非金属夹杂物对疲劳性能的影响

合集下载

非金属夹杂物

非金属夹杂物

知识创造未来
非金属夹杂物
非金属夹杂物是指在金属材料中含有的非金属物质。

这些夹杂物可
能是由金属制造过程中掺入的,也可能是在金属材料使用过程中产
生的。

非金属夹杂物的存在可能会对金属材料的性能产生一定影响。

例如,一些非金属夹杂物可能会降低金属材料的强度、硬度和延展性,甚
至可能引起脆性断裂。

此外,非金属夹杂物还可能影响金属材料的
耐腐蚀性能和疲劳寿命。

为了降低非金属夹杂物对金属材料性能的影响,通常采取以下措施:
1. 优化制造工艺,减少夹杂物的产生。

2. 使用高纯度的金属原料,减少夹杂物的含量。

3. 进行热处理,以促进夹杂物的析出和沉淀。

4. 加入特定的合金元素,改变夹杂物的性质和行为。

5. 采用合适的清洁和保护措施,以防止夹杂物的生成和对金属材料
的损害。

总之,非金属夹杂物对金属材料的性能具有一定的影响,需要通过
优化材料和工艺来降低其对金属材料性能的影响。

1。

钢中非金属夹杂对质量的影响及控制措施

钢中非金属夹杂对质量的影响及控制措施


1) 液体钢的脱氧产物; 2) 钢液从浇注温度冷却到凝固温度过程中,由
于温度的降低使溶液中溶质的溶解度降低,
即钢水温度的变化使反应平衡移动,重新析 出脱氧产物;

3) 钢液冷凝时发生溶质树枝形偏析所析出的脱 氧产物;

4) 固相线温度以下钢继续冷却或者由于相变的
缘故,引起的夹杂物重新析出。
1.2
1.5

按化学成分分类
FeS、MnS
A类夹杂:硫化物

B类夹杂: 氧化铝、氧化铁 Al2O3+FeO C类夹杂:硅酸盐、氮化物 2MnO.SiO2 TiN、BN、NbN等 D类夹杂:球状氧化物类 小型氧化物 FeO、MnO、TiO2等



Ds类夹杂:单个大型球状氧化物类
1.6

钢中夹杂物的形貌
25
2.2夹杂物的检测
1.钢材出厂检验:
• • • ASTM标准(A、B、C、D、Ds类夹杂物); 用户标准(SKF、米其林、贝卡尔特等); 分析检验手段:光学显微镜。
2.科学研究:
• • 光学显微镜; 扫描电镜(+EDS);

• •
投射电镜(+EPMA、EDS);
图像分析; PDA(Pulse Distribution Analysis)。
炼钢钢坯
氧化铝+硫化钙
氧化铝
15102486N
氧化铁 视场50X
硫化钙
氧化铝

轧钢钢板
氮化物
2、非金属夹杂物对性能影响

使用性能的影响: 1、疲劳性能↓ 2、冲击韧性↓ 塑性↓ 3、耐腐蚀性↓

对工艺性能的影响: 1 、对锻造和冷加工、淬火加热和焊接过程 易开裂。 2 、轧制后表面质量以及磨削后零件表面粗 糙度降低。

钢中非金属夹杂物的鉴定

钢中非金属夹杂物的鉴定

钢中非金属夹杂物的鉴定随着现代工程技术的发展,对钢的综合性能要求也日趋严格,相应地对钢的材质要求也越来越高。

非金属夹杂物作为独立相存在于钢中,破坏了钢基体的连续性,加大了钢中组织的不均匀性,严重影响了钢的各种性能。

例如,非金属夹杂物导致应力集中,引起疲劳断裂[1-3];数量多且分布不均匀的夹杂物会明显降低钢的塑性、韧性、焊接性以及耐腐蚀性;钢中呈网状存在的硫化物会造成热脆性。

