第一章 整式的乘除 周周测5(1.4)
北师大版七下第一章 《整式的乘除》单元测试卷及答案

七下第一章 整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==ba x x 则=-ba x23( ) A 、2527 B 、109C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a ²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
北师大版七下第一章 《整式的乘除》单元测试卷及答案

七下第一章 整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==ba x x 则=-ba x23( ) A 、2527 B 、109C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a ²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
学典数学学业水平测试卷七年级(下)周周导练第1-3章学生版

下:(2+1)(22+1)(24+1)(28+1)
=(2+1)(2-1)(22+1)(24+1)(28+1)
=(22-1)(22+1)(24+1)(28+1)
=(24-1)(24+1)(28+1)
=(28-1)(28+1)
=216-1
请你根据小明解决问题的方法,试着解决以下的问题:
(1) (2+1)(22+1)(24+1)(28+1)(216+1)=
七年级数学(下)·周周导练 第 10 页
七年级数学(下)·周周导练 第 11 页
七年级数学(下)·周周导练 第 12 页
学校
班级
姓名
考号
..........................密...............................................................................封..........................................................................线.......................................
七年级《数学》(下)学业水平测试 周周导练 3
【测试范围:第一章《整式的乘除》(1.6~1.7)】
题
A卷
A卷
B卷
B卷
总
号 一 二 三 总分 一 二 总分
分
得分
A 卷(基础强化)
(满分 100 分,限时 60 分钟) 一、选择题(每小题 3 分,共 30 分 ;下列选项中 只有一个答 案是正
北师大版七年级数学下册第1章《整式的乘除》测试卷 含答案

2021年北师大版七年级数学下册第1章《整式的乘除》测试卷试卷满分:100分姓名:___________班级:___________考号:___________题号一二三总分得分一.选择题(共10小题,满分30分,每小题3分)1.下列运算正确的是()A.a2•a3=a6B.(a﹣b)2=a2﹣b2C.(a2)3=a6D.5a2﹣3a=2a2.世界最大的单口径球面射电望远镜被誉为“中国天眼”,在其新发现的脉冲星中有一颗毫秒脉冲星的自转周期为0.00519秒.数据0.00519用科学记数法可以表示为()A.5.19×10﹣3B.5.19×10﹣4C.5.19×10﹣5D.5.19×10﹣63.下列代数式中能用平方差公式计算的是()A.(x+y)(x+y)B.(2x﹣y)(y+2x)C.D.(﹣x+y)(y﹣x)4.计算(﹣0.25)2019•42020的结果为()A.4B.﹣4C.D.﹣5.如果3a=5,3b=10,那么3a﹣b的值为()A.B.﹣5C.9D.6.若4x2+ax+121是完全平方式,则a的值是()A.22B.44C.±44D.±227.若(﹣2x+a)(x﹣1)的展开式中不含x的一次项,则a的值是()A.﹣2B.2C.﹣1D.任意数8.已知m+n=2,mn=﹣2.则(1+m)(1+n)的值为()A.6B.﹣2C.0D.19.已知a=255,b=344,c=433,则a、b、c的大小关系为()A.a>b>c B.a>c>b C.b>c>a D.b>a>c10.如图,在边长为a的正方形中挖掉一个边长为b的小正方形,把余下的部分拼成一个长方形(无重叠部分),通过计算两个图形中阴影部分的面积,可以验证的一个等式是()A.a2﹣b2=(a+b)(a﹣b)B.a(a﹣b)=a2﹣abC.(a﹣b)2=a2﹣2ab+b2D.a(a+b)=a2+ab二.填空题(共6小题,满分18分,每小题3分)11.20200=.12.计算:﹣3x•(2x2y﹣xy)=.13.若x+y=2a,x﹣y=2b,则x2﹣y2的值为.14.一台整式转化器原理如图,开始时输入关于x的整式M,当M=x+1时,第一次输出3x+1,继续下去,则第2次输出的结果是.15.叫做二阶行列式,它的算法是:ad﹣bc,请你计算=.16.已知:x+=3,则x2+=.三.解答题(共6小题,满分52分)17.(8分)计算:(1)(6ab+5a)÷a (2)(x+3)(x﹣3)﹣3(x2+x﹣3).18.(10分)用简便方法计算:(1)1002﹣200×99+992 (2)2018×2020﹣2019219.(8分)先化简,再求值:(x+y)(x﹣y)﹣(4x3y﹣8xy3)÷2xy,其中x=1,y=﹣2.20.(8分)已知a+b=3,ab=1,求:(1)a2+b2的值;(2)a﹣b的值.21.(8分)已知5a=3,5b=8,5c=72.(1)求(5a)2的值.(2)求5a﹣b+c的值.(3)直接写出字母a、b、c之间的数量关系为.22.