数学八上《1.5三角形全等的判定》word教案 (8)(1)

合集下载

浙教版数学八年级上册1.5《三角形全等的判定》(第1课时)教案

浙教版数学八年级上册1.5《三角形全等的判定》(第1课时)教案

浙教版数学八年级上册1.5《三角形全等的判定》(第1课时)教案一. 教材分析《三角形全等的判定》是浙教版数学八年级上册第1.5节的内容,本节课主要让学生了解三角形全等的判定方法,掌握SSS、SAS、ASA、AAS四种判定方法,并能够运用这些方法判断两个三角形是否全等。

此内容是学生学习几何的基础知识,对于培养学生的逻辑思维和空间想象能力具有重要意义。

二. 学情分析八年级的学生已经掌握了基本的几何知识,对于图形的认识有一定的基础。

但是,对于三角形全等的判定方法,学生可能初次接触,需要通过实例分析、动手操作、小组讨论等方式,让学生理解和掌握。

三. 教学目标1.了解三角形全等的判定方法,掌握SSS、SAS、ASA、AAS四种判定方法。

2.能够运用判定方法判断两个三角形是否全等。

3.培养学生的逻辑思维和空间想象能力。

四. 教学重难点1.教学重点:SSS、SAS、ASA、AAS四种判定方法。

2.教学难点:如何判断两个三角形是否全等,以及运用判定方法解决实际问题。

五. 教学方法1.实例分析法:通过具体的图形实例,让学生观察、分析、总结三角形全等的判定方法。

2.动手操作法:让学生亲自动手操作,折叠、拼接等,增强直观感受。

3.小组讨论法:分组进行讨论,培养学生的合作意识和解决问题的能力。

4.练习法:通过课堂练习和课后作业,巩固所学知识。

六. 教学准备1.教学课件:制作课件,展示图形实例和相关的练习题。

2.教具:三角板、直尺、剪刀等。

3.练习题:准备一些判断三角形全等的练习题,用于课堂练习和课后作业。

七. 教学过程1.导入(5分钟)利用课件展示一些生活中的三角形图形,如自行车三角架、三角尺等,引导学生关注三角形的特点,激发学生的学习兴趣。

2.呈现(10分钟)通过实例分析,引导学生观察、总结三角形全等的判定方法。

如:–SSS:三边分别相等的两个三角形全等。

–SAS:两边和夹角分别相等的两个三角形全等。

–ASA:两角和夹边分别相等的两个三角形全等。

人教初中数学八上《三角形全等的判定(角边角)》教案 (公开课获奖)

人教初中数学八上《三角形全等的判定(角边角)》教案 (公开课获奖)