因此,夹杂物的数量和分布被认定是评定钢材质量的一个重要指标,并且被列为优质钢和高级优质钢出厂的常规检测项目之一。

非金属夹杂物的性质、形态、分布、尺寸及含量不同,对钢性能的影响也不同。

所以提高金属材料的质量,生产出洁净钢,或控制非金属夹杂物性质和要求的形态,是冶炼和铸锭过程中的一个艰巨任务。

而对于金相分析工作者来说,如何正确判断和鉴定非金属夹杂物也因此变得十分重要。

1 钢中非金属夹杂物的来源分类1.1 内生夹杂物钢在冶炼过程中,脱氧反应会产生氧化物和硅酸盐等产物,若在钢液凝固前未浮出,将留在钢中。

溶解在钢液中的氧、硫、氮等杂质元素在降温和凝固时,由于溶解度的降低,与其他元素结合以化合物形式从液相或固溶体中析出,最后留在钢锭中,它是金属在熔炼过程中,各种物理化学反应形成的夹杂物[10-15]。

内生夹杂物分布比较均匀,颗粒也较小,正确的操作和合理的工艺措施可以减少其数量和改变其成分、大小和分布情况,但一般来说是不可避免的。

1.2 外来夹杂物钢在冶炼和浇注过程中悬浮在钢液表面的炉渣、或由炼钢炉、出钢槽和钢包等内壁剥落的耐火材料或其他夹杂物在钢液凝固前未及时清除而留于钢中。

它是金属在熔炼过程中与外界物质接触发生作用产生的夹杂物[10-15]。

如炉料表面的砂土和炉衬等与金属液作用,形成熔渣而滞留在金属中,其中也包括加入的熔剂。

这类夹杂物一般的特征是外形不规则,尺寸比较大,分布也没有规律,又称为粗夹杂。

这类夹杂物通过正确的操作是可以避免的。

非金属夹杂物

非金属夹杂物

非金属夹杂物01非金属夹杂物对钢力学性能的影响//非金属夹杂物是指存在于钢中的金属或非金属化合物。

在钢铁材料中一般都含有非金属夹杂物,这些夹杂物的种类和形状是多种多样的,对钢材的影响程度也不一样。

一般来说,非金属夹杂物的存在对钢具有以下影响:(1)破坏金属基体的连续性,在热处理时易引起淬火裂纹;(2)当金属承受载荷特别是动载荷时,易造成应力集中,使钢的力学性能特别是疲劳强度降低,甚至导致机械零件在使用过程中断裂失效;(3)非金属夹杂物的存在还使钢的耐蚀性降低,并使机械加工后的表面粗糙度增加;(4)较严重的非金属夹杂物在钢经热加工后呈带状分布,从而造成力学性能的方向性;(5)夹杂物的存在还会使冲压件的性能变化,易在夹杂物集中处开裂。

所以,钢中的非金属夹杂物应该被看做是一种组织缺陷。

当然,正常的夹杂物含量对钢材的使用一般不会有什么影响,有些钢材或零配件反而希望多含一些夹杂物,如含硫易切削钢,大量硫化物的存在不仅改善了切削性能,还适用于自动车加工的大批量生产。

02非金属夹杂物的分类//钢中非金属夹杂物的来源通常可以分为两类:一类是外来的非金属夹杂物,即在冶炼、浇注过程中的炉渣及耐火材料剥落后进入钢液中形成的;另一类是内在的非金属夹杂物,即在冶炼及浇注过程中物理化学反应的生成物,如氧化物、硅酸盐、硫化物等。

非金属夹杂物可按化学成分划分,也可按可塑性划分。

01按夹杂物的化学成分分类//图1a明视场观察呈灰色图1b正交偏光观察图1c暗场观察图1复杂氧化物及硅酸盐玻璃体1)氧化物简单氧化物,即FeO、MnO、Cr2O3、Al2O3、SiO2、ZrO2、TiO2等,一般在钢中呈颗粒状或球状分布。

