五边形组成……,第n个图形由n个五边形组成.设每个图形中需要的火柴杆总根数为S.当五边形的个数有9个,此时需要的火柴杆总根数为=________.并找出S 与n的关系式________.三、解答题23.化简:(x+y)2-2x(x+3y)+(x+2y)(x-2y)24.先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.25.如图所示,是两种长方形铝合金窗框,已知窗框的长都是y米,窗框宽都是x米,若一用户需(1)型的窗框2个,(2)型的窗框5个.则共需铝合金多少米?(用含x、y的式子表示)26.已知当x=2时,多项式ax3+bx+1的值是5,求当x=﹣2时,多项式ax3+bx+4的值.27.“*”是规定的一种运算法则:a*b=a2﹣b.①求5*(﹣1)的值;②若3*x=2,求x的值;③若(﹣4)*x=2+x,求x的值.28.初一年级学生在7名教师的带领下去公园秋游,公园的门票为每人20元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=50时,采用哪种方案优惠?(3)当m=400时,采用哪种方案优惠?参考答案一、选择题D C D D A C B A A D B B二、填空题13.; 14.13 15.-1 16.(2m+3) 17. 618. 19. a(50%-n%) 20.3n+2 21.3n﹣1 22.37;S=4n+1三、解答题23.解:原式= =24.解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时,原式=﹣6+4=﹣2.25.解:由题意可知:做两个(1)型的窗框需要铝合金2(3x+2y);做五个(2)型的窗框需要铝合金5(2x+2y);所以共需铝合金2(3x+2y)+5(2x+2y)=(16x+14y)米26.解:∵a×23+2b+1=5,∴8a+2b=4,当x=﹣2时,ax3+bx+4=a×(﹣2)3﹣2b+4=﹣(8a+2b)+4=﹣4+4=027.解:(1)根据题意可得原式=52﹣(﹣1)=26;(2)由给出的运算法则可得原式=32﹣x=2,解得x=7;(3)根据题意可得原式=(﹣4)2﹣x=16﹣x,∴16﹣x=2+x,解得x=7.28.(1)解:甲方案需要的钱数为:m×20×0.8=16m,乙方案需要的钱数为:20×(m+7)×0.75=15m+105(2)解:当m=50时,乙方案:15×50+105=855(元),甲方案:16×50=800(元),∵800<855,∴甲方案优惠(3)解:当m=400时,乙方案:15×400+105=6105(元),甲方案:16×400=6400(元),∵6105<6400,∴乙方案优惠。

初中数学代数式经典测试题含答案

初中数学代数式经典测试题含答案
6.若 与 是同类项.则()
A. B. C. D.
【答案】B
【解析】
【分析】
根据同类项的定义列出关于m和n的二元一次方程组,再解方程组求出它们的值.
【详解】
由同类项的定义,得:
,解得 .
故选B.
【点睛】
同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.
【点睛】
本题考查了多项式乘多项式,熟练掌握其运算方法: 是解题的关键.
2.下列各运算中,计算正确的是( )
A.2a•3a=6aB.(3a2)3=27a6
C.a4÷a2=2aD.(a+b)2=a2+ab+b2
【答案】B
【解析】
试题解析:A、2a•3a=6a2,故此选项错误;
B、(3a2)3=27a6,正确;
故选:A.
点睛:此题主要考查了完全平方公式以及二次根式加减运算和幂的乘方运算,正确掌握相关运算法则是解题关键.
15.图为“ ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )
A. B. C. D.
【答案】A
【解析】
【分析】
根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.
19.若(x+4)(x﹣1)=x2+px+q,则( )
A.p=﹣3,q=﹣4 B.p=5,q=4
C.p=﹣5,q=4 D.p=3,q=﹣4
【答案】D
【解析】
【分析】
根据整式的运算法则即可求出答案.
【详解】
解:∵(x+4)(x﹣1)=x2+3x﹣4

