运筹学中的线性规划在企业中的应用

合集下载

第五章运筹学线性规划在管理中的应用案例

第五章运筹学线性规划在管理中的应用案例

第五章线性规划在管理中的应用某企业停止了生产一些已经不再获利的产品,这样就产生了一部分剩余生产力。

管理层考虑将这些剩余生产力用于新产品Ⅰ、Ⅱ、Ⅲ的生产。

可用的机器设备是限制新产品产量的主要因素,具体数据如下表:司的利润最大化。

1、判别问题的线性规划数学模型类型。

2、描述该问题要作出决策的目标、决策的限制条件以及决策的总绩效测度。

3、建立该问题的线性规划数学模型。

4、用线性规划求解模型进行求解。

5、对求得的结果进行灵敏度分析(分别对最优解、最优值、相差值、松驰/剩余量、对偶价格、目标函数变量系数和常数项的变化范围进行详细分析)。

6、若销售部门表示,新产品Ⅰ、Ⅱ生产多少就能销售多少,而产品Ⅲ最少销售18件,请重新完成本题的1-5。

解:1、本问题是资源分配型的线性规划数学模型。

2、该问题的决策目标是公司总的利润最大化,总利润为:+ +决策的限制条件:8x1+ 4x2+ 6x3≤500 铣床限制条件4x1+ 3x2≤350 车床限制条件3x1+ x3≤150 磨床限制条件即总绩效测试(目标函数)为:max z= + +3、本问题的线性规划数学模型max z= + +S.T.8x1+ 4x2+ 6x3≤5004x1+ 3x2≤3503x1+ x3≤150x1≥0、x2≥0、x3≥04、用Excel线性规划求解模板求解结果:最优解(50,25,0),最优值:30元。

5、灵敏度分析目标函数最优值为: 30变量最优解相差值x1 50 0x2 25 0x3 0 .083约束松弛/剩余变量对偶价格1 0 .052 75 03 0 .033目标函数系数范围:变量下限当前值上限x1 .4 .5 无上限x2 .1 .2 .25x3 无下限.25 .333常数项数范围:约束下限当前值上限1 400 500 6002 275 350 无上限3 150(1)最优生产方案:新产品Ⅰ生产50件、新产品Ⅱ生产25件、新产品Ⅲ不安排。