复杂氧化物包括尖晶石类氧化物和各种钙的硅酸盐,这些复杂氧化物的熔点高于钢的冶炼温度,并有一个相当宽的成分变化范围,在钢液中呈固态存在,是多相夹杂物,如图1中的箭头2所示。

2)硅酸盐及硅酸盐玻璃这类夹杂物的化学式可用lFeO·mMnO·nAl2O3·pSiO2表示,成分较为复杂,通常呈多相状态。

夹杂物形貌对卡车车轮疲劳性能的影响

夹杂物形貌对卡车车轮疲劳性能的影响

2. 0 2. 5 一
10 . — 一
0. 5 15 . 15 .
2. 5 10 . 10 .
为研 究不 同夹杂 物 的形貌 对 汽车 车 轮疲 劳性 的影 响 , 制定 了三 种不 同的炼 钢工 艺 , 简
述 如 表 2 。
表 2 三种冶炼工艺简 介
序号 I I I。 Ⅲ 冶炼方案 K B F+( F R 精 炼 R+ O L + H) K R+B F O 优化 工艺 +无钙处理 L 精炼 + F 保护 浇铸 K B F优化工艺 +钙处理 L 精 炼 + 护浇铸 R+ O F 保
K R脱 s+ 转炉脱 氧及渣系优化 + F精炼 工艺优化 +A 气 保护浇 铸工 艺可 以得 到理想 的夹杂 L r 物形貌特征 , 并提 出了卡 车车 轮钢夹杂物控制 的行 驶 中 承 受 超
将上 述冶 炼 工艺得 到 的各种 夹 杂物 的形
得到 的结 果较 为 理想 。
表 3 三 种 冶 炼 工 艺得 到 的 夹 杂 物 种 类 及 级 别
A/级 B /级 C /级 D/ 级 Ds /级
1 实验钢成分及工 艺
实验 钢化 学 成分 见表 1 。
表 1 实验 钢 化 学 成 分

2. 0 一 一
耐疲劳次数降低 , 由于 A类夹杂物 的存在 且 导致 了成 型开 裂 。
Ⅱ号 冶 金 方 案 得 到 的 夹 杂 物 以 B类 为 主 , 布 在钢 板 的 中 心位 置 。 大 颗 粒 的 夹 杂 分
表 4 各方案对应的疲劳性能
备注 : 当弯 曲疲 劳 超 过 4 5万 次 , 向 疲 劳 超 过 2 0万 次 终 止 实 验 。 径 0
且大 颗粒 夹杂 物 直 径 大 , 量 多 , 状 各 异 , 数 形

非金属夹杂物

非金属夹杂物

非金属夹杂物1概述在炼钢过程中,少量炉渣、耐火材料及冶炼中反应产物可能进入钢液,形成非金属夹杂物。

它们都会降低钢的机械性能,特别是降低塑性、韧性及疲劳极限。

严重时,还会使钢在热加工与热处理时产生裂纹或使用时突然脆断。

非金属夹杂物也促使钢形成热加工纤维组织与带状组织,使材料具有各向异性。

严重时,横向塑性仅为纵向的一半,并使冲击韧性大为降低。

因此,对重要用途的钢(如滚动轴承钢、弹簧钢等)要检查非金属夹杂物的数量、形状、大小与分布情况。

此外,钢在整个冶炼过程中,都与空气接触,因而钢液中总会吸收一些气体,如氮、氧、氢等。

它们对钢的质量也会产生不良影响。

钢中非金属夹杂物根据不源可分两大类,即外来非金属夹杂物和内在非金属夹杂物。

外来非金属夹杂物是钢冶炼、浇注过程中炉渣及耐火材料浸蚀剥落后进入钢液而形成的,内在非金属夹杂物主要是冶炼、浇注过程中物理化学反应的生成物,如脱氧产物等等。

常见的内在非金属夹杂物有以下几种;(a)氧化物,常见的为Al2O3;(b)硫化物,如FeS、MnS、(MnS·FeS)等;(c)硅酸盐,如硅酸亚铁(2FeO·SiO2)、硅酸亚锰(2MnO·SiO2)、铁锰硅酸盐(mFeO·MnO·SiO2)等;(d)氮化物,如TiN、ZrN等;点状不变形夹杂物等。