三角形全等的判定教学目标1.三角形全等的条件:角边角、角角边.2.三角形全等条件小结.3.掌握三角形全等的“角边角〞“角角边〞条件.4.能运用全等三角形的条件,解决简单的推理证明问题.教学重点两角一边的三角形全等探究.教学难点灵活运用三角形全等条件证明.教学过程Ⅰ.提出问题,创设情境1.复习:〔1〕三角形中三个元素,包括哪几种情况?三个角、三个边、两边一角、两角一边.〔2〕到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义;②SSS;③SAS.2.在三角形中,三个元素的四种情况中,我们研究了三种,今天我们接着探究两角一边是否可以判断两三角形全等呢?Ⅱ.导入新课问题1:三角形中两角一边有几种可能?1.两角和它们的夹边.2.两角和其中一角的对边.问题2:三角形的两个内角分别是60°和80°,它们的夹边为4cm,•你能画一个三角形同时满足这些条件吗?将你画的三角形剪下,与同伴比拟,观察它们是不是全等,你能得出什么规律?将所得三角形重叠在一起,发现完全重合,这说明这些三角形全等.提炼规律:两角和它们的夹边对应相等的两个三角形全等〔可以简写成“角边角〞或“ASA〞〕.问题3:我们刚刚做的三角形是一个特殊三角形,随意画一个三角形ABC,•能不能作一个△A′B′C′,使∠A=∠A′、∠B=∠B′、AB=A′B′呢? ①先用量角器量出∠A 与∠B 的度数,再用直尺量出AB 的边长. ②画线段A′B′,使A′B′=AB.③分别以A′、B′为顶点,A′B′为一边作∠DA′B′、∠EB′A,使∠D′AB=∠CAB,∠EB′A′=∠CBA.④射线A′D 与B′E 交于一点,记为C′ 即可得到△A′B′C′.将△A′B′C′与△ABC 重叠,发现两三角形全等.C 'A 'B 'DCAE两角和它们的夹边对应相等的两三角形全等〔可以简写成“角边角〞或“ASA〞〕. 思考:在一个三角形中两角确定,第三个角一定确定.我们是不是可以不作图,用“ASA〞推出“两角和其中一角的对边对应相等的两三角形全等〞呢? 探究问题4:如图,在△ABC 和△DEF 中,∠A=∠D,∠B=∠E,BC=EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?D CABFE证明:∵∠A+∠B+∠C=∠D+∠E+∠F=180°∠A=∠D,∠B=∠E ∴∠A+∠B=∠D+∠E ∴∠C=∠F 在△ABC 和△DEF 中B EBC EF C F ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC≌△DEF〔ASA 〕.两个角和其中一角的对边对应相等的两个三角形全等〔可以简写成“角角边〞或“AAS〞〕. [例]如以下图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C.求证:AD=AE .[分析]AD 和AE 分别在△ADC 和△AEB 中,所以要证AD=AE ,只需证明△ADC≌△AEB 即可. 证明:在△ADC 和△AEB 中A A AC ABC B ∠=∠⎧⎪=⎨⎪∠=∠⎩所以△ADC≌△AEB〔ASA 〕 所以AD=AE . Ⅲ.随堂练习〔一〕课本练习1、2. 〔二〕补充练习图中的两个三角形全等吗?请说明理由.50︒50︒45︒45︒DCAB (1)29︒29︒DC A B(2)E答案:图〔1〕中由“ASA〞可证得△ACD≌△ACB.图〔2〕由“AAS〞可证得△ACE≌△BDC. Ⅳ.课时小结至此,我们有五种判定三角形全等的方法: 1.全等三角形的定义2.判定定理:边边边〔SSS 〕 边角边〔SAS 〕 角边角〔ASA 〕 角角边〔AAS 〕 推证两三角形全等时,要善于观察,寻求对应相等的条件,从而获得解题途径. Ⅴ.作业1.课本习题5、6、题. 板书设计D CABE11.2.3 三角形全等的判定〔三〕一、两角一边⎧⎨⎩两角及其夹边两角和其中一角的对边二、三角形全等的条件1.两角及其夹边对应相等的两三角形全等〔ASA〕2.两角和其中一角的对边对应相等的两三角形全等〔AAS〕15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+ (3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案:四、〔1〕2x 〔2〕b a ab- 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标〔一〕教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. 〔二〕能力训练要求1.经历作〔画〕出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. 〔三〕情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两局部能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,那么可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.〔演示课件〕1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的局部就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的局部互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的局部互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. 〔演示课件〕等腰三角形的性质:1.等腰三角形的两个底角相等〔简写成“等边对等角〞〕.2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合〔通常称作“三线合一〞〕.[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程〕.〔投影仪演示学生证明过程〕[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD 〔SSS 〕. 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很标准.下面我们来看大屏幕.〔演示课件〕[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD ,D CA BD CABDCA B求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. 〔课件演示〕[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD 〔等边对等角〕.设∠A=x ,那么∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来稳固这节课所学的知识. Ⅲ.随堂练习〔一〕课本练习 1、2、3.练习1. 如图,在以下等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:〔1〕72° 〔2〕30°2.如图,△ABC 是等腰直角三角形〔AB=AC ,∠BAC=90°〕,AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.答:∠B=77°,∠C=38.5°.D CA B〔二〕阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等〔等边对等角〕,等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业〔一〕习题13.3 第1、3、4、8题. 〔二〕1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD .又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一 三、例题分析 四、随堂练习EDCA B P五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,那么它的对称轴一定是〔〕A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是〔〕A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,那么其腰长为〔x+2〕cm,根据题意,得2〔x+2〕+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-〞号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相照应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解〔教科书〕例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.〔教科书〕例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- 〔2〕)11()(ba ab b b a a -÷--- 〔3〕)2122()41223(2+--÷-+-a a a a 五、课后练习1.计算:(1))1)(1(y x x y x y +--+(2)22242)44122(aa a a a a a a a a -÷-⋅+----+ (3)zxyz xy xy z y x ++⋅++)111( 2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、〔1〕2x 〔2〕ba ab - 〔3〕3 五、1.(1)22y x xy - (2)21-a 〔3〕z 1 2.原式=422--a a ,当=a -1时,原式=-31.。

浙教版数学八年级上册1.5《三角形全等的判定》(第1课时)教学设计

浙教版数学八年级上册1.5《三角形全等的判定》(第1课时)教学设计

浙教版数学八年级上册1.5《三角形全等的判定》(第1课时)教学设计一. 教材分析《三角形全等的判定》是浙教版数学八年级上册1.5节的内容,本节内容是在学生已经掌握了三角形的基本概念、性质以及三角形的画法等知识的基础上进行学习的。

本节内容的主要目的是让学生掌握三角形全等的判定方法,并能够灵活运用这些方法解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于图形的认识和操作也有一定的了解。

但是,对于三角形全等的判定方法,学生可能还比较陌生,需要通过实例分析和操作来理解和掌握。

此外,学生的空间想象能力和逻辑思维能力还需要进一步的培养和提高。

三. 教学目标1.让学生了解三角形全等的概念,掌握三角形全等的判定方法。

2.培养学生观察、分析、解决问题的能力。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.三角形全等的判定方法的理解和运用。

2.三角形全等判定方法的灵活运用。

五. 教学方法1.采用问题驱动法,通过问题的提出和解决,引导学生思考和探索。

2.采用实例分析法,通过具体的实例,让学生理解和掌握三角形全等的判定方法。

3.采用合作交流法,让学生在小组合作中,共同解决问题,提高解决问题的能力。

六. 教学准备1.教学课件和教学素材。

2.三角板和尺子等绘图工具。

七. 教学过程1.导入(5分钟)通过复习三角形的基本概念和性质,引导学生进入本节课的主题——三角形全等的判定。

2.呈现(10分钟)通过PPT呈现三角形全等的判定方法,引导学生观察和思考,让学生理解三角形全等的判定方法。

3.操练(10分钟)让学生利用三角板和尺子,自己动手画出全等的三角形,并通过比较,验证自己的结论。

4.巩固(10分钟)通过PPT展示一些判断三角形全等的问题,让学生独立解答,巩固所学知识。

5.拓展(10分钟)让学生思考:除了三角形,其他多边形有没有类似全等的概念?全等的概念在实际生活中有哪些应用?6.小结(5分钟)对本节课的内容进行小结,让学生明确三角形全等的判定方法,并能够灵活运用。