2020年初三中考数学复习:代数式含答案

2020年初三中考数学复习:代数式一、单选题1.“a与b的的差”,用代数式表示为( )A. B. C. D.2.a+1的相反数是()A. -a+1B. -(a+1)C. a-1D.3.每100千克小麦可出x千克面粉,y千克小麦可出面粉的千克数为()A. B. C. D.4.若x2﹣3y﹣5=0,则6y﹣2x2﹣6的值为()A. 4B. ﹣4C. 16D. ﹣165.设,则代数式的值为( ).A. -6B. 24C.D.6.某冰箱降价30%后,每台售价a元,则该冰箱每台原价应为()A. 0.3a元B. 0.7a元C. 元D. 元7.x的2倍加上y的和乘以x的2倍减去y的差,所得的积写成代数式为()A. (2x+y)·2x-yB. 2x+y·(2x-y)C. 2x+y·2x-yD. (2x+y)(2x-y)8.下列图案是我国古代窗格的一部分,其中“○”代表窗纸上所贴的剪纸,则第10个图中所贴剪纸“○”的个数为()A. 32个B. 33个C. 34个D. 35个9.观察图中正方形四个顶点所标的数字规律,可得出数2017应标在()A. 第504个正方形的左下角B. 第504个正方形的右上角C. 第505个正方形的左下角D. 第505个正方形的右上角10.下列代数式中符合书写要求的是()A. ab2×4B. xyC. 2a2bD. 6xy2÷311.有理数a,b在数轴上对应的位置如图所示,那么代数式的值是()A. ﹣1B. 0C. 1D. 212.如图,以点O为圆心的20个同心圆,它们的半径从小到大依次是1、2、3、4、…、20,阴影部分是由第1个圆和第2个圆,第3个圆和第4个圆,…,第19个圆和第20个圆形成的所有圆环,则阴影部分的面积为()A. 231πB. 210πC. 190πD. 171π13.已知:,则的值是()A. B. C. 3 D. -314.若正整数按如图所示的规律排列,则第8行第5列的数字是()A. 64B. 56C. 58D. 6015.图①是一块边长为1,周长记为P1的正三角形纸板,沿图①的底边剪去一块边长为的正三角形纸板后得到图②,然后沿同一底边依次剪去一块更小的正三角形纸板(即其边长为前一块被剪如图掉正三角形纸板边长的)后,得图③,④,…,记第n(n≥3)块纸板的周长为P n,则P2018﹣P2017的值为()A. B. C. D.二、填空题16.用同样大小的黑色棋子按如图所示的规律摆放,则第2 017个图共有________枚棋子.17.已知a—2b的值是2018,则1—2a+4b的值等于________.18.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有1499个黑棋子,则n=________.19.如果定义新运算“※”,满足a※b=a×b﹣a÷b,那么1※2=________.20.已知的值为,则代数式的值为________.三、计算题21.当x=3,y= –2时,求下列代数式的值.(1)(2)22.计算:已知|x|= ,|y|= ,且x<y<0,求6÷(x﹣y)的值.23.观察下列等式:,,,……(1)按此规律写出第5个等式;(2)猜想第n个等式,并说明等式成立的理由.24.已知a2+b2=5,ab=-2,求代数式2(4a2+2ab-b2)-3(5a2-3ab+2b2)+b2的值.25.如果有理数、满足,试求…… 的值.四、解答题26.如图,试用字母,表示阴影部分的面积,并求出当a=12cm,b=4cm,π≈3时各自阴影部分的面积.27.根据你的生活与学习经验,对代数式2(x+y)表示的实际意义作出两种不同的解释.28.说出下列代数式的意义:(1)2a﹣3c;(2);(3)ab;(4)a2﹣b2.五、综合题29.观察下面的图形(每个正方形的边长均为1)和相应的等式,探究其中的规律:① 1× =1-② 2× =2-③ 3× =3-……(1)在下面给出的四个正方形中画出第四个图形,并在右边写出与之对应的等式;________;________(2)猜想并写出与第n个图形相对应的等式:________。

中考数学代数式复习专题(附答案)

中考数学代数式复习专题(附答案)一、单选题(共12题;共24分)1.我校给某“希望小学”邮寄每册a元的图书1000册,若每册图书的邮费为书价的5%,则共需邮费()元.A. 5%aB. 5%×1000aC. 1000a(1+5%)D. 502.已知,则代数式的值是()A. -1B. 2C. 1D. -73.对于任意两个有理数a、b,规定a⊗b=3a﹣b,若(2x+3)⊗(3x﹣1)=4,则x的值为()A. 1B. ﹣1C. 2D. ﹣24.某厂去年产值为m万元,今年产值是n万元(m<n),则今年的产值比去年的产值增加的百分比是( )A. ×100%B. ×100%C. ×100%D. ×100%5.若x1和x2为一元二次方程x2+2x-1=0的两个根。