运筹学在工业工程中的应用

运筹学在工业工程中的应用

运筹学在工业工程中的应用运筹学是一门应用数学学科,旨在为管理决策提供定量分析和优化解决方案。

在工业工程领域,运筹学的方法和工具被广泛应用于各种问题,如线性规划、动态规划、整数规划、网络优化、库存管理、调度优化、质量控制、设备维护和供应链优化等。

本文将介绍这些应用的主要内容。

1.线性规划线性规划是一种常用的优化方法,用于解决资源分配和组合问题。

在工业工程中,线性规划被广泛应用于生产计划、物料需求计划和人员调度等领域。

通过定义目标函数和约束条件,线性规划可以帮助企业实现资源的最优利用和最大的经济效益。

2.动态规划动态规划是一种用于解决多阶段决策问题的优化方法。

在工业工程中,动态规划被用于解决生产调度、物流规划和生产计划等问题。

通过将问题分解为多个阶段,动态规划可以帮助企业制定最优的决策序列,以实现整体最优解。

3.整数规划整数规划是一种优化方法,用于解决整数约束的组合问题。

在工业工程中,整数规划被应用于解决物料需求计划、生产计划和设备调度等问题。

整数规划可以确保所制定的计划更加精确和可靠,以避免因小数点引起的误差导致的不必要损失。

4.网络优化网络优化是一种用于解决运输和物流问题的优化方法。

在工业工程中,网络优化被应用于货物运输、车辆路径规划、仓储布局等方面。

通过优化网络结构,可以提高运输和物流效率,降低成本,并提高客户满意度。

5.库存管理库存管理是工业工程中一个重要领域,涉及原材料、在制品和成品的存储和控制。

运筹学中的库存管理方法可以帮助企业确定合理的库存水平、库存补货策略和库存地点分配等。

通过优化库存管理,企业可以降低库存成本,减少浪费和过时库存,提高物流效率和客户满意度。

6.调度优化调度优化是一种用于解决生产调度和资源分配问题的优化方法。

在工业工程中,调度优化被应用于生产计划、作业排程和设备调度等领域。

通过优化调度,可以提高生产效率、降低生产成本、减少交货期延误和提高产品质量。

7.质量控制质量控制是工业工程中一个关键领域,涉及产品或服务的品质控制和质量保证。

线性规划在生产调度中的实际应用

线性规划在生产调度中的实际应用

线性规划在生产调度中的实际应用在当今竞争激烈的市场环境中,企业要想提高生产效率、降低成本、优化资源配置,生产调度的合理性至关重要。

而线性规划作为一种有效的数学工具,在解决生产调度问题方面发挥着重要作用。

线性规划是运筹学中研究较早、发展较快、应用广泛且方法较成熟的一个重要分支。

它是辅助人们进行科学管理的一种数学方法,研究线性约束条件下线性目标函数的极值问题。

简单来说,就是在一组线性等式或不等式的约束条件下,求一个线性目标函数的最大值或最小值。

在生产调度中,企业通常面临着多种资源的有限性和多种任务的需求。

例如,原材料的供应有限、机器设备的产能有限、工人的工作时间有限等,而同时又需要满足订单的交付日期、产品的质量要求等。

线性规划可以帮助企业在这些限制条件下,做出最优的生产计划和调度安排。

假设一家服装厂,有三种款式的服装需要生产:衬衫、裤子和外套。

生产每种服装所需的布料、工时以及每种服装的利润都不同。

同时,工厂拥有一定数量的布料和工人工作时间。

那么,如何安排生产才能使工厂的利润最大化呢?这就是一个典型的线性规划问题。

首先,我们需要确定决策变量。

在这个例子中,决策变量可以设为生产每种服装的数量,比如生产衬衫的数量为 x1,生产裤子的数量为x2,生产外套的数量为 x3。

然后,我们需要确定目标函数。

目标是使工厂的利润最大化,利润等于每种服装的销售价格乘以生产数量再减去生产成本。

假设衬衫、裤子和外套的单位利润分别为 p1、p2 和 p3,那么目标函数可以表示为:Z = p1 x1 + p2 x2 + p3 x3接下来,我们需要确定约束条件。

约束条件包括布料的限制、工时的限制等。

假设生产一件衬衫需要 b1 米布料,生产一件裤子需要 b2米布料,生产一件外套需要 b3 米布料,工厂拥有的布料总量为 B,那么布料的约束条件可以表示为:b1 x1 + b2 x2 + b3 x3 <= B 同样,假设生产一件衬衫需要 h1 个工时,生产一件裤子需要 h2 个工时,生产一件外套需要 h3 个工时,工人的总工作时间为 H,那么工时的约束条件可以表示为:h1 x1 + h2 x2 + h3 x3 <= H 此外,还可能有其他的约束条件,比如每种服装的最低生产数量要求等。

运筹学第4章 线性规划在工商管理中的应用

运筹学第4章 线性规划在工商管理中的应用

8000小时
每件机械加工工时/小时
6
4
8
12000小时
每件装配工时/小时
3
2
2
10000小时
自行生产铸件每件成本/元
3
5
4
外包协作铸件每件成本/元
5
6

机械加工每件成本/元
2
1
3
装配每件成本/元
3
2
2
每件产品售价/元
23
18
16
问:公司为了获得最大利润,甲、乙、丙三种产品各生产多
少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协
作各应多少件?
6
§2生产计划的问题
解:设 x1,x2,x3 分别为三道工序都由本公司加工的甲、乙、丙三种产品的 件数,x4,x5 分别为由外协铸造再由本公司加工和装配的甲、乙两种产 品的件数。 求 xi 的利润:利润 = 售价 - 各成本之和 产品甲全部自制的利润:23-(3+2+3)=15 产品甲铸造外协,其余自制的利润:23-(5+2+3)=13 产品乙全部自制的利润 :18-(5+1+2)=10 产品乙铸造外协,其余自制的利润 :18-(6+1+2)=9 产品丙的利润:16-(4+3+2)=7 可得到 xi (i = 1,2,3,4,5) 的利润分别为 15、10、7、13、9 元。
解:设 xijk 表示第 i 种产品,在第 j 种工序上的第 k 种设备上加工的数量。 建立如下的数学模型:
s.t. 5x111 + 10x211
≤ 6000 ( 设备 A1 )
7x112 + 9x212 + 12x312 ≤ 10000 ( 设备 A2 )