(10分)乘法公式的探究与应用:(1)如图甲,边长为a的大正方形中有一个边长为b的小正方形,请你写出阴影部分面积是(写成两数平方差的形式)(2)小颖将阴影部分裁下来,重新拼成一个长方形,如图乙,则长方形的长是,宽是,面积是(写成多项式乘法的形式).(3)比较甲乙两图阴影部分的面积,可以得到公式(用式子表达)(4)运用你所得到的公式计算:10.3×9.7.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:A、a2•a3=a5,故本选项不合题意;B、(a﹣b)2=a2﹣2ab+b2,故本选项不合题意;C、(a2)3=a2×3=a6,故本选项符合题意;D、5a2与﹣3a不是同类项,所以不能合并,故本选项不合题意;故选:C.2.解:0.00519=5.19×10﹣3.故选:A.3.解:A、两个括号内的数字完全相同,不符合平方差公式,故不符合题意;B、两个括号内的相同数字是2x,相反数字是(﹣y)与y,故可用平方差公式计算,该选项符合题意;C、没有完全相同的数字,也没有完全相反的数字,故不符合题意;D、两个括号内只有相同项,没有相反项,故不符合题意.故选:B.4.解:(﹣0.25)2019•42020=(﹣0.25)2019×42019×4=(﹣0.25×4)2019×4=(﹣1)2019×4=(﹣1)×4=﹣4.故选:B.5.解:∵3a=5,3b=10,∵3a﹣b=.故选:A.6.解:∵4x2+ax+121是一个完全平方式,∵ax=±2•2x•11,解得:a=±44,故选:C.7.解:(﹣2x+a)(x﹣1)=﹣2x2+(a+2)x﹣a∵展开式中不含x的一次项,∵a+2=0,∵a=﹣2,故选:A.8.解:∵m+n=2,mn=﹣2,∵原式=1+(m+n)+mn=1+2﹣2=1,故选:D.9.解:∵a=(25)11=3211,b=(34)11=8111,c=(43)11=6411,∵b>c>a.故选:C.10.解:根据图形可知:第一个图形阴影部分的面积为a2﹣b2,第二个图形阴影部分的面积为(a+b)(a﹣b),即a2﹣b2=(a+b)(a﹣b),故选:A.二.填空题(共6小题,满分18分,每小题3分)11.解:20200=1.故答案为:1.12.解:﹣3x•(2x2y﹣xy)=﹣6x3y+3x2y.故答案为:﹣6x3y+3x2y.13.解:∵x+y=2a,x﹣y=2b,∵x2﹣y2=(x+y)(x﹣y)=2a•2b=4ab.故答案是:4ab.14.解:第一次输入M=x+1得整式:(x+1+)×2+N=3x+1,整理得3x+2+N=3x+1,故2+N=1,解得N=﹣1,故运算原理为:(M+)×2﹣1,第二次输入M=3x+1,运算得(3x+1+)×2﹣1=7x+1.故答案为:7x+1.15.解:把a=a+1,b=a﹣2,c=a﹣2,d=a﹣1代入ad﹣bc中,可得:(a+1)(a﹣1)﹣(a﹣2)(a﹣2)=a2﹣1﹣a2+4a﹣4=4a﹣5.故答案为:4a﹣5.16.解:∵x+=3,∵(x+)2=x2+2+=9,∵x2+=7,故答案为:7.三.解答题(共6小题,满分52分)17.解:(1)原式=6ab÷a+5a÷a=6b+5.(2)原式=x2﹣9﹣3x2﹣3x+9=﹣2x2﹣3x.18.解:(1)1002﹣200×99+992=1002﹣2×100×(100﹣1)+(100﹣1)2=[100﹣(100﹣1)]2=12=1;(2)2018×2020﹣20192=(2019﹣1)(2019+1)﹣20192=20192﹣1﹣20192=﹣1.19.解:原式=x2﹣y2﹣(2x2﹣4y2)=x2﹣y2﹣2x2+4y2=﹣x2+3y2,当x=1,y=﹣2时,原式=﹣12+3×(﹣2)2=﹣1+12=11.20.解:(1)∵a+b=3,ab=1,∵a2+b2=(a+b)2﹣2ab,=32﹣2×1=7;(2)∵(a﹣b)2=a2﹣2ab+b2=7﹣2=5,∵a﹣b=±.21.解:(1)∵5a=3,∵(5a)2=32=9;(2)∵5a=3,5b=8,5c=72,∵5a﹣b+c==.=27;(3)c=2a+b;故答案为:c=2a+b.22.解:(1)阴影部分的面积=大正方形的面积﹣小正方形的面积=a2﹣b2;(2)长方形的宽为a﹣b,长为a+b,面积=长×宽=(a+b)(a﹣b);(3)由(1)、(2)得到,(a+b)(a﹣b)=a2﹣b2;故答案为:a2﹣b2,a﹣b,a+b,(a+b)(a﹣b),a2﹣b2;(4)10.3×9.7=(10+0.3)(10﹣0.3)=102﹣0.32=100﹣0.09=99.91.。
北师大版七年级下册数学 第一章 整式的乘除 测试题

北师大版七年级下册数学第一章整式的乘除测试题测试时间45分钟满分100分一、单选题(每小题5分,共40分)1.化简(a3)2的结果是A. a6B. a5C. a9D. 2a32.下列运算正确的是()A. a3+a2=2a5B. 2a(1﹣a)=2a﹣2a2 C. (﹣ab2)3=a3b6 D. (a+b)2=a2+b23.随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占为7×10-7平方毫米,这个数用小数表示为()A. 0.000007B. 0. 000070C. 0.000070 0D. 0.00000074.下列运算正确的是()A. x2+x3=x6B. (x3)2=x6C. 2x+3y=5xyD. x6÷x3=x25.计算b2•b3正确的结果是()A. 2b6B. 2b5C. b6D. b56.如果x2﹣6x+k是完全平方式,则k的值为()A. ±9B. ±36C. 36D. 97.下列运算中正确的是()A. a3·a4=a12B. (-a2)3=-a6C. (ab)2=ab2D. a8÷a4=a28.若a+b=﹣3,ab=1,则a2+b2=()A. -11B. 11C. -7D. 7二、填空题(每小题5分,共15分)9.(-a5)4•(-a2)3=________.10.计算:﹣2x(x﹣2)=________11.若a﹣b=﹣3,ab=2,则a2+b2的值为________三、解答题(共45分)12. ()如果,求的值.(20分)13.已知10x=5,10y=6,求:(1)102x+y;(12分)(2)103x﹣2y.( 13分)。