浙教初中数学八年级上册《1.5三角形全等的判定》word教案 (5)

浙教初中数学八年级上册《1.5三角形全等的判定》word教案 (5)

1.5 三角形全等的判定(第四课时)【教学目标】1.探索并掌握两个三角形全等的条件:有两角及其中一角的对边对应相等的两个三角形全等(AAS)。

2.会运用AAS判定两个三角形全等。

3.理解角平分线的性质:角平分线上的点到角两边的距离相等。

【教学重点、难点】1.本节教学的重点是两个三角形全等的条件:有两角及其中一角的对边对应相等的两个三角形全等。

2.例7需要添加辅助线,证明的思路较复杂,是本节教学的难点。

【教学过程】1.复习引入复习以上两节课已经学习了的三角形全等的条件,有SSS、SAS、ASA。

2.合作学习:(师生一起动手)(1)每位同学用量角器和刻度尺在白纸上画△ABC,使AB=3cm,∠B=400, ∠C=600(2) 注意相应的边、角的大小要符合要求,字母要一一对应。

(3)比较相邻的几位同学互相比较所画的三角形的大小。

(4)所画的三角形能够完全重合。

3.全等三角形的判定定理:有两角及其中一角的对边对应相等的两个三角形全等(简写成“角角边”或“AA S”)4.例6,如图,点P是∠BAC的平分线上的一点,PB⊥AB,PC⊥AC。

说明PB=PC的理由。

5.课外探究思考(1)三角形全等的条件已经有了SSS、SAS、ASA、AAS,(2)这些全等的条件有什么相似的地方吗?(3)两边一角对应相等,角不是夹角行不行?(4)全等的条件还能少吗?6.布置作业(1)课本作业题(2)举出在日常生活中需要用三角形全等的知识来解决问题的例子。

【教学反思】教学例题时要注意以下几点:(1)重视表述格式的规范;(2)重视尺规作图技能的培养;(3)强调培养让学生注明理由的习惯;(4)注意培养学生的推理思考能力。

浙教版数学八年级上册1.5《三角形全等的判定》(第2课时)教学设计

浙教版数学八年级上册1.5《三角形全等的判定》(第2课时)教学设计

浙教版数学八年级上册1.5《三角形全等的判定》(第2课时)教学设计一. 教材分析《三角形全等的判定》是浙教版数学八年级上册1.5节的内容,这部分内容是在学生已经掌握了三角形的基本概念、性质和判定方法的基础上进行讲解的。

本节课的主要内容是让学生掌握SSS、SAS、ASA、AAS四种三角形全等的判定方法,并能够运用这些方法解决实际问题。

二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念、性质和判定方法,具备了一定的逻辑思维能力和空间想象力。

但是,对于三角形全等的判定方法的理解和运用还需要进一步的引导和培养。

三. 教学目标1.让学生掌握SSS、SAS、ASA、AAS四种三角形全等的判定方法。

2.培养学生运用三角形全等判定方法解决实际问题的能力。

3.培养学生的逻辑思维能力和空间想象力。

四. 教学重难点1.教学重点:SSS、SAS、ASA、AAS四种三角形全等的判定方法。

2.教学难点:对于三角形全等判定方法的理解和运用。

五. 教学方法1.采用问题驱动的教学方法,引导学生通过自主探究和合作交流,发现和总结三角形全等的判定方法。

2.利用多媒体课件和实物模型,直观地展示三角形全等的判定过程,帮助学生理解和记忆。

3.通过例题和练习题,让学生巩固和应用所学的判定方法,提高解题能力。

六. 教学准备1.多媒体课件和实物模型。

2.练习题和答案。

七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾三角形的基本概念、性质和判定方法,为新课的学习做好铺垫。

2.呈现(10分钟)教师利用多媒体课件和实物模型,直观地展示三角形全等的判定过程,引导学生发现和总结SSS、SAS、ASA、AAS四种三角形全等的判定方法。

3.操练(10分钟)教师给出一些三角形全真的例子,让学生运用所学的判定方法进行判断,并及时给予指导和反馈。

4.巩固(10分钟)教师给出一些三角形全假的例子,让学生运用所学的判定方法进行判断,并及时给予指导和反馈。

人教初中数学八上《三角形全等的判定(边边边)》教案 (公开课获奖)

人教初中数学八上《三角形全等的判定(边边边)》教案 (公开课获奖)