线性规划应用案例分析

线性规划应用案例分析

线性规划应用案例分析线性规划是一种在数学和运营管理中常见的优化技术。

它涉及到在一组线性不等式约束下,最大化或最小化一个线性目标函数。

这种技术可以应用于许多不同的领域,包括供应链管理、资源分配、投资组合优化等。

本文将探讨几个线性规划应用案例,以展示其在实际问题中的应用和价值。

某制造公司需要计划生产三种产品,每种产品都需要不同的原材料和生产时间。

公司的目标是最大化利润,但同时也受到原材料限制、生产能力限制以及每种产品市场需求限制的约束。

通过使用线性规划,该公司能够找到最优的生产计划,即在满足所有约束条件下,最大化利润。

某物流公司需要计划将货物从多个产地运输到多个目的地。

公司的目标是最小化运输成本,但同时也受到运输能力、货物量和目的地需求的约束。

通过使用线性规划,该公司能够找到最优的运输方案,即在满足所有约束条件下,最小化运输成本。

某投资公司需要将其资金分配给多个不同的投资项目。

每个项目都有不同的预期回报率和风险水平。

公司的目标是最大化回报率,同时也要保证投资风险在可接受的范围内。

通过使用线性规划,该公司能够找到最优的投资组合,即在满足所有约束条件下,最大化回报率。

这些案例展示了线性规划在实践中的应用。

然而,线性规划的应用远不止这些,它还可以用于诸如资源分配、时间表制定、路线规划等问题。

线性规划是一种强大的工具,可以帮助决策者解决复杂的问题并找到最优解决方案。

线性规划是一种广泛应用的数学优化技术,适用于在多种资源限制下寻求最优解。

这种技术涉及到各种领域,包括工业、商业、运输、农业、金融等,目的是在给定条件下最大化或最小化线性目标函数。

下面我们将详细讨论线性规划的应用。

线性规划是一种求解最优化问题的数学方法。

它的基本思想是在一定的约束条件下,通过线性方程组的求解,求得目标函数的最优解。

这里的约束条件通常表现为一组线性不等式或等式,而目标函数则通常表示为变量的线性函数。

工业生产:在工业生产中,线性规划可以用于生产计划、物料调配、人力资源分配等方面。

运筹学在企业管理中的应用

运筹学在企业管理中的应用

运筹学在企业管理中的应用运筹学是一门以数据为基础的优化科学,通过数学模型、算法优化和计算机技术来解决实际问题。

在当今日益激烈的市场竞争中,企业需要不断提高效率、降低成本、提升服务质量和满足客户需求,此时运筹学的应用在企业管理中显得尤为重要。

一、生产资源优化生产过程的质量和效率取决于生产资源的合理配置。

运筹学可以通过建立生产计划模型、调度模型和排布模型等,针对生产流程中的问题提供可行的解决方案。

例如,在生产计划中,可以使用线性规划模型来确定最优生产计划,使生产资源得到最大利用。

在调度模型方面,可以使用离散事件模拟技术来模拟生产过程中的变化,以保证生产过程高效、精确和灵活。

排布模型则经常应用于生产车间、布局和物流中心等领域,通过空间布局和物流路径的优化,使得工作效率和质量得到提升。

二、物流运营物流是现代企业不可或缺的重要部分,运筹学在物流运营中的应用可以提高货物的件数和质量,使物流成本得到降低。

例如,在配送过程中,可以利用运筹学技术来解决配送路线、货车容量、收货数量、发货时间等问题。

这些技术包括分支定界算法、遗传算法、蚁群算法、模拟退火算法等。

通过这些算法的应用,运输路径得到优化,货车得到合理的利用,货物质量获得保障,最终达到优化物流运营的目的。

三、库存控制库存是企业生产运营中不可避免的问题,合理的库存管理可以提高生产运营的效率和降低运营成本。

运筹学技术可以通过建立合理的库存模型来电脑推算最优库存方法,最终实现合理控制。

例如,根据需求预测建立库存模型,可以预测适当的库存量和时间,以最大化运营效率和资本回报。

此外,在库存管理中,也可以使用决策树、模拟退火、模糊逻辑等算法来制定最优策略,以实现企业最优化经济目标。