则x12x2+x1x22值为()A. 4B. 2C. 4D. 36.买一个笔盒需要m元,买一支铅笔需要n元,则买4个笔盒、7支铅笔共需要()元A. 4m+7nB. 28mC. 7m+4nD. 11m7.一个三位数的各数位上的数字之和等于12,且个位数字为a,十位数字为b,则这个三位数可表示为()A. 12+10b+aB. 12000+10b+aC. 100(12-a-b)+10b+aD. 112+10b+a8.用火柴棒按如图中的方式搭图形,则搭第7个图形所需火柴棒的根数为()A. 28B. 29C. 34D. 359.若m+n=7,2n﹣p=4,则2m+4n﹣p的值为()A. ﹣11B. ﹣3C. 3D. 1810.若a为方程x²-x-5=0的解,则-a²+a+11的值为( )A. 16B. 12C. 9D. 611.观察下列等式:,,,,,,…,根据这个规律…+的末位数字是()A. 0B. 2C. 4D. 612.在平面直角坐标系中,对于点P(x,y),我们把点Q(-y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,A2的伴随点为A3……这样依次得到点A1,A2,A3……A n,若点A1(2,2),则点A2019的坐标为()A. (-2,0)B. (-1,3)C. (1,-1)D. (2,2)二、填空题(共6题;共6分)13.若x﹣y﹣1=0,则代数式(y﹣x)2﹣2x+2y+1的值是________.14.若a,b互为相反数,c,d互为倒数,m的平方等于25,则的值是________.15.在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=2a+3b.如:1⊕5=2×1+3×5=17.则不等式x⊕4>0的解集为________.16.如图,下列图形都是由同样大小的小圆圈按一定规律所组成的,则第n个图形中小圆圈的个数为________.17.如图(1)是一个三角形,分别连接这个三角形三边中点得到图(2);再分别连接图(2)中间小三角形三边中点得到图(3),按上面的方法继续下去,第n个图形中有________个三角形?18.任意写出一个3的倍数例如:,首先把这个数各数位上的数字都立方,再相加,得到一个新数,然后把这个新数重复上述运算,运算结果最终会得到一个固定不变的数M,它会掉入一个数字“黑洞” 那么最终掉入“黑洞”的那个数M是________.三、计算题(共3题;共30分)19. (1)已知=5,=4,且m,n异号,求m2-mn+n2的值.(2)已知,m和n互为相反数,p和q互为倒数,a是绝对值最小的有理数,求的值. 20.阅读材料:规定一种新的运算:=ad-bc。

中考数学_三年经典中考压轴题专题4:代数之不等式组(组)问题

三年经典中考压轴题专题4:代数之不等式组(组)问题一、选择题1. (2014年内蒙古包头、乌兰察布3分)关于x 的一元二次方程()22x 2m 1x m 0+-+=的两个实数根分别为x 1,x 2,且x 1+x 2>0,x 1x 2>0,则m 的取值范围是【 】 A. 1m 2≤ B. 1m 2≤且m≠0 C. m <1 D. m <1且m≠0 【答案】B .【考点】1.一元二次方程根的判别式;2.一元二次方程根与系数的关系;3.解一元一次不等式组.2. (2014年四川德阳3分)已知方程3a 1a a 44a --=--,且关于x 的不等式组x a x b ≥⎧⎨≤⎩只有4个整数解,那么b 的取值范围是【 】A .﹣1<b≤3B .2<b≤3C .8≤b <9D .3≤b <4【答案】D.【考点】1.解分式方程;2.一元一次不等式组的整数解.故选D.3.(2013年山东潍坊3分)对于实数x ,我们规定[]x 表示不大于x 的最大整数,例如[]12.1=,[]33=,[]35.2-=-,若x 4510+⎡⎤=⎢⎥⎣⎦,则x 的取值可以是【 】. A.40 B.45 C.51 D.564. (2012江苏常州2分)已知a 、b 、c 、d 都是正实数,且a cb d<,给出下列四个不等式: ①a c a+b c+d <;②c a c+d a+b <;③d b c+d a+b <;④b d a+b c+d <。