三角形全等的判定教学目标1.三角形全等的“边边边”的条件. 2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 教学重点三角形全等的条件. 教学难点寻求三角形全等的条件. 教学过程Ⅰ.创设情境,引入新课出示投影片,回忆前面研究过的全等三角形. 已知△ABC≌△A′B′C′,找出其中相等的边与角.C 'B 'A 'C B A图中相等的边是:AB=A′B、BC=B′C′、AC=A′C. 相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′.展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画? (可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题. Ⅱ.导入新课1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗? 2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm . ②三角形两内角分别为30°和50°. ③三角形两条边分别为4cm 、6cm .学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流. 结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边.①3cm3cm3cm30︒30︒30︒②50︒50︒30︒30︒③6cm4cm4cm6cm可以发现按这些条件画出的三角形都不能保证一定全等. 给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗? 1.作图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个三角形ABC ,根据前面作法,同样可以作出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,发现两三角形重合.这反映了一个规律:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.请看例题.[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD≌△ACD.[分析]要证△ABD≌△ACD,可以看这两个三角形的三条边是否对应相等. 证明:因为D 是BC 的中点 所以BD=DC在△ABD 和△ACD 中(AB ACBD CD AD AD =⎧⎪=⎨⎪=⎩公共边)所以△ABD≌△ACD(SSS ).生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等.Ⅲ.随堂练习如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC≌△FDE,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?FDCBEA2.课本练习. Ⅳ.课时小结本节课我们探索得到了三角形全等的条件,•发现了证明三角形全等的一个规律SSS .并利用它可以证明简单的三角形全等问题. Ⅴ.作业1. 习题11.2 复习巩固1、2. Ⅵ.活动与探索如图,一个六边形钢架ABCDEF 由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?C本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用.结果:(1)可从这六个顶点中的任意一个作对角线,•把这个六边形划分成四个三角形.如图(1)为其中的一种.(2)也可以把这个六边形划分成四个三角形.如图(2).板书设计(1)(2)§11.2.1 三角形全等的判定(一)一、三角形全等的条件三边对应相等的两三角形全等(SSS)二、例三、课堂练习四、小结15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式. 四、随堂练习 计算:(1) xx x x x 22)242(2+÷-+- (2))11()(b a a b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a 五、课后练习 1.计算: (1))1)(1(yx xy x y +--+ (2)22242)44122(aaa a a a a a a a -÷-⋅+----+(3)zxyz xy xyz y x ++⋅++)111(2.计算24)2121(aa a ÷--+,并求出当=a -1的值.六、答案: 四、(1)2x (2)ba ab- (3)3 五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.13.3.1 等腰三角形教学目标(一)教学知识点1.等腰三角形的概念. 2.等腰三角形的性质.3.等腰三角形的概念及性质的应用. (二)能力训练要求1.经历作(画)出等腰三角形的过程,•从轴对称的角度去体会等腰三角形的特点. 2.探索并掌握等腰三角形的性质. (三)情感与价值观要求 通过学生的操作和思考,使学生掌握等腰三角形的相关概念,并在探究等腰三角形性质的过程中培养学生认真思考的习惯.重点难点重点:1.等腰三角形的概念及性质.2.等腰三角形性质的应用.难点:等腰三角形三线合一的性质的理解及其应用.教学方法探究归纳法.教具准备师:多媒体课件、投影仪;生:硬纸、剪刀.教学过程Ⅰ.提出问题,创设情境[师]在前面的学习中,我们认识了轴对称图形,探究了轴对称的性质,•并且能够作出一个简单平面图形关于某一直线的轴对称图形,•还能够通过轴对称变换来设计一些美丽的图案.这节课我们就是从轴对称的角度来认识一些我们熟悉的几何图形.来研究:①三角形是轴对称图形吗?②什么样的三角形是轴对称图形?[生]有的三角形是轴对称图形,有的三角形不是.[师]那什么样的三角形是轴对称图形?[生]满足轴对称的条件的三角形就是轴对称图形,•也就是将三角形沿某一条直线对折后两部分能够完全重合的就是轴对称图形.[师]很好,我们这节课就来认识一种成轴对称图形的三角形──等腰三角形.Ⅱ.导入新课[师]同学们通过自己的思考来做一个等腰三角形.ABICABI作一条直线L,在L上取点A,在L外取点B,作出点B关于直线L的对称点C,连接AB、BC、CA,则可得到一个等腰三角形.[生乙]在甲同学的做法中,A点可以取直线L上的任意一点.[师]对,按这种方法我们可以得到一系列的等腰三角形.现在同学们拿出自己准备的硬纸和剪刀,按自己设计的方法,也可以用课本探究中的方法,•剪出一个等腰三角形.……[师]按照我们的做法,可以得到等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.[师]有了上述概念,同学们来想一想.(演示课件)1.等腰三角形是轴对称图形吗?请找出它的对称轴.2.等腰三角形的两底角有什么关系?3.顶角的平分线所在的直线是等腰三角形的对称轴吗?4.底边上的中线所在的直线是等腰三角形的对称轴吗?•底边上的高所在的直线呢?[生甲]等腰三角形是轴对称图形.它的对称轴是顶角的平分线所在的直线.因为等腰三角形的两腰相等,所以把这两条腰重合对折三角形便知:等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.[师]同学们把自己做的等腰三角形进行折叠,找出它的对称轴,并看它的两个底角有什么关系.[生乙]我把自己做的等腰三角形折叠后,发现等腰三角形的两个底角相等.[生丙]我把等腰三角形折叠,使两腰重合,这样顶角平分线两旁的部分就可以重合,所以可以验证等腰三角形的对称轴是顶角的平分线所在的直线.