四、供应链管理供应链管理是企业生产运营中一个越来越重要的部分。

运筹学技术的应用可以通过控制供应链的全过程来实现优化。

例如,在供应商选择中,可以使用多目标线性规划或指数加权加法模型来决策供应商选择,以达到最小化成本和最高质量水平的目的。

线性规划的应用

线性规划的应用

线性规划的应用引言概述:线性规划是一种数学优化方法,广泛应用于各个领域。

它通过建立数学模型,寻找最优解来解决实际问题。

本文将介绍线性规划的应用,并分析其在经济、物流、生产、资源分配和运筹学等领域的具体应用。

一、经济领域的应用1.1 产量最大化:线性规划可以用于帮助企业确定最佳生产方案,以最大化产量。

通过考虑生产成本、资源限制和市场需求等因素,线性规划可以确定最优的生产数量和产品组合。

1.2 资源分配:线性规划可以帮助企业合理分配资源,以最大化利润。

通过考虑各种资源的供应和需求关系,线性规划可以确定最优的资源分配方案,提高资源利用效率。

1.3 价格优化:线性规划可以用于确定最佳定价策略,以最大化利润。

通过考虑市场需求、成本和竞争等因素,线性规划可以确定最优的价格水平,提高企业的竞争力。

二、物流领域的应用2.1 运输成本最小化:线性规划可以用于确定最佳的物流方案,以最小化运输成本。

通过考虑物流网络、货物流量和运输成本等因素,线性规划可以确定最优的运输路线和运输量,提高物流效率。

2.2 仓储优化:线性规划可以帮助企业优化仓储管理,以最小化仓储成本。

通过考虑仓库容量、货物存储需求和仓储成本等因素,线性规划可以确定最优的仓储方案,提高仓储效率。

2.3 供应链优化:线性规划可以用于优化供应链管理,以提高整体供应链效率。

通过考虑供应商、生产商和分销商之间的关系,线性规划可以确定最优的供应链方案,减少库存和运输成本。

三、生产领域的应用3.1 生产计划:线性规划可以用于帮助企业制定最佳的生产计划,以满足市场需求。

通过考虑生产能力、原材料供应和市场需求等因素,线性规划可以确定最优的生产计划,提高生产效率。

3.2 产能利用率优化:线性规划可以帮助企业提高产能利用率,以降低成本。

通过考虑设备利用率、工人数量和生产效率等因素,线性规划可以确定最优的产能利用方案,提高生产效率。

3.3 品质控制:线性规划可以用于优化品质控制过程,以提高产品质量。

运筹学应用案例

运筹学应用案例

运筹学应用案例运筹学是一门应用数学,研究如何在资源有限的情况下,最优地组织和管理这些资源。

运筹学的应用范围非常广泛,涉及到各个领域。

以下是一个关于运筹学应用的实际案例。

某公司是一家制造业企业,主要生产产品A和产品B。

这家公司有两个生产车间和一个物流中心,每个车间配备了不同的生产设备。

公司的目标是最大化利润。

产品A在车间1中生产,车间1的生产设备可以在一小时内生产5个单位的产品A。

产品B在车间2中生产,车间2的生产设备可以在一小时内生产4个单位的产品B。

物流中心负责将产品A和产品B运送到市场,物流中心的运输能力为每小时20个单位。

同时,公司还面临一个资源的限制,即每天生产的产品A和产品B的总数不能超过400个单位。

另外,公司还有一个库存的限制,即每天生产的产品A和产品B的总数不能超过600个单位。

为了系统地解决这个问题,公司决定使用运筹学的方法进行决策。

首先,公司需要确定目标函数。

由于公司的目标是最大化利润,所以可以将目标函数定义为利润函数。

假设公司每个单位的产品A的利润为10美元,每个单位的产品B的利润为8美元。

那么公司的目标函数可以定义为:Z=10A+8B。

然后,公司需要确定约束条件。

根据资源的限制,可以得到以下约束条件:A≤5×小时数(车间1的生产能力)B≤4×小时数(车间2的生产能力)A+B≤400(每天生产的总数限制)A+B≤600(库存的限制)20A+20B≤600(物流中心的运输能力)接下来,公司需要确定变量的取值范围。