最新北师大版七年级数学下册第一章整式的乘除章节测评试卷(含答案解析)

北师大版七年级数学下册第一章整式的乘除章节测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算正确的是( )A .224x x x +=B .235x x xC .()33xy x y =D .()347x x = 2、如图,由4个全等的小长方形与一个小正方形密铺成一个大的正方形图案,该图案的面积为100,里面的小正方形的面积为16,若小长方形的长为a ,宽为b ,则下列关系式中:①222100a ab b ++=;②22216a ab b -+=;③2256a b +=;④2240a b -=,正确的有( )个A .1B .2C .3D .4 3、已知()()202220202021x x --=,那么()()2220222020x x -+-的值是( ).A .22021B .4042C .4046D .20214、下列各式运算结果为9a 的是( )A .63a a +B .33a a ⋅C .()33aD .182÷a a5、下列计算中,正确的是( )A .3515a a a ⋅=B .22a b ab +=C .()2362a b a b =D .()2224a a =++ 6、若2434a a b ++-=-,那么-a b 的值是( ).A .5B .5-C .1D .77、计算13-的结果是( )A .3-B .13- C .13 D .18、下列计算正确的是( )A .a +3a =4aB .b 3•b 3=2b 3C .a 3÷a =a 3D .(a 5)2=a 79、下列运算正确的是( )A .x 2+x 2=x 4B .2(a ﹣1)=2a ﹣1C .3a 2•2a 3=6a 6D .(x 2y )3=x 6y 3 10、下列计算正确的是( )A .x 2•x 4=x 6B .a 0=1 C .(2a )3=6a 3 D .m 6÷m 2=m 3 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(1)23m m ⋅=______ ;(2)()23x =______;(3)()23a b ⋅=______;(4)63a a ÷=______.2、计算:022********-⎛⎫⎛⎫-+--= ⎪ ⎪⎝⎭⎝⎭______. 3、若(x +2)(x +a )=x 2+bx ﹣8,则a b的值为_____.4、在边长为a 的正方形中挖去一个边长为b 的小正方形(其中a >b )(如图①),把余下的部分拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证的乘法公式是_______________________ .5、乘积(5)(2)x x +-的计算结果是_______.三、解答题(5小题,每小题10分,共计50分)1、先化简,再求值:()()()22x y x y x y x ⎡⎤-+-+÷⎣⎦,其中3x =-,15y =.2、计算:(1)()3223x y xy ⋅-(2)()()122x x x ++-÷⎡⎤⎣⎦(3)()()22a b c a b c +++-3、计算:()()()2327x x x x -+-+.4、计算:20432022π--+--().5、计算:(1)()31233a b a a -÷;(2)2-+-+.a b a b a b()(2)()-参考答案-一、单选题1、B【分析】利用合并同类项的法则,同底数幂的乘法法则,积的乘方法则,幂的乘方法则对各项进行运算即可.【详解】解:A、x2+x2=2x2,故A不符合题意;B、235x x x,故B符合题意;C、()333=,故C不符合题意;xy x yD、()3412=,故D不符合题意;x x故选:B.【点睛】本题主要考查合并同类项,同底数幂乘法,积的乘方法则,幂的乘方法则,解答的关键是掌握对应的运算法则.2、C【分析】能够根据大正方形和小正方形的面积分别求得正方形的边长,再根据其边长分别列方程,根据4个矩形的面积和等于两个正方形的面积差列方程.【详解】①大正方形的边长为a+b,面积为100()2100+=a b222100a ab b ++=故①正确②小正方形的边长为a-b ,面积为16()216a b -=22216a ab b -+=故②正确③()()2241001684ab a b a b =+--=-=21ab ∴=()222210022158a b a b ab ∴+=+-=-⨯= 故③错④()()2210016a b a b +-=⨯ ()()40a b a b ∴+-=2240a b ∴-=故④正确故选C【点睛】此题考察了平方差公式、完全平方公式及数形结合的应用,关键是能够结合图形和图形的面积公式正确分析,对每一项进行分析计算,进而得出结果.3、C【分析】设2022,2020a x b x =-=-,则得2021ab =将()()2220222020x x -+-变形得到2()2a b ab -+,即可求解.【详解】解:设2022,2020a x b x =-=-,则2021ab =, ()()2222220222020()2x x a b a b ab -+-=+=-+,2222021=+⨯, 4046=,故选:C .【点睛】本题考查了代数式的求值,解题的关键是利用整体思想结合完全平方公式的变形进行求解.4、C【分析】根据同底数幂的乘除法及幂的乘方可直接进行排除选项.