[生丁]我把等腰三角形沿底边上的中线对折,可以看到它两旁的部分互相重合,说明底边上的中线所在的直线是等腰三角形的对称轴.[生戊]老师,我发现底边上的高所在的直线也是等腰三角形的对称轴. [师]你们说的是同一条直线吗?大家来动手折叠、观察. [生齐声]它们是同一条直线.[师]很好.现在同学们来归纳等腰三角形的性质.[生]我沿等腰三角形的顶角的平分线对折,发现它两旁的部分互相重合,由此可知这个等腰三角形的两个底角相等,•而且还可以知道顶角的平分线既是底边上的中线,也是底边上的高.[师]很好,大家看屏幕. (演示课件)等腰三角形的性质:1.等腰三角形的两个底角相等(简写成“等边对等角”).2.等腰三角形的顶角平分线,底边上的中线、•底边上的高互相重合(通常称作“三线合一”).[师]由上面折叠的过程获得启发,我们可以通过作出等腰三角形的对称轴,得到两个全等的三角形,从而利用三角形的全等来证明这些性质.同学们现在就动手来写出这些证明过程).(投影仪演示学生证明过程)[生甲]如右图,在△ABC 中,AB=AC ,作底边BC 的中线AD ,因为,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩所以△BAD ≌△CAD (SSS ). 所以∠B=∠C .[生乙]如右图,在△ABC 中,AB=AC ,作顶角∠BAC 的角平分线AD ,因为,,,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩所以△BAD ≌△CAD .所以BD=CD ,∠BDA=∠CDA=12∠BDC=90°.[师]很好,甲、乙两同学给出了等腰三角形两个性质的证明,过程也写得很条理、很规范.下面我们来看大屏幕.D CA BD CABA(演示课件)[例1]如图,在△ABC 中,AB=AC ,点D 在AC 上,且BD=BC=AD , 求:△ABC 各角的度数.[师]同学们先思考一下,我们再来分析这个题.[生]根据等边对等角的性质,我们可以得到 ∠A=∠ABD ,∠ABC=∠C=∠BDC ,•再由∠BDC=∠A+∠ABD ,就可得到∠ABC=∠C=∠BDC=2∠A . 再由三角形内角和为180°,•就可求出△ABC 的三个内角.[师]这位同学分析得很好,对我们以前学过的定理也很熟悉.如果我们在解的过程中把∠A 设为x 的话,那么∠ABC 、∠C 都可以用x 来表示,这样过程就更简捷. (课件演示)[例]因为AB=AC ,BD=BC=AD , 所以∠ABC=∠C=∠BDC . ∠A=∠ABD (等边对等角).设∠A=x ,则∠BDC=∠A+∠ABD=2x , 从而∠ABC=∠C=∠BDC=2x .于是在△ABC 中,有∠A+∠ABC+∠C=x+2x+2x=180°, 解得x=36°.在△ABC 中,∠A=35°,∠ABC=∠C=72°.[师]下面我们通过练习来巩固这节课所学的知识.Ⅲ.随堂练习(一)课本练习 1、2、3. 练习1. 如图,在下列等腰三角形中,分别求出它们的底角的度数.(2)120︒36︒(1)答案:(1)72° (2)30°2.如图,△ABC 是等腰直角三角形(AB=AC ,∠BAC=90°),AD 是底边BC 上的高,标出∠B 、∠C 、∠BAD 、∠DAC 的度数,图中有哪些相等线段?D CAB答案:∠B=∠C=∠BAD=∠DAC=45°;AB=AC ,BD=DC=AD .3.如图,在△ABC 中,AB=AD=DC ,∠BAD=26°,求∠B 和 ∠C 的度数.D C A B答:∠B=77°,∠C=38.5°.(二)阅读课本,然后小结. Ⅳ.课时小结这节课我们主要探讨了等腰三角形的性质,并对性质作了简单的应用.等腰三角形是轴对称图形,它的两个底角相等(等边对等角),等腰三角形的对称轴是它顶角的平分线,并且它的顶角平分线既是底边上的中线,又是底边上的高.我们通过这节课的学习,首先就是要理解并掌握这些性质,并且能够灵活应用它们. Ⅴ.课后作业(一)习题13.3 第1、3、4、8题. (二)1.预习课本.2.预习提纲:等腰三角形的判定. Ⅵ.活动与探究如图,在△ABC 中,过C 作∠BAC 的平分线AD 的垂线,垂足为D ,DE ∥AB 交AC 于E .求证:AE=CE .EDCAB过程:通过分析、讨论,让学生进一步了解全等三角形的性质和判定,•等腰三角形的性质. 结果:证明:延长CD 交AB 的延长线于P ,如图,在△ADP 和△ADC 中,12,,,AD AD ADP ADC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ADP ≌△ADC .∴∠P=∠ACD .又∵DE ∥AP , ∴∠4=∠P . ∴∠4=∠ACD . ∴DE=EC .同理可证:AE=DE .∴AE=C E .板书设计一、设计方案作出一个等腰三角形 二、等腰三角形性质 1.等边对等角 2.三线合一EDCA B P三、例题分析四、随堂练习五、课时小结六、课后作业备课资料参考练习1.如果△ABC是轴对称图形,则它的对称轴一定是()A.某一条边上的高B.某一条边上的中线C.平分一角和这个角对边的直线D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°答案:1.C 2.C3. 已知等腰三角形的腰长比底边多2 cm,并且它的周长为16 cm.求这个等腰三角形的边长.解:设三角形的底边长为x cm,则其腰长为(x+2)cm,根据题意,得2(x+2)+x=16.解得x=4.所以,等腰三角形的三边长为4 cm、6 cm和6 cm.15.2.2 分式的加减教学目标明确分式混合运算的顺序,熟练地进行分式的混合运算.重点难点1.重点:熟练地进行分式的混合运算.2.难点:熟练地进行分式的混合运算.3.认知难点与突破方法教师强调进行分式混合运算时,要注意运算顺序,在没有括号的情况下,按从左到右的方向,先乘方,再乘除,然后加减. 有括号要按先小括号,再中括号,最后大括号的顺序.混合运算后的结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.分子或分母的系数是负数时,要把“-”号提到分式本身的前面.教学过程例、习题的意图分析1.教科书例7、例8是分式的混合运算. 分式的混合运算需要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意最后的结果要是最简分式或整式.2.教科书练习1:写出教科书问题3和问题4的计算结果.这道题与第一节课相呼应,也解决了本节引言中所列分式的计算,完整地解决了应用问题.二、课堂引入1.说出分数混合运算的顺序.2.教师指出分数的混合运算与分式的混合运算的顺序相同.三、例题讲解(教科书)例7 计算[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.(教科书)例8 计算:[分析] 这道题是分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序:先乘方,再乘除,然后加减,注意有括号先算括号内的,最后结果分子、分母要进行约分,注意运算的结果要是最简分式.四、随堂练习计算:(1) x x x x x 22)242(2+÷-+- (2))11()(b aa b b b a a -÷--- (3))2122()41223(2+--÷-+-a a a a五、课后练习1.计算:(1))1)(1(y x xy x y+--+(2)22242)44122(a aa a a a a a a a -÷-⋅+----+(3)zx yz xy xyz y x ++⋅++)111(2.计算24)2121(a a a ÷--+,并求出当=a -1的值.六、答案:四、(1)2x (2)b a ab- (3)3五、1.(1)22y x xy- (2)21-a (3)z 12.原式=422--a a ,当=a -1时,原式=-31.。