由于产量和库存数量为实数,所以可以将A和B的取值范围定义为非负实数。

最后,公司需要使用线性规划算法来求解最优解。

线性规划算法可以通过求解目标函数的最大值来找到最优解。

在这个案例中,可以使用单纯形法来求解最优解。

通过使用运筹学的方法,公司可以得到最优的生产和运输计划,以最大化利润。

对于公司而言,这个案例展示了如何在资源有限的情况下,通过合理的规划和管理,实现最优的生产和销售策略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

线性规划在企业中的运用摘要:运筹学是一门定量优化的决策科学,而线性规划是运筹学的一个基本分支,它广泛应用现有的科学技术和数学方法,解决实际中提出的专门问题、为决策者选择最优决策提供定量依据,帮助决策人员选择最优方针和决策,其英文名字为Operational Research.50年代中期,钱学森等教授将其由西方引入我国,并结合我国国情实际运用。

线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,线性规划是辅助企业“转轨”、“变型”的十分有利的工具,它在帮助企业经营决策、计划优化等方面具有重要的作用。

关键词:运筹学;线性规划;应用;企业运筹学的特点是利用数学、管理科学、计算机科学技术等研究事物的数量化规律,使得有限的人、财、物、时、空、信息等资源得到合理充分合理的利用。

它以数学为工具,寻找解决各种问题的最优方案,并从系统的观点出发研究全局的规划。

运筹学早期应用在军事领域,二战后转为民用,并且在企业中的应用越来越广泛,取得了良好的经济效益。

运筹学的思想贯穿了企业发展的始终,运筹学对各种决策方案进行科学评估,为管理决策服务,使得企业管理者更有效合理地利用有限资源。

优胜劣汰,适者生存,这是自然界的生存法则,也是企业的生存法则。

只有那些能够成功地应付环境挑战的企业,才是得以继续生存和发展的企业。

线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法,早在1939年苏联的康托洛维奇(H.B.Kahtopob )和美国的希奇柯克(F.L.Hitchcock)等人就在生产组织管理和制定交通运输方案方面首先研究和应用线性规划方法。

1947年旦茨格等人提出了求解线性规划问题的单纯形方法,为线性规划的理论与计算奠定了基础,特别是电子计算机的出现和日益完善,更使规划论得到迅速的发展,可用电子计算机来处理成千上万个约束条件和变量的大规模线性规划(或非线性规划)问题。

从应用范围来看,小到一个班组的计划安排,大至整个部门,以至国民经济计划的最优化方案分析,它都有用武之地,从解决技术问题的最优化,到工业、农业、商业、交通运输业以及决策分析部门它都可以发挥作用。

线性规划方法具有适应性强,应用面广,计算技术比较简便的特点。

其基本思路是在满足一定的约束条件下,使预定的目标达到最优。

它的研究内容可归纳为两个方面:一是系统的任务已定,如何合理筹划,精细安排,用最少的资源(人力、物力和财力)去实现这个任务;二是资源的数量已定,如何合理利用、调配,使任务完成的最多。