【详解】解:A 、6a 与3a 不是同类项,不能合并,故不符合题意;B 、336a a a ⋅=,计算结果不为9a ,故不符合题意;C 、()339a a =,故符合题意; D 、61821a a a ÷=,计算结果不为9a ,故不符合题意;故选C .【点睛】本题主要考查同底数幂的乘除法及幂的乘方,熟练掌握同底数幂的乘除法及幂的乘方是解题的关键.5、C【分析】根据同底数幂的乘法、合并同类项、积的乘方、幂的乘方运算法则以及完全平方公式对各项进行计算即可解答.【详解】解:A . 3583+5=a a a a ⋅=,故原选项计算错误,不符合题意;B . 2a 与b 不能合并,故原选项计算错误,不符合题意;C . ()2362a b a b =,计算正确,符合题意; D . ()22244a a a +=++,故原选项计算错误,不符合题意.故选:C .【点睛】本题主要考查了同底数幂的乘法、合并同类项、幂的乘方运算法则以及完全平方公式等知识点,灵活运用相关运算法则是解答本题的关键.6、B【分析】原式移项后,利用完全平方式变形,得到平方和绝对值的和形式,进而求得a 、b 值,即可得解.【详解】 ∵2434a a b ++-=-, ∴24430a a b +++-=, ∴2(2)30a b ++-=,∴20a +=,3b -=0,解得:a =-2,b =3,则235a b -=--=-,故选:B【点睛】此题考查了完全平方公式的运用,掌握完全平方公式是解答此题的关键.7、C【分析】由题意直接根据负整数指数幂的意义进行计算即可求出答案.【详解】 解:1111333-==. 故选:C.【点睛】本题考查负整数指数幂的运算,解题的关键是正确理解负整数指数幂的意义.8、A【分析】根据合并同类项判断A 选项;根据同底数幂的乘法判断B 选项;根据同底数幂的除法判断C 选项;根据幂的乘方判断D 选项.【详解】解:A 选项,原式=4a ,故该选项符合题意;B 选项,原式=b 6,故该选项不符合题意;C 选项,原式=a 2,故该选项不符合题意;D 选项,原式=a 10,故该选项不符合题意;故选:A.【点睛】此题考查了整式的计算:合并同类项、同底数幂乘法、同底数幂除法、幂的乘方法则,熟记各法则是解题的关键.9、D【分析】直接利用合并同类项,单项式乘单项式法则,同底数幂的乘除运算法则以及积的乘方运算法则分别计算得出答案.【详解】解:A.x2+x2=2x2,故本选项错误;B.2(a﹣1)=2a﹣2,故本选项错误;C.3a2•2a3=6a5,故本选项错误;D.(x2y)3=x6y3,故本选项正确.故选:D.【点睛】此题主要考查了整式运算,正确掌握相关运算法则是解题关键.10、A【分析】根据零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则求解即可.【详解】解:A、x2•x4=x6,故选项正确,符合题意;B、当0a 时,0a无意义,故选项错误,不符合题意;C、(2a)3=8a3,故选项错误,不符合题意;D 、m 6÷m 2=m 4,故选项错误,不符合题意.故选:A .【点睛】此题考查了零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则,解题的关键是熟练掌握零指数幂运算,同底数幂的乘法运算,积的乘方运算,同底数幂的除法运算法则.二、填空题1、5m 6x 62a b 3a【分析】(1)根据同底数幂相乘法则,即可求解;(2)根据幂的乘方法则,即可求解;(3)根据积的乘方法则,即可求解;(4)根据同底数幂相除法则,即可求解.【详解】解:(1)235m m m ⋅=;(2)()236x x =; (3)()2362a b a b ⋅=; (4)633a a a ÷=故答案为:(1)5m ;(2)6x ;(3)62a b ;(4)3a【点睛】本题主要考查了同底数幂相乘、幂的乘方、积的乘方、同底数幂相除,熟练掌握同底数幂相乘、幂的乘方、积的乘方、同底数幂相除法则是解题的关键.2、-4【分析】先运用乘方、零次幂、负整数次幂化简,然后计算即可.【详解】 解:02202211122-⎛⎫⎛⎫-+-- ⎪ ⎪⎝⎭⎝⎭ =114-+-=-4.故答案为-4.【点睛】本题主要考查了乘方、零次幂、负整数次幂等知识点,灵活运用相关运算法则成为解答本题的关键. 3、116【分析】先计算等号左边,再根据等式求出a 、b 的值,最后代入求出a b的值.【详解】解:∵(x +2)(x +a )=x 2+(2+a )x +2a ,又∵(x +2)(x +a )=x 2+bx ﹣8,∴x 2+(2+a )x +2a =x 2+bx ﹣8.∴2+a =b ,2a =﹣8.∴a =﹣4,b =﹣2.∴a b =(﹣4)﹣2 =21(4)-=116. 故答案为:116. 【点睛】本题考查了多项式乘多项式及负整数指数幂的计算,题目综合性较强,根据等式确定a 、b 的值是解决本题的关键.4、a 2-b 2=(a +b )(a -b )【分析】第一个图形中阴影部分的面积计算方法是边长是a 的正方形的面积减去边长是b 的小正方形的面积,等于a 2-b 2;第二个图形阴影部分是一个长是(a +b ),宽是(a -b )的长方形,面积是(a +b )(a -b );这两个图形的阴影部分的面积相等.【详解】解:阴影部分的面积=(a +b )(a -b )=a 2-b 2;因而可以验证的乘法公式是(a +b )(a -b )=a 2-b 2,故答案为:a 2-b 2=(a +b )(a -b ).【点睛】本题主要考查了平方差公式的几何表示,运用不同方法表示阴影部分面积是解题的关键.5、2310x x +-【分析】根据多项式乘以多项式的运算法则即可得.【详解】解:22(5)(2)2510310x x x x x x x +-=-+-=+-,故答案为:2310x x +-.