2危害不同形态的夹杂物混杂在金属内部,破坏了金属的连续性和完整性。

夹杂物同金属之间的结合情况不同、弹性和塑性的不同以及热膨胀系数的差异,常使金属材料的塑性、韧性、强度、疲劳极限和耐蚀性等受到显著影响,同时也常常影响加工零件的表面质量和加工工具的寿命。

非金属夹杂分塑性夹杂和脆性夹杂。

塑性夹杂如MnS等随金属变形而延伸轧薄。

脆性夹杂如Al:0。

等随金属变形而破碎。

另一些夹杂物软化点及硬度很高,热加工中不变形,不破碎,保持原来形状,如TIN、稀土硫氧化物等。

铜中氧化夹杂CuZO常分布在晶界上,Cu20是一种硬脆相,会降低金属的热塑性,还影响铜的导电能力。

钢中的非金属夹杂物

钢中的非金属夹杂物

什么是非金属夹杂?钢中非金属夹杂物,如氧化物、硫化物、硅酸盐、氮化物等一般都呈独立相存在,主要是由炼钢中的脱氧产物和钢凝固时由于一系列物化反应所形成的各种夹杂物组成。

非金属夹杂的影响非金属夹杂物的存在,破坏了钢基体的连续性,使钢组织的不均匀性增大。

一般来说钢中非金属夹杂物,对钢的性能产生不良影响,如降低钢的塑性、韧性和疲劳性能,使钢的冷热加工性能乃至某些物理性能变坏等。

因此评定钢中夹杂物类别、级别对保证钢材质量十分重要。

分类按夹杂物的化学成分:氧化物、硫化物及氮化物。

根据夹杂物的可塑性:塑性夹杂物、脆性夹杂物、不变形夹杂物及半塑性夹杂物。

● 塑性夹杂物钢中塑性夹杂物在钢经受加工变形时具有良好塑性,沿着钢的流变方向延伸成条带状。

● 脆性夹杂物指那些不具有塑性的简单氧化物和复杂氧化物以及氮化物。

●不变形夹杂物这类夹杂物在铸态的钢中呈球状,而在钢凝固并经形变加工后,夹杂物保持球形不变。

● 半塑性夹杂物指各种多相的铝硅酸盐夹杂物。

其中作为基底的夹杂物(铝硅酸盐玻璃)一般当钢在热加工时具有塑性,但是在这基底上分布的析出相晶体(如Al2O3、尖晶石类氧化物)的塑性很差。

钢经热变形后,塑性夹杂物相(基底)随钢变形而延伸,但脆性的夹杂物相不变形,仍保持原来形状,只是彼此之间的距离被拉长。

按夹杂物的来源:内生夹杂物、外来夹杂物。

● 内生夹杂物在钢的熔炼、凝固过程中,脱氧、脱硫产物,以及随温度下降,S、O、N等杂质元素的溶解度下降,于是这些不溶解的杂质元素就形成非金属化合物在钢中沉淀析出,最后留在钢锭中。