前者是求极小,后者是求极大。

线性规划是在满足企业内、外部的条件下,实现管理目标的极值(极小值和极大值)问题,就是要以尽量少的资源输入来实现更多的社会需要的产品的产出。

因此,线性规划是辅助企业“转轨”、“变型”的十分有利的工具,它在辅助企业经营决策、计划优化等方面具有十分重要的作用。

一、运筹学的原则及工作步骤的基本阐述运筹学在其发展过程中形成了一些原则,如:合伙原则、催化原则、互相渗透原则、独立原则、宽容原则、平衡原则。

而这些原则在企业中也得到了充分的应用。

同时企业中需要决策,运筹学则为这些工作决策提供了良好的解决思路。

一般来说,运筹学的相应的工作步骤如下:1、提出和形成问题。

要弄清问题的目标,可能的约束,问题的可控变量及有关参数,搜集有关资料。

2、建立模型。

把问题中的可控变量、参数和目标与约束之间的关系用一定的模型表现出来。

3、求解。

用各种手段(主要是数学方法)将模型求解。

解可以是最优解、次优解、满意解。

4、解的检验。

首先检查求解步骤和程序有无错误,然后检查解是否反映现实问题。

5、解的控制。

通过控制解的变化过程对解是否要做一定的改变。

6、解的实施。

是指将解用到实际中必须考虑到实施的问题,如向实际部门讲清解的用法,在实施过程中可能产生的问题和需要修改的地方。

以上过程应反复进行。

以上是运筹学的原则及工作步骤,而将这些原则及工作步骤系统的运用到企业中去却是一大飞跃。

二、线性规划的含义其含义是解决多变量最优决策的方法,是在各种相互关联的多变量约束条件下,解决或规划一个对象的线性目标函数最优的问题,即给与一定数量的人力、物力和资源,如何应用而能得到最大经济效益。

当资源限制或约束条件表现为线性等式或不等式,目标函数表示为线性函数时,可运用线性规划法进行决策。

线性规划法就是在线性等式或不等式的约束条件下,求解线性目标函数的最大值或最小值的方法。

其中目标函数是决策者要求达到目标的数学表达式,用一个极大或极小值表示。

约束条件是指实现目标的能力资源和内部条件的限制因素,用一组等式或不等式来表示。

线性规划是决策系统的静态最优化数学规划方法之一。

它作为经营管理决策中的数学手段,在现代决策中的应用是非常广泛的,它可以用来解决科学研究、工程设计、生产安排、军事指挥、经济规划;经营管理等各方面提出的大量问题。

三、线性规划在企业中运用的必要性随着经济全球化的不断发展,企业面临更加激烈的市场竞争。

企业必须不断提高盈利水平,增强其获利能力,在生产、销售、新产品研发等一系列过程中只有自己的优势,提高企业效率,降低成本,形成企业的核心竞争力,才能在激烈的竞争中立于不败之地。

过去很多企业在生产、运输、市场营销等方面没有利用线性规划进行合理的配置,从而增加了企业的生产,使企业的利润不能达到最大化。

在竞争日益激烈的今天,如果还按照过去的方式,是难以生存的,所以就有必要利用线性规划的知识对战略计划、生产、销售各个环节进行优化从而降低生产成本,提高企业的效率。

在各类经济活动中,经常遇到这样的问题:在生产条件不变的情况下,如何通过统筹安排,改进生产组织或计划,合理安排人力、物力资源,组织生产过程,使总的经济效益最好。

这样的问题常常可以化成或近似地化成所谓的“线性规划”(Linear Programming,简记为LP)问题。

线性规划是应用分析、量化的方法,对经济管理系统中的人、财、物等有限资源进行统筹安排,为决策者提供有依据的最优方案,以实现有效管理。

利用线性规划我们可以解决很多问题。

如:在不违反一定资源限制下,组织安排生产,获得最好的经济效益(产量最多、利润最大、效用最高)。

也可以在满足一定需求条件下,进行合理配置,使成本最小。

同时还可以在任务或目标确定后,统筹兼顾,合理安排,用最少的资源(如资金、设备、原材料、人工、时间等)去完成任务。

下面我们用线性规划方法对企业在生产中的具体问题进行探讨。

四、线性规划的模型线性规划的模型决定于它的定义,线性规划的定义是:求一组变量的值,在满足一组约束条件下,求得目标函数的最优解。

根据这个定义,就可以确定线性规划模型的基本结构。

1.变量:变量又叫未知数,它是实际系统的未知因素,也是决策系统中的可控因素,一般称为决策变量,常引用英文字母加下标来表示,如Xl,X2,X3,Xm等。

2.目标函数:将实际系统的目标,用数学形式表现出来,就称为目标函数,线性规划的目标函数是求系统目标的数值,即极大值(如产值极大值、利润极大值)或者极小值(如成本极小值、费用极小值、损耗极小值等等)。