其中不等式正确的是【 】A. ①③B. ①④C. ②④D. ②③二、填空题1. (2014年江苏镇江2分)读取表格中的信息,解决问题. n=1 1a 223=+ 1b 32=+ 1c 122=+ n=2a 2=b 1+2c 1 b 2=c 1+2a 1 c 2=a 1+2b 1 n=3a 3=b 2+2c 2 b 3=c 2+2a 2 c=a 2+2b 2 …… … … 满足()n n na b c 201432132++≥⨯-++的n 可以取得的最小整数是 . 【答案】7.【考点】1.探索规律题(数字的变化类);2. 二次根式化简;3.不等式的应用.2.(2013年浙江台州5分)任何实数a ,可用[]a 表示不超过a 的最大整数,如[][]13,44==,现对72进行如下操作:1727288221⎡−−−→=−−−→=−−−→=⎣第次第2次第3次,这样对72只需进行3次操作后变为1,类似地,①对81只需进行 次操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是 .3. (2013年宁夏区3分)若不等式组x a 012x x 2+≥⎧⎨--⎩>有解,则a 的取值范围是 .4.(2013年四川乐山3分)对非负实数x “四舍五入”到个位的值记为<x>,即当n 为非负整数..时,若11n x n 22<-≤+,则<x>=n ,如<0.46>=0,<3.67>=4。