八年级数学上册《三角形全等的判定定理1》教案、教学设计

三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握SSS定理是本章节的重点,它不仅是判定两个三角形全等的基础,也是后续学习其他全等定理的基石。
-难点:学生需要理解三边相等是全等的充分条件,并能熟练运用这一条件进行证明。
-突破策略:通过动画演示和实际操作,让学生直观感受三边相等时三角形的动态变化过程,强化对定理的理解。
-通过这些基础题目,使学生加强对全等三角形判定定理的记忆,提高解题技能。
2.提高拓展题:
-布置一定数量的提高题,要求学生在掌握SSS定理的基础上,运用到更复杂的几何图形中。例如,给出一个等腰三角形,让学生利用SSS定理证明其底边上的中线等于腰长。
-通过提高题,培养学生面对复杂几何问题时的分析能力和推理能力。
二、学情分析
八年级的学生已经具备了一定的几何基础,掌握了三角形的基本概念和性质,能够识别和运用一些基本的几何图形。在此基础上,他们对全等三角形的概念会有一定的认知,但对于全等判定定理的深入理解和应用可能还较为陌生。学生在之前的学习中,可能已经接触过一些直观的全等变换,但对于如何严谨地证明两个三角形全等,还需进一步引导和培养。
八年级数学上册《三角形全等的判定定理1》教案、教学设计
一、教学目标
(一)知识与技能
1.理解并掌握三角形全等的定义,能够准确识别和描述全等三角形的性质。
2.掌握《三角形全等的判定定理1》(SSS定理),即若两个三角形的三边分别相等,则这两个三角形全等。
3.能够运用SSS定理证明两个三角形全等,并能在实际几何图形中识别和应用全等三角形。
在这个阶段,学生的逻辑思维能力正处于发展阶段,他们需要更多的实践和引导来形成严密的推理链条。此外,学生的合作学习能力、问题解决策略和自主学习能力也需进一步培养。因此,教学过程中应注重启发式教学,引导学生通过观察、思考、讨论等方式,主动探索全等判定定理的内涵和应用。

2019八年级数学上册 1.5《三角形全等的判定》教案 (新版)浙教版

《三角形全等的判定》教学目标1.经历探索三角形全等条件的过程,体会利用操作、归纳获得数学结论的过程.2.掌握三角形全等的判定条件.3.经历作图、比较、证明等探究过程,提高分析、作图、归纳、表达、逻辑推理等能力;并通过对知识方法的总结,培养反思的习惯,培养理性思维.4.通过对问题的共同探讨,培养学生的协作精神.教学重难点三角形全等条件的探索过程,掌握三角形全等的判定条件.教学过程一、复习引入带领学生复习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角分别对应相等.反之,这六个元素分别相等,这样的两个三角形一定全等.二、提出问题根据上面的结论,提出问题:两个三角形全等,是否一定需要六个条件呢?如果只满足上述六个条件中的一部分,是否也能保证两个三角形全等呢?组织学生进行讨论交流,经过学生逐步分析,各种情况逐渐明朗,进行交流予以汇总归纳.三、传授新知探究1:先任意画一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′,满足上述条件中的一个或两个,你画出的△A′B′C′与△ABC一定全等吗?再通过画图比较的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.探究2:先任意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA,把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让学生充分交流后,在教师的引导下画出个△A′B′C′,并通过比较得出结论:三边对应相等的两个三角形全等.例1.如下图△ABC是一个钢架,AB=AC,AD是连接点A与BC中点D的支架,求证△ABD≌△ACD.让学生独立思考后口头表达理由,由教师板演推理过程.探究3:已知任意△ABC,画△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A.教师点拨,学生边学边画图,观察这两个三角形是否全等.根据前面的操作,得到结论:两边和它们的夹角对应相等的两个三角形全等(可以简写成“边角边”或“SAS”).例2.如图,有—池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB.连接DE,那么量出DE的长就是A、B的距离,为什么?让学生充分思考后,书写推理过程,并说明每一步的依据.通过上述的学习,学生已经掌握了从探究中总结结论的方法,要求学生互相交流合作,由此得到结论:两角和它们的夹边分别相等的两个三角形全等.(可以简写成“角边角”或“ASA”).要求学生参照前面的例子,总结出:两角和其中一个角的对边分别相等的两个三角形全等(可以简写成“角角边”或“AAS”).四、随堂练习课本第27页的练习第1、2题,课本第30页的练习第1、2、3题,课本第33页的练习第1、2题,课本第35页的练习第1、2题.五、课堂小结这节课你学到了什么,请同学们总结出如何判定两个三角形全等的方法.六、课后作业课本第36页习题的第1、2、3、4、5题.。