【点睛】本题考查了多项式乘以多项式,熟练掌握运算法则是解题关键.三、解答题1、x y -;18-.【分析】先根据完全平方公式及平方差公式进行化简,然后计算除法,最后将已知值代入求解即可.【详解】解:()()()22x y x y x y x ⎡⎤-+-+÷⎣⎦, 222222x xy y x y x ⎡⎤=-++-÷⎣⎦, ()2222x xy x =-÷, x y =-;当3x =-,15y =时,原式315=--18=-.【点睛】题目主要考查整式的混合运算,熟练掌握运算法则及完全平方公式和平方差公式是解题关键.2、(1)436x y -(2)3x +(3)22242a b c ab +-+【分析】(1)根据单项式乘以单项式可直接进行求解;(2)先去括号,然后再利用多项式除以单项式进行求解即可;(3)把a +b 看作整体,然后利用平方差公式及完全平方公式进行化简.(1)解:原式=324366x x y y x y -⋅⋅⋅=-;(2)解:原式=()2322x x x ++-÷=()23x x x +÷=3x +(3)解:原式=()()222a b c +-=22242a b c ab +-+.【点睛】本题主要考查整式的混合运算,熟练掌握乘法公式及整式的运算是解题的关键.3、2314x x --【分析】根据整式乘法、整式加减法的性质,先算乘法、后算加减法,即可得到答案.【详解】()()()2327x x x x -+-+ 2226514x x x x =-++-2314x x =--.【点睛】本题考查了整式运算的知识;解题的关键是熟练掌握整式乘法、整式加减法的性质,从而完成求解. 4、139【分析】先计算绝对值、负指数和0指数,再加减即可.【详解】 解:-2043(2022)π-+--1419=+- 139=. 【点睛】本题考查了含负指数和0指数的实数运算,解题关键是明确负指数和0指数的算法,准确进行计算.5、(1)241a b -;(2)23ab b --.【分析】(1)根据多项式除以单项式的运算法则进行计算即可;(2)根据多项式乘以多项式,完全平方公式展开,进而根据合并同类项进行计算即可【详解】解:(1)原式312333a b a a a =÷-÷241a b =-.(2)原式2222(22)(2)a ab ab b a ab b =+---++2222222a ab ab b a ab b =+-----23ab b =--.【点睛】本题考查了整式的混合运算,掌握整式的运算法则是解题的关键.。
北师大版七下第一章 《整式的乘除》单元测试卷及答案
七下第一章 整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分) 1.下列运算正确的是( )A. 954a a a =+ B. 33333a a a a =⋅⋅ C. 954632a a a =⨯ D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19-5.已知,5,3==ba x x 则=-ba x23( ) A 、2527 B 、109C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式:①(2a +b )(m +n ); ②2a (m +n )+b (m +n );③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有A 、①②B 、③④C 、①②③D 、①②③④ ( )7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a ²+b 2的值等于( )A 、84B 、78C 、12D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( ) A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 810.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( ) A 、Q P > B 、Q P = C 、Q P < D 、不能确定 二、填空题(共6小题,每小题4分,共24分)11.设12142++mx x 是一个完全平方式,则m =_______。
七年级数学下册 第一章 整式的乘除周周练(1.4)北师大版(2021年整理)
2017春七年级数学下册第一章整式的乘除周周练(1.4)(新版)北师大版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2017春七年级数学下册第一章整式的乘除周周练(1.4)(新版)北师大版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2017春七年级数学下册第一章整式的乘除周周练(1.4)(新版)北师大版的全部内容。
周周练(1。
4)(时间:45分钟满分:100分)一、选择题(每小题3分,共24分)1.计算2a·3b的结果是(D)A.2ab B.3abC.6a D.6ab2.计算2x2·(-3x3)的结果是(A)A.-6x5 B.6x5C.-6x6 D.6x63.计算:(-102)×(2×103)×(2。