最新初中数学代数式难题汇编含答案

19.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )
A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2
C.(a+b)2=a2+2ab+b2D.(a+b)2=(a﹣b)2+4ab
【答案】B
【解析】
【分析】
根据图形确定出图1与图2中阴影部分的面积,由此即可解答.
第(2)个图形中面积为1的图象有2+3=5个,
第(3)个图形中面积为1的正方形有2+3+4=9个,
…,
按此规律,
第n个图形中面积为1的正方形有2+3+4+…+(n+1)= 个,
则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.
故选B.
考点:规律型:图形变化类.
5.下列各式中,计算正确的是( )
A. B. C. D.
【答案】A
【解析】
【分析】
绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.
【详解】
解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为 .
故选A.
【点睛】
本题考查了绝对值小于1的正数科学记数法表示,一般形式为 .
【答案】D
【解析】
A选项:2x2·2xy=4x3y,故是错误的;
B选项:3x2y和5xy2不是同类项,不可直接相加减,故是错误的;
C.选项:x-1÷x-2=x,故是错误的;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学代数选择题(08北京市卷)1.6-的绝对值等于( A ) A .6B .16C .16-D .6-(08北京市卷)2.截止到2008年5月19日,已有21 600名中外记者成为北京奥运会的注册记者,创历届奥运会之最.将21 600用科学记数法表示应为( D ) A .50.21610⨯B .321.610⨯C .32.1610⨯D .42.1610⨯(08北京市卷)4.众志成城,抗震救灾.某小组7名同学积极捐出自己的零花钱支援灾区,他们捐款的数额分别是(单位:元):50,20,50,30,50,25,135.这组数据的众数和中位数分别是( C ) A .50,20B .50,30C .50,50D .135,50(08北京市卷)6.如图,有5张形状、大小、质地均相同的卡片,正面分别印有北京奥运会的会徽、吉祥物(福娃)、火炬和奖牌等四种不同的图案,背面完全相同.现将这5张卡片洗匀后正面向下放在桌子上,从中随机抽取一张,抽出的卡片正面图案恰好是吉祥物(福娃)的概率是( B )A .15B .25C .12D .35(08北京市卷)7.若230x y ++-=,则xy 的值为( B )A .8-B .6-C .5D .6(08天津市卷)1.ο60cos 的值等于( A ) A .21 B .22 C .23 D .1(08天津市卷)4.纳米是非常小的长度单位,已知1纳米=610-毫米,某种病毒的直径为100纳米,若将这种病毒排成1毫米长,则病毒的个数是( B ) A .210个B .410个C .610个D .810个(08天津市卷)5.把抛物线22x y =向上平移5个单位,所得抛物线的解析式为( A ) A .522+=x yB .522-=x yC .2)5(2+=x yD .2)5(2-=x y(08天津市卷)6.掷两枚质地均匀的硬币,则两枚硬币全部正面朝上的概率等于( C )A .1B .21 C .41 D .0(08天津市卷)8.若440-=m ,则估计m 的值所在的范围是( B ) A .21<<mB .32<<mC .43<<mD .54<<m(08天津市卷)10.在平面直角坐标系中,已知点A (4-,0),B (2,0),若点C 在一次函数221+-=x y 的图象上,且△ABC 为直角三角形,则满足条件的点C 有( D ) A .1个B .2个C .3个D .4个(08河北省卷)1.8-的倒数是( D ) A .8B .8-C .18D .18-(08河北省卷)2.计算223a a +的结果是( B ) A .23aB .24aC .43aD .44a(08河北省卷)3.把某不等式组中两个不等式的解集表示在数轴上,如图1所示, 则这个不等式组可能是( B ) A .41x x >⎧⎨-⎩,≤B .41x x <⎧⎨-⎩,≥C .41x x >⎧⎨>-⎩,D .41x x ⎧⎨>-⎩≤,(08河北省卷)4.据河北电视台报道,截止到2008年5月21日,河北慈善总会已接受支援汶川地震灾区的捐款15 510 000元.将15 510 000用科学记数法表示为( C ) A .80.155110⨯ B .4155110⨯ C .71.55110⨯D .615.5110⨯(08河北省卷)6.某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x ,根据题意,下面所列方程正确的是( A ) A .23000(1)5000x +=B .230005000x =C .23000(1)5000x +=%D .23000(1)3000(1)5000x x +++=(08河北省卷)8.同时抛掷两枚质地均匀的正方体骰子(骰子每个面上的点数分别为1,2,3,4,5,6).下列事件中是必然事件的是( B ) A .两枚骰子朝上一面的点数和为6 B .两枚骰子朝上一面的点数和不小于2 C .两枚骰子朝上一面的点数均为偶数D .两枚骰子朝上一面的点数均为奇数(08河北省卷)9.如图4,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD图1的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( D )(08河北省卷)10.有一个四等分转盘,在它的上、右、下、左的位置分别挂着“众”、“志”、“成”、“城”四个字牌,如图5-1.若将位于上下位置的两个字牌对调,同时将位于左右位置的两个字牌对调,再将转盘顺时针旋转90o,则完成一次变换.图5-2,图5-3分别表示第1次变换和第2次变换.