浙教版八年级数学上册:1.5《三角形全等的判定》教案

浙教版八年级数学上册:1教学目的1.阅历探求三角形全等条件的进程,体会应用操作、归结取得数学结论的进程.2.掌握三角形全等的判定条件.3.阅历作图、比拟、证明等探求进程,提高剖析、作图、归结、表达、逻辑推理等才干;并经过对知识方法的总结,培育反思的习气,培育理性思想.4.经过对效果的共同讨论,培育先生的协作肉体.教学重难点三角形全等条件的探求进程,掌握三角形全等的判定条件.教学进程一、温习引入带抢先生温习全等三角形的定义及其性质,从而得出结论:全等三角形三条边对应相等,三个角区分对应相等.反之,这六个元素区分相等,这样的两个三角形一定全等.二、提出效果依据下面的结论,提出效果:两个三角形全等,能否一定需求六个条件呢?假设只满足上述六个条件中的一局部,能否也能保证两个三角形全等呢?组织先生停止讨论交流,经过先生逐渐剖析,各种状况逐渐阴暗,停止交流予以汇总归结.三、教授新知探求1:先恣意画一个△ABC,再画一个△A′B′C′,使△ABC与△A′B′C′,满足上述条件中的一个或两个,你画出的△A′B′C′与△ABC一定全等吗?再经过画图比拟的方式,得出结论:只给出一个或两个条件时,都不能保证所画出的三角形一定全等.探求2:先恣意画出一个△ABC,再画一个△A′B′C′,使A′B′=AB,B′C′=BC,C′A′=CA,把画好的△A′B′C′剪下,放到△ABC上,它们全等吗?让先生充沛交流后,在教员的引导下画出个△A′B′C′,并经过比拟得出结论:三边对应相等的两个三角形全等.例1.如以下图△ABC是一个钢架,AB=AC,AD是衔接点A与BC中点D的支架,求证△ABD≌△ACD.让先生独立思索先行动表达理由,由教员板演推理进程.探求3:恣意△ABC,画△A′B′C′,使A′B′=AB,A′C′=AC,∠A′=∠A.教员点拨,先生边学边画图,观察这两个三角形能否全等.依据前面的操作,失掉结论:两边和它们的夹角对应相等的两个三角形全等〔可以简写成〝边角边〞或〝SAS〞〕.例2.如图,有—池塘,要测池塘两端A、B的距离,可先在平地上取一个可以直接抵达A和B的点C,衔接AC并延伸到D,使CD=CA,衔接BC并延伸到E,使CE=CB.衔接DE,那么量出DE的长就是A、B的距离,为什么?让先生充沛思索后,书写推理进程,并说明每一步的依据.经过上述的学习,先生曾经掌握了从探求中总结结论的方法,要求先生相互交流协作,由此失掉结论:两角和它们的夹边区分相等的两个三角形全等.〔可以简写成〝角边角〞或〝ASA〞〕.要求先生参照前面的例子,总结出:两角和其中一个角的对边区分相等的两个三角形全等〔可以简写成〝角角边〞或〝AAS〞〕.四、随堂练习课本第27页的练习第1、2题,课本第30页的练习第1、2、3题,课本第33页的练习第1、2题,课本第35页的练习第1、2题.五、课堂小结这节课你学到了什么,请同窗们总结出如何判定两个三角形全等的方法.六、课后作业课本第36页习题的第1、2、3、4、5题.。