5×102)=(B)A.5×105 B.-5×107C.-5×105 D.-1074.若(x+a)·(x+b)=x2-kx+ab,则k的值为(B)A.a+b B.-a-bC.a-b D.b-a5.下列运算正确的是(B)A.x2·x3=x6B.(2a+b)(a-2b)=2a2-3ab-2b2C.(x+2)(x-3)=x2-6D.-x(x+2)=-x2+2x6.下列多项式相乘的结果为x2-x-12的是(C)A.(x+2)(x+6) B.(x+2)(x-6)C.(x-4)(x+3) D.(x-4)(x-3)7.已知a+b=m,ab=-4,计算(a-2)(b-2)的结果是(D)A.6 B.2m-8C.2m D.-2m8.若M,N分别是关于x的二次多项式和三次多项式,则M·N的次数是(A) A.5 B.6C.小于或等于5 D.小于或等于6二、填空题(每小题4分,共24分)9.计算:(-2x2y)3·(-5xy2)=40x7y5.10.计算:-6x(x-3y)=-6x2+18xy.11.若(x-2)(x+3)=x2+px+q,则p=1,q=-6.12.如果3x2y m与-23x n y是同类项,那么这两个单项式的积是-2x4y2.13.已知(x-m)(x+3)的结果中不含一次项,则m=3.14.如图是由A,B,C,D四张卡片拼成的一个长方形,根据图形中的信息,从面积方面思考可以得到一个乘法算式:(a+n)(m+b)=am+ab+mn+nb.三、解答题(共52分)15.(12分)计算:(1)(-错误!x3y)3·(-2x2y)4;解:原式=-错误!x9y3·16x8y4=(-错误!×16)(x9·x8)(y3·y4)=-2x17y7.(2)(x-2y)(x+2y);解:原式=x(x+2y)-2y(x+2y)=x2+2xy-2xy-4y2=x2-4y2.(3)(x+1)(x2-x+1).解:原式=x(x2-x+1)+1·(x2-x+1)=x3-x2+x+x2-x+1=x3+1。
北师大版七年级数学下册第一章《整式的乘除》达标测试卷(含解析)
第一章达标测试卷一、选择题(每题3分,共30分)1.计算(-a 2)3的结果是( )A .a 5B .a 6C .-a 5D .-a 62.计算:20·2-3等于( )A .-18B .18C .0D .83.斑叶兰的一粒种子重约0.000 000 5 g ,将0.000 000 5用科学记数法表示为( )A .5×107B .5×10-7C .0.5×10-6D .5×10-64.下列运算正确的是( )A .x 2·x 3=x 6B .x 2y ·2xy =2x 3yC .(-3xy )2=9x 2y 2D .x 6÷x 3=x 25.计算4m ·8-1÷2m 的结果为16,则m 的值等于( )A .7B .6C .5D .46.下列四个算式:①5x 2y 4÷15xy =xy 3; ②16a 6b 4c ÷8a 3b 2=2a 3b 2c ; ③9x 8y 2÷3x 2y =3x 4y ; ④(12m 3-6m 2-4m )÷(-2m )=-6m 2+3m +2.其中正确的有( )A .0个B .1个C .2个D .3个7.下列运用平方差公式计算,错误..的是( ) A .(a +b )(a -b )=a 2-b 2 B .(x +1)(x -1)=x 2-1C .(2x +1)(2x -1)=2x 2-1D .(-a +b )(-a -b )=a 2-b 28.若(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab9.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( )A .a <b <c <dB .b <a <d <cC .a <d <c <bD .c <a <d <b10.在边长为a的正方形中挖去一个边长为b的小正方形(a>b)(如图①),把余下的部分剪拼成一个长方形(如图②),根据两个图形中阴影部分的面积相等,可以验证()A.(a+b)2=a2+2ab+b2B.(a-b)2=a2-2ab+b2C.a2-b2=(a+b)(a-b) D.(a+2b)(a-b)=a2+ab-2b2二、填空题(每题3分,共30分)11.计算:a(a+1)=__________.12.如果x+y=-1,x-y=8,那么代数式x2-y2的值是________.13.某种计算机每秒可做4×108次运算,它工作3×103 s运算的次数为__________.14.如果9x2+kx+25是一个完全平方式,那么k的值是________.15.计算:(-13xy2)2·[xy(2x-y)+xy2]=__________.16.计算:(7x2y3z+8x3y2)÷4x2y2=______________.17.若(x+2m)(x-8)中不含..x的一次项,则m的值为________.18.若3x=a,9y=b,则3x-2y的值为________.19.如图,一个长方形花园ABCD,AB=a,AD=b,该花园中建有一条长方形小路LMPQ和一条平行四边形小路RSTK,若LM=RS=c,则该花园中可绿化部分(即除去小路后剩余部分)的面积为________________.20.《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x=8时,多项式3x3-4x2-35x+8的值”,按照秦九韶算法,可先将多项式3x3-4x2-35x+8一步步地进行改写:3x3-4x2-35x+8=x(3x2-4x-35)+8=x[x(3x-4)-35]+8.按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少.计算当x=8时,多项式的值为1 008.请参考上述方法,将多项式x3+2x2+x-1改写为_______________________;当x=8时,多项式的值为________.三、解答题(21,26题每题12分,22,23题每题8分,其余每题10分,共60分)21.计算:(1)(-12ab)(23ab2-2ab+43b);(2)(a+b)(a-b)+4ab3÷4ab;(3)(2x-y-z)(y-2x-z);(4)(2x+y)(2x-y)+(x+y)2-2(2x2-xy).22.用简便方法计算:(1)102×98;(2)112×92.23.