3.约束条件:约束条件是指实现系统目标的限制因素。

它涉及到企业内部条件和外部环境的各个方面,如原材料供应、设备能力、计划指标、产品质量要求和市场销售状态等等,这些因素都对模型的变量起约束作用,故称其为约束条件。

约束条件的数学表示形式有三种,即≥、=、≤。

线性规划的变量应为正值,因为变量在实际问题中所代表的均为实物,所以不能为负。

线性规划问题的一般形式为:其中为待定的决策变量,已知的系数组成的矩阵称为约束矩阵。

以前人们在用这个模型求解时计算非常麻烦,而近几十多年来,由于电子计算机应用的飞速发展,应用计算机处理线性规划问题使人们求解变得越来越容易了。

LINDO软件是解决线性规划问题的有力工具,它可用于解决50000个约束条件,20000个变量的线性规划问题,所以线性规划的具体运用也越来越受管理者的重视了。

五、线性规划在企业中的应用使用运筹学方法从总体上确定适应需求的生产、贮存和劳动力安排等计划,以谋求最大的利润或最小的成本,运筹学主要用线性规划、整数规划以及模拟方法来解决此类问题。

线性规划问题的数学模型是指求一组满足一个线性方程组(或线性不等式组,或线性方程与线性不等式混合组)的非负变量,使这组变量的一个线性函数达到最大值或最小值的数学表达式.建立数学模型的一般步骤:(1)确定决策变量(有非负约束);对于一个企业来说,一般是直生产某产品的计划数量。

(2)写出目标函数(求最大值或最小值)确定一个目标函数;(3)写出约束条件(由等式或不等式组成). 约束条件包括指标约束需求约束、资源约束等;(4)最后根据目标函数为作出最合适的企业生产计划决策。

下面我们从企业在进行制定生产计划、设备使用、材料的使用、配料分配、运输、广告促销几方面看看如何运用线性规划使企业得到最优方案。

例:某工厂生产甲、乙两种产品,每件甲产品要耗钢材2kg、煤2kg、产值为120元;每件乙产品要耗钢材3kg,煤1kg,产值为100元。

现钢厂有钢材600kg,煤400kg,试确定甲、乙两种产品各生产多少件,才能使该厂的总产值最大?解:设甲、乙两种产品的产量分别为X1、X2,则总产值是X1 、X2的函数f(X1,X2)=120X1+100X2资源的多少是约束条件:由于钢的限制,应满足2X1+3X2≤600;由于煤的限制,应满足2X1+X2≤400。

综合上述表达式,得数学模型为求最大值(目标函数):f(X1,X2)=120X1+100X22X1+3X2≤6002X1+X2≤400X1≥0,X2≥0Xl,X2为决策变量,解(略)得:Xl≤150件,X2≤100件fmax=(120 ×150+100×100)元=28000元故当甲产品生产150件、乙产品生产100件时,产值最大,为28000元。

六、结束语把线性规划的知识运用到企业中去,可以使企业适应市场激烈的竞争,及时、准确、科学的制定生产计划、投资计划、对资源进行合理配置。

过去企业在制定计划,调整分配方面很困难,既要考虑生产成本,又要考虑获利水平,人工测算需要很长时间,不易做到机动灵活,运用线性规划并配合计算机进行测算非常简便易行,几分钟就可以拿出最优方案,提高了企业决策的科学性和可靠性。

其决策理论是建立在严格的理论基础之上,运用大量基础数据,经严格的数学运算得到的,从而在使企业能够在生产的各个环节中优化配置,提高了企业的效率,对企业是大有益处的。

参考文献:[1]路正南张怀胜:运筹学基础教程.中国科学技术大学出版社[2]管梅谷,郑汉鼎.线性规划.济南:山东科学技术出版社[3]张干宗线性规划(第二版)武汉大学出版社[4]江道琪何建坤陈松华实用线性规划方法及其支持系统清华大学出版社[6]吴方.线性规划初步.沈阳:辽宁教育出版社[7]胡清淮魏一鸣线性规划及其应用科学出版社。

相关文档
最新文档