内生夹杂物分布相对均匀,颗粒一般比较细小。

可以通过合理的熔炼工艺来控制其数量、分布和大小等,但一般来讲内生夹杂物总是存在的。

● 外来夹杂物炉衬耐火材料或炉渣等在钢的冶炼、出钢、浇铸过程中进入钢中来不及上浮而滞留在钢中称为外来夹杂物。

其特征是:外形不规则、尺寸比较大,偶尔在这里或在那里出现,正确的操作可以避免或减少钢中外来夹杂物的入侵。

金属中非金属夹杂物-正文

金属中非金属夹杂物-正文

金属中非金属夹杂物-正文金属中非金属夹杂物正文金属材料中含有的一类具有非金属特性的组成物。

它们在金属和合金的熔炼、凝固过程中产生,并在随后的热、冷加工过程中经历一系列变化,对金属和合金的性能产生多方面的影响。

根据非金属夹杂物(以下简称夹杂物)的来源,通常把夹杂物分为外来的和内生的两大类。

混入金属中的炉衬耐火材料或炉渣颗粒(包括刚带入的、或与金属液发生化学反应而在成分和结构上已有相当大改变的)属于外来夹杂物;在熔炼、凝固过程中,熔融金属中含有的各化学元素的化学反应产物,来不及排除,仍保留在固态金属中,称为内生夹杂物。

钢中非金属夹杂物分类非金属夹杂物,既可以按化学成分划分,也可以按力学性能划分。

按夹杂物的化学成分分类①简单氧化物如FeO、MnO、Cr2O3、Al2O3、Si O2以及钛、钒、铌的氧化物等。

②复杂氧化物其中尖晶石类夹杂物用化学式A O·B2O3表示(化学式中A表示二价金属,如镁、锰、铁等;B表示三价金属,如铁、铬、铝等)。

这类化合物具有尖晶石MgO·Al2O3型结构,由此而得名。

尖晶石类夹杂物为一大类氧化物,如MnO·Al2O3、MnO·Cr2O3、MnO·Fe2 O3、FeO·Al2O3、FeO·Cr2O3(图1)、FeO·Fe2O3(Fe3O4)、MgO·Al2O3、MgO·Cr2O3、MgO·Fe2O3等。

这些化合物都有一个相当宽的成分可变范围;实际遇到的尖晶石类夹杂物往往是多成分的。

此类氧化物在工业用钢中比较常见。

钙的铝酸盐如CaO·Al2O3、CaO·2Al2O3也属于复杂氧化物(图2)。

但它们不具有尖晶石型结构,所以,不属于尖晶石型氧化物。

③硅酸盐及硅酸盐玻璃通用化学式可写成ιFe O·m nO·n Al2O3·p SiO2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

非金属夹杂物对疲劳性能的影响
2009-06-26 07:30 来源:我的钢铁试用手机平台
1)非金属夹杂物性质的影响
就脆性夹杂和点状不变形夹杂而言,当夹杂物尺寸相同时,TiN的危害最大,其次是A1203和MgO•A1203,接下来是nCaO•mA1203和CaS。

实际材料断口上观察到的TiN夹杂都很小,故其危害并不突出。

而轴承钢采用钙处理后形成的点状铝酸钙不变形夹杂的颗粒远比A1203夹杂大,因而它对轴承钢的危害也比A1203夹杂大。

文献比较了不同性质夹杂物的影响,指出当脆性的氧化物夹杂长度>16μm时,轴承钢发生裂纹的几率为100%,而半塑性的氧硫化物和塑性的硫化锰长度分别达到65μm和300μm时产生裂纹的几率才达到100%。

2)非金属夹杂物尺寸的影响
对失效零件疲劳断口的观察发现,对材料疲劳破坏最有害的是零件表层的粗大脆性或点状不变形夹杂物。

3)非金属夹杂物数量的影响
对于同一类型的夹杂物,当尺寸分布相同时,随夹杂物数量增加疲劳寿命下降。

但对尺寸分布不同的夹杂物,夹杂物尺寸的变化对疲劳性能的影响远比夹杂物含量变化的影响大。

小于临界尺寸的夹杂物颗粒对裂纹的萌生并不重要,但它有助于疲劳裂纹的扩展。

研究发现,裂纹扩展速率随钢的纯净度的提高而减小,而与夹杂物成分无关。

(来源:制钢参考网)。

相关文档
最新文档