先化简,再求值:(1)(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =1;(2)(x -1)2-x (x -3)+(x +2)(x -2),其中x 2+x -5=0.24.有这样一道题:计算⎣⎢⎡⎦⎥⎤3x (2xy +1)-26x 2y 2÷2y +⎝ ⎛⎭⎪⎫72xy 2·47y -1÷3x 的值,其中x =2 022,y =-2 023,甲同学把x =2 022,y =-2 023错抄成x =2 002,y =-2 013,但他的计算结果也是正确的.请你解释一下这是为什么.25.如图,一块半圆形钢板,从中挖去直径分别为x,y的两个半圆形.(1)求剩下钢板的面积;(2)当x=2,y=4时,剩下钢板的面积是多少?(π取3.14)26.先计算,再找出规律,然后根据规律填空.(1)计算:①(a-1)(a+1)=________;②(a-1)(a2+a+1)=________;③(a-1)(a3+a2+a+1)=________.(2)根据(1)中的计算,用字母表示出你发现的规律.(3)根据(2)中的结论,直接写出结果:①(a-1)(a9+a8+a7+a6+a5+a4+a3+a2+a+1)=__________;②若(a-1)·M=a15-1,则M=______________________________________;③(a-b)(a5+a4b+a3b2+a2b3+ab4+b5)=__________;④(2x-1)(16x4+8x3+4x2+2x+1)=__________.答案一、1.D 2.B 3.B 4.C 5.A 6.C 7.C 8.A 9.B 10.C二、11.a 2+a 12.-8 13.1.2×101214.±30 15.29x 4y 5 16.74yz +2x17.4 18.a b 19.ab -ac -bc +c 220.x [x (x +2)+1]-1;647三、21.解:(1)原式=-12ab ·23ab 2+⎝ ⎛⎭⎪⎫-12ab ·(-2ab )+⎝ ⎛⎭⎪⎫-12ab ·43b =-13a 2b 3+a 2b 2-23ab 2;(2)原式=a 2-b 2+b 2=a 2;(3)原式=[-z +(2x -y )]·[-z -(2x -y )]=(-z )2-(2x -y )2=z 2-(4x 2-4xy +y 2)=z 2-4x 2+4xy -y 2;(4)原式=4x 2-y 2+x 2+y 2+2xy -4x 2+2xy =x 2+4xy .22.解:(1)102×98=(100+2)×(100-2)=1002-22=10 000-4=9 996;(2)112×92=(10+1)2×(10-1)2=[(10+1)×(10-1)]2=(100-1)2=10 000-200+1=9 801.23.解:(1)原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =-1,y =1时,原式=-x 2+3y 2=-(-1)2+3×12=2.(2)原式=x 2-2x +1-x 2+3x +x 2-4=x 2+x -3.因为x 2+x -5=0,所以x 2+x =5.所以原式=x 2+x -3=5-3=2.24.解:因为[3x (2xy +1)-26x 2y 2÷2y +⎝ ⎛⎭⎪⎫72xy 2·47y -1]÷3x =(6x 2y +3x -13x 2y +494x 2y 2·47y -1)÷3x =(6x 2y +3x -13x 2y +7x 2y )÷3x =1, 所以上式的值与x ,y 的取值无关.所以错抄成x =2 002,y =-2 013,结果也是正确的.25.解:(1)S剩=12·π⎣⎢⎡⎭⎪⎫(x+y22-⎝⎛⎭⎪⎫x22-⎝⎛⎭⎪⎫y22]=14πxy.答:剩下钢板的面积为π4xy.(2)当x=2,y=4时,S剩≈14×3.14×2×4=6.28.答:剩下钢板的面积约是6.28.26.解:(1)①a2-1②a3-1③a4-1(2)规律:(a-1)(a n+a n-1+a n-2+…+a3+a2+a+1)=a n+1-1(n为正整数).(3)①a10-1②a14+a13+a12+a11+…+a3+a2+a+1③a6-b6④32x5-1。
北师大版七下第一章 整式的乘除单元测试卷及答案
北师大版七下第一章 整式的乘除单元测试卷一、选择题(共10小题,每小题3分,共30分)温馨提示:每小题四个答案中只有一个是正确的,请把正确的答案选出来! 1.下列运算正确的是( )A. 954a a a =+B. 33333a a a a =⋅⋅C. 954632a a a =⨯D. ()743a a =-=⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛-20122012532135.2( )A. 1-B. 1C. 0D. 1997 3.设()()A b a b a +-=+223535,则A=( )A. 30abB. 60abC. 15abD. 12ab 4.已知,3,5=-=+xy y x 则=+22y x ( )A. 25. B 25- C 19 D 、19- 5.已知,5,3==b a x x 则=-b a x 23( ) A 、2527 B 、109C 、53D 、52 6. .如图,甲、乙、丙、丁四位同学给出了四 种表示该长方形面积的多项式: ①(2a +b )(m +n ); ②2a (m +n )+b (m +n ); ③m (2a +b )+n (2a +b ); ④2am +2an +bm +bn , 你认为其中正确的有( )A 、①②B 、③④C 、①②③D 、①②③④ 7.如(x+m)与(x+3)的乘积中不含x 的一次项,则m 的值为( ) A 、 –3B 、3C 、0D 、18.已知.(a+b)2=9,ab= -112 ,则a²+b 2的值等于( ) A 、84 B 、78 C 、12 D 、6 9.计算(a -b )(a+b )(a 2+b 2)(a 4-b 4)的结果是( )nm a baA .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 8 10.已知m m Q m P 158,11572-=-=(m 为任意实数),则P 、Q 的大小关系为 ( )A 、Q P >B 、Q P =C 、Q P <D 、不能确定 二、填空题(共6小题,每小题4分,共24分)温馨提示:填空题必须是将最简洁最正确的答案填在空格处! 11.设12142++mx x 是一个完全平方式,则m =_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 整式的乘除 周周测5