按上述规则完成第9次变换后,“众”字位于转盘的位置是( C )A .上B .下C .左D .右(08内蒙古赤峰)1.如果a a -=-,下列成立的是( B ) A .0a <B .0a ≤C .0a >D .0a ≥(08内蒙古赤峰)2.把23x x c ++分解因式得:23(1)(2)x x c x x ++=++,则c 的值为( A )A .2B .3C .2-D .3-(08内蒙古赤峰)4.用表示三种不同的物体,现放在天平上比较两次,情况如图所示,那么 这三种物体按质量从大到小的顺序排列应为( A )A .B .C .D .(08内蒙古赤峰)5.下面的图表是护士统计的一位病人一天的体温变化情况:图4xA .xB .xC .D .图5-1图5-2 图5-3 …a b c a b c a b c a b c ab c通过图表,估计这个病人下午16:00时的体温是( D ) A .38.0℃B .39.1℃C .37.6℃D .38.6℃(08内蒙古赤峰)6.给定一列按规律排列的数:111113579L L ,,,,,它的第10个数是( C ) A .115B .117C .119D .121(08内蒙古赤峰)8.如图是光明中学乒乓球队队员年龄分布的条形图.这些年龄的众数、中位数依次分别是( A )A .15,15B .15,15.5C.14.5,15D .14.5,14.5(08年内蒙古乌兰察布)1.下列计算正确的是(C )A .0(2)0-=B .239-=- C 3= D =(08年内蒙古乌兰察布)2.国家游泳中心——“水立方”,是北京2008年奥运会场馆之一,它的外层膜的展开面积约为26万m 2,将26万m 2用科学记数法表示应为( D ) A .620.2610m ⨯B .422610m ⨯C .622.610m ⨯D .522.610m ⨯(08年内蒙古乌兰察布)3.若2x <,则2|2|x x --的值是( A )A .1-B .0C .1D .2(08年内蒙古乌兰察布)5.气象台预报“本市明天降水概率是85%”,对此信息,下列说法正确的是( C ) A .本市明天将有85%的地区降水 B .本市明天将有85%的时间降水 C .明天降水的可能性比较大D .明天肯定下雨体温/℃(08年内蒙古乌兰察布)6.十名工人某天生产同一零件,生产的件数是15,17,14,10,15,17,17,16,14,12,设其平均数为a ,中位数为b ,众数为c ,则有( B ) A .a b c >>B .c b a >>C .c a b >>D .b c a >>(08年内蒙古乌兰察布)9.中央电视台2套“开心辞典”栏目,有一题的题目如图所示, 两个天平都平衡,则三个球体的重量等于多少个正方体的重量 ( D ) A .2个 B .3个C .4个D .5个(08年内蒙古乌兰察布)11.小亮早晨从家骑车到学校,先上坡后下坡,行程情况如图所示.若返回时上坡、下坡的速度仍保持不变,那么小明从学校骑车回家用的时间是( A ) A .37.2分钟B .48分钟C .30分钟D .33分钟(08山西省卷)11.一元二次方程032=+x x 的解是CA .3-=xB .3,021==x xC .3,021-==x xD .3=x (08山西省卷)12.下列运算正确的是BA .a b a b 11+-=+-B .()2222b ab a b a ++=-- C .12316+=+a a D .()222-=-(08山西省卷)14.在平面直角坐标系中,点()12,7+--m 在第三象限,则m 的取值范围是DA .21<m B .21->m C .21-<m D .21>m (08山西省卷)15.抛物线5422---=x x y 经过平移得到22x y -=,平移方法是DA .向左平移1个单位,再向下平移3个单位B .向左平移1个单位,再向上平移3个单位C .向右平移1个单位,再向下平移3个单位D .向右平移1个单位,再向上平移3个单位(08山西省卷)16.王师傅在楼顶上的点A 处测得楼前一棵树CD 的顶端C 的俯角为60 o , 又知水平距离BD=10m ,楼高AB=24 m ,则树高CD 为A A .()31024-m B .⎪⎪⎭⎫⎝⎛-331024m C .()3524-m D .9m(11题图)(08山西省卷)17.如图,第四象限的角平分线OM 与反比例函数()0≠=k xky 的 图象交于点A ,已知OA=23,则该函数的解析式为DA .x y 3=B .x y 3-= C .x y 9= D .xy 9-=(08山西太原)1.下列四个数的绝对值比2大的是( A ) A .3-B .0C .1D .2(08山西太原)2.在平面直角坐标系中,点P 的坐标为(46)-,,则点P 在( B ) A .第一象限B .第二象限C .第三象限D .第四象限(08山西太原)5.化简222m n m mn-+的结果是( B )A .2m nm- B .m nm- C .m nm+ D .m nm n-+ (08山西太原)6.今年5月16日我市普降大雨,基本解除了农田旱情.以下是各县(市、区)的降水量分布情况(单位:mm ),这组数据的中位数,众数,极差分别是B 县(市、区) 城区 小店 尖草坪 娄烦 阳曲 清徐 古交 降水量2829.4 31.92728.834.129.4A .29.4,29.4,2.5B .29.4,29.4,7.1C .27,29.4,7D .28.8,28,2.5(08山西太原)7.下列图象中,以方程220y x --=的解为坐标的点组成的图象是( C )(08山西太原)10.在某次人才交流会上,应聘人数和招聘人数分别居前5位的行业列表如下:行业名称计算机机械营销物流贸易yO2 1 121- 1- 2-yO2 B . 1 12 1- 1- 2-yO2 1 12 1- 1- 2-yO2 1 12 1- 1- 2-应聘人数(单位:人)2231 2053 1546 748 659行业名称计算机营销机械建筑化工招聘人数(单位:人)1210 1030 895 763 725 如果用同一行业应聘人数与招聘人数比值的大小来衡量该行业的就业情况,那么根据表中数据,对上述行业的就业情况判断正确的是( D )A.计算机行业好于其它行业B.贸易行业好于化工行业C.机械行业好于营销行业D.建筑行业好于物流行业。

相关文档
最新文档