人教版八上《三角形全等的判定》word教案

求证:△ABD≌△ACD
证明:∵D是BC中点(已知)……(1)准备条件
∴BD=CD(中点定义)
在△ABD和△ACD中,……(2)指明范围
……(3)列齐条件
∴△ABD≌△ACD(SSS)……(4)得出结论
提问:此题还能得到哪些结论?①三组角对应相等;②AD平分∠BAC;③AD⊥BC.
注意:1.证明三角形全等的书写格式. 2.两个三角形的对应顶点应写在对应位置上.
(2)已知:∠AOB.求作:∠A’O’B’,使∠A’O’B’=∠AOB.
2、书:P8练习,P15~16 1、2、9,P27 8
课后反馈
4、证明分别属于两个三角形的线段相等或角相等的问题,常常通过证明这两个三角形全等来解决.
四、课堂练习
1、已知:如图,AD=BE,AC=BC,CD=CE.
求证:△AEC≌△BDC
证明: 即
在 和 中
(SSS)*还能得到什么结论(相等关系)?
2、已知:如图,AB=DC,AD=BC.
求证:(1)∠A=∠C;
课题
§11.2三角形全等的判定(一)
时间
教学目的
1、掌握两个三角形全等的判定方法SSS.
2、掌握尺规作图:已知三边作三角形.
3、掌握用SSS的判定证明两个三角形全等,掌握证明三角形全等的书写格式.
4、通过探索三角形全等的判定过程,体会探索研究问题的方法,培养分类讨论的数学思想.
教学重点
探索两个三角形全等的判定SSS,用SSS的方法证明两个三角形全等.
AB=A’B’,AC=A’C’,BC=B’C’,∠A=∠A’,∠B=∠B’,∠C=∠C’这六个条件,能保证这两个三角形全等吗?(能)
提问:两个三角形全等,是否一定需要六个件?如果只满足上述六个条件的一部分,是否也能保证两个三角形全等呢?(学生讨论各种情况,并加以总结)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个原理其实要用到我们今天要学习的知识(揭示课题
二、探索新知
1.猜一猜:
教师演示:把两根吸管的一端用图钉固定在一起。
设置问题:
1问: 如果三角形的两边确定,三 角形的形状能确定吗?
(教师动手演示)
②如果将两条木条之 间的夹角(即∠BAC)大小固定,那么
△ABC能唯一确定吗?
初步结论:如果三角形的两条边和它的夹角确定 ,则三角形的形状也就确定了。
解后反思:①分析题意时,应注意由条件所可能产生的结论,如:已知垂直,可得90°的角。
②结合图形,善于寻找出图中“天然”的条件,如:对顶角、公共边等。
教师引导学生观察直线l与线段AB之间的关系,小组交流、讨论,教师引导并归纳出:
垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线。
如:上图中,直线l是线段AB的垂直平分线。
观察图形思考:若在直线l上再任取一点P,则PA与PB相等吗?
给学生充分的时间讨论,归纳得出:
线段垂直平分线上的点到线段两端点的距离 相等。
几何语言:∵点P在线段AB的中垂线上
∴PA=PB
阐明:所得结论是说明两线段相等的一种重要方法。
板书设计:
作业安排:
有一个角和夹这个角的两边对应相等的两个三角形全等(简写成“边角边”或“SAS”)。
(教师强调:必须是“对应相等”。角必须是两边的夹角)
几何语言:如图,若∠ABC=∠A′B′C′,AB=A′B′,BC=B′C′则△ABC≌△A′B′C′。
问题:如果该角不是两边的夹角,而是其中一条边的对角,则所得的三角形会不会全等呢?
教 学过程
备注
一、创设情境
某市郊的一空旷地上有一较大土丘,经考古专家判断很有可能是一座有价值的古墓。但是用皮尺不能直接量出A、B两点之间的距离。后来考古学家想出了这样一个方案:他们在地面上选择了点O,D,使OA=OC,OB=OD,且点A,O,C和点B,O,D都在一条直线上,量出DC=18米,于是就知道AB的距离了,你想知道为什么吗?
2.画一画:(带着以上两个问题,学生小组合作动手实验,验证猜想。)
(1)、用量角器和刻度尺画△ABC,使A B=2cm,BC=2.5cm,∠ABC=60°学生动手画图,然后剪下来,再与其他同学进行比较。(2)、将∠ABC的度数换成20°,再试一试,情况会怎么样?
通过“猜一猜”和“做一做”引导学生讨论、交流并归纳得出:
(3)画△ABC,使AB=2cm,BC=2.5cm,∠ACB=40°
学生动手画图,然后剪下来,再与其他同学进行比较。
(学生画出的可能有锐角三角形、钝角三角形。)
教师利用投影仪显示,并与学生一起归纳得出:
两边及其一边所对的角对应 相等时,两个三角形不一定全等。
阶段性小结:“边角边”中的角必须是对应相等的两边的夹角。
3 .学生解决导入时提出的问题。
4.师生一起归纳:判断两个三角形全等到目前为止有“SSS”、“SAS”。
三 、体验转化
1、解决节前提出的问题(请个别学生叙述,教师板书规范解题步骤。)
2. 做一做:教科书第30页。
3、如图:已知AB=AC,BD和CE交于G,AG平分∠BAC,
①:说明△ABG≌△ACG
三角形全等的判定
教学目标Байду номын сангаас
1.探索三角形全等的条件之一“SAS”,并能应用它来判定两个三 角形全等。
2.经历探索三角形全等条件的过程,体会利用操作归纳获得数学结论的方法。
3.培养学生合作探究的学习意识,增强学生的自信心。
教学重点
掌握三角形全等的条件“SAS”,并能用它来判定两个三角形全等。
教学难点
探索三角形全等的条件“SAS”及应用。
2试猜想图中还有哪些角相等?并说明理由。
3.例4:如图,直线⊥线段AB于点O,且OA=OB。点C是直线上任意一点,说明CA=CB的理由。
分析(1)要说明CA=CB,你有什么方法?(学生可能会想到△COA≌△COB)
(2)要说明△COA≌△COB,需要什么条件?(由学生讨论,个别学生回答,教师将产生的结论标 在 图形上,以使学生更直观的理解。)请学生板书,教师及时纠正。
相关文档
最新文档