(时间:45分钟 满分:100分)
一、选择题(每小题3分,共24分)
1.计算2a·3b 的结果是( )
A .2ab
B .3ab
C .6a
D .6ab
2.计算2x 2·(-3x 3)的结果是( )
A .-6x 5
B .6x 5
C .-6x 6
D .6x 6
3.计算:(-102)×(2×103)×(2.5×102)=( )
A .5×105
B .-5×107
C .-5×105
D .-107
4.若(x +a)·(x +b)=x 2-kx +ab ,则k 的值为( )
A .a +b
B .-a -b
C .a -b
D .b -a
5.下列运算正确的是( )
A .x 2·x 3=x 6
B .(2a +b )(a -2b )=2a 2-3ab -2b 2
C .(x +2)(x -3)=x 2-6
D .-x (x +2)=-x 2+2x
6.下列多项式相乘的结果为x 2-x -12的是( )
A .(x +2)(x +6)
B .(x +2)(x -6)
C .(x -4)(x +3)
D .(x -4)(x -3)
7.已知a +b =m ,ab =-4,计算(a -2)(b -2)的结果是( )
A .6
B .2m -8
C .2m
D .-2m
8.若M ,N 分别是关于x 的二次多项式和三次多项式,则M·N 的次数是( )
A .5
B .6
C .小于或等于5
D .小于或等于6
二、填空题(每小题4分,共24分)
9.计算:(-2x 2y)3·(-5xy 2)= .
10.计算:-6x(x -3y)= .
11.若(x -2)(x +3)=x 2+px +q ,则p = ,q = .
12.如果3x 2y m 与-23
x n y 是同类项,那么这两个单项式的积是 . 13.已知(x -m)(x +3)的结果中不含一次项,则m = .
14.如图是由A ,B ,C ,D 四张卡片拼成的一个长方形,根据图形中的信息,从面积方面思考可以得到一个乘法算式: .
三、解答题(共52分)
15.(12分)计算:
(1)(-12
x 3y)3·(-2x 2y)4;
(2)(x -2y)(x +2y);
(3)(x +1)(x 2-x +1).
16.(8分)先用代数式表示图中阴影部分的面积,再求当a =5 cm ,b =10 cm 时阴影部分的面积.(π取3)
17.(10分)先化简,再求值:y(x +y)+(x +y)(x -y)-x 2.其中x =-2,y =12
.
18.(10分)已知1+a +a 2+a 3=0,求a +a 2+a 3+a 4+…+a 2 016的值.
19.(12分)新知识一般有两类:第一类是不依赖于其他知识的新知识,如“数”、“字母表
示数”这样的初始性的知识;第二类是在某些旧知识的基础上进行联系、拓广等方式产生的知识,大多数知识是这样的知识.
(1)多项式乘以多项式的法则是第几类知识?
(2)在多项式乘以多项式之前,你已拥有的相关知识是哪些?(写出三条即可)
(3)请你用已拥有的有关知识,通过数和形两个方面说明多项式乘以多项式的法则是如何获得的?[用(a+b)(c+d)来说明]
第一章 整式的乘除 周周测5参考答案与解析
1. D
2.A
3.B
4.B
5.B
6.C
7.D
8.A
9.40x 7y 5 10.-6x 2+18xy 11.1 -6 12.-2x 4y 2 13.3
14.(a +n)(m +b)=am +ab +mn +nb
15.(1)解:原式=-18x 9y 3·16x 8y 4=(-18
×16)(x 9·x 8)(y 3·y 4)=-2x 17y 7. (2)解:原式=x(x +2y)-2y(x +2y)=x 2+2xy -2xy -4y 2=x 2-4y 2.
(3)解:原式=x(x 2-x +1)+1·(x 2-x +1)=x 3-x 2+x +x 2-x +1=x 3+1.
16.解:(2a +b)(a +b)-πa 2=(2-π) a 2+3ab +b 2,
当a =5 cm ,b =10 cm ,π=3时,
原式=(2-3)×52+3×5×10+102=225(cm 2).
17.解:原式=xy +y 2+x 2-y 2-x 2=xy.
当x =-2,y =12时,原式=-2×12
=-1. 18.解:因为2 016是4的倍数,1+a +a 2+a 3=0,
所以a +a 2+a 3+a 4+…+a 2 016
=a(1+a +a 2+a 3)+a 5(1+a +a 2+a 3)+…+a 2 013(1+a +a 2+a 3)
=0.
19.解:(1)是第二类知识.
(2)单项式乘以多项式(分配律),字母表示数,数可以表示线段的长或图形的面积等等.
(3)用数来说明:(a +b)(c +d)=(a +b)c +(a +b)d =ac +bc +ad +bd.
用形来说明:如图,边长为a +b 和c +d 的矩形,分割前后的面积相等,即(a +b)(c +d)=ac +bc +ad +bd.。