2019春八年级数学下册 第二十章 数据的分析复习教案 (新版)新人教版
【人教版】2019春八年级数学下册教案第二十章复习

第二十章数据的分析教学目标【知识与技能】:了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理。
【过程与方法】:经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力。
【情感态度与价值观】:培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值。
教学重点与难点【重点】:应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容。
【难点】:方差概念的理解和应用。
教学过程第一步:回顾交流、系统跃进知识线索:平均数中位数众数极差方差集中趋势波动大小数字特征应用本章思想:平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。
(定义法)且f 1+f 2+……+f k =n (加权法)当一组数据中个别数据与其它数据差异较大时,可求出其中位数来观察集中趋势;理解当一组数据中不少数据多次重复出现时,可通过众数观察其集中趋势,理解另一类是反映数据波动大小(即离散趋势)的特征数——极差、方差。
设有n 个数据n x x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用 ])()()[(1222212x x x x x x nx n -++-+-=第二步:联系实际 主动探索问题1、已知;某学校六年级学生的身高的一个样本如下(单位:cm ) 158 162 146 151 153 168 159 154 167 159 167 166 159 154 160 162 164 160 157 149 (1)试填写下面的频数分布表,并绘制相应的频数颁布直方图(2)估算这个年段学生的平均身高。
(3)求出这个年段学生的身高的极差。
新人教版八年级数学下册第20章数据的分析教案

第二十章数据的分析数据的代表平均数(第一课时)一、教学目标:1、使学生理解数据的权和加权平均数的概念2、使学生掌握加权平均数的计算方法3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:1、重点:会求加权平均数2、难点:对“权”的理解三、例习题意图分析1、教材P124的问题及讨论栏目在教学中起到的作用。
(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。
(2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。
在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。
(3)、客观上,教材P124的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。
(4)、P125的云朵其实是复习平均数定义,小方块则强调了权意义。
2、教材P125例1的作用如下:(1)、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。
(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。
(3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。
3、教材P126例2的作用如下:(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。
(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。
(3)、它也充分体现了统计知识在实际生活中的广泛应用。
四、课堂引入:1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
人教版八年级下册第二十章数据的分析(教案)

二、核心素养目标
1.培养学生运用数学语言表达现实问题的能力,增强数据意识,提高数据分析素养;
2.培养学生掌握数据处理的基本方法,提高解决问题的能力,增强数学应用意识;
3.培养学生通过合作探究,发展逻辑思维和批判性思维,提高数学推理和论证能力;
4.培养学生运用数学知识和方法解决实际问题,增强数学建模和数据分析能力;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解平均数、中位数、众数的基本概念。平均数是所有数值加总后除以数值的个数,它能够反映数据的集中趋势;中位数是将一组数据从小到大排列后位于中间的数,它对极端值的影响较小;众数是一组数据中出现次数最多的数,它适用于描述分类数据。这些统计量在描述数据时各有优势,是数据分析的重要工具。
-统计图、表的绘制和应用:通过直观的图形和表格展示数据,提高学生的数据分析能力。
举例:在讲解平均数时,强调其受极端值影响较大的特点;在介绍中位数和众数时,通过实例说明它们在描述数据集中趋势时的优势。
2.教学难点
-平均数、中位数、众数在实际问题中的应用:学生需要学会根据数据特点选择合适的描述指标;
-极差、方差的计算及其在数据分析中的应用:理解这些统计量的含义,并能正确应用于实际问题;
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了如何通过计算平均数、中位数和众数来分析一组考试成绩,以及这些统计量如何帮助我们更全面地理解数据。
3.重点难点解析:在讲授过程中,我会特别强调平均数受极端值影响较大,而中位数和众数则相对稳健这一特点。对于极差和方差的计算及应用,我会通过具体数据和图表来帮助大家理解它们在描述数据离散程度方面的作用。
人教版八年级下册第二十章数据的分析(教案)
八下 第二十章《数据的分析》知识点教案、习题讲解分析教案与复习教案 【人教版初中数学】

第二十章《数据的分析》《知识点教案》课标要求:本章主要研究平均数(主要是加权平均数)、中位数、众数以及极差、方差等统计量的统计意义,学习如何利用这些统计量分析数据的集中趋势和离散情况,并通过研究如何用样本的平均数和方差估计总体的平均数和方差,进一步体会用样本估计总体的思想.单元\章节内容分析:全章共分三节:20.1数据的集中趋势.本节是研究代表数据集中趋势的统计量:平均数、中位数和众数。
本节中,教科书首先给出一个实际问题,通过分析解决这个实际问题,引进加权平均数的概念。
为了突出“权”的作用和意义,教科书通过两个例题,从不同方面体现“权”的作用.接下去,教科书对加权平均数进行扩展,包括如何将算数平均数与加权平均数统一起来,如何求区间分组的数据的加权平均数,如何利用计算器的统计功能求平均数,如何利用样本平均数估计总体平均数的问题等.对于中位数和众数,教科书通过几个具体实例,研究了它们的统计意义.在本节最后,教科书通过一个具体实例,研究了综合利用平均数、中位数和众数解决问题的例子,并对这三种统计量进行了概括总结,突出了它们各自的统计意义和各自的特征.20.2数据的波动本节是研究刻画数据波动程度的统计量:极差和方差.教科书首先利用温差的例子研究了极差的统计意义.方差是统计中常用的一种刻画数据离散程度的统计量,教科书对方差进行了比较详细的研究.首先通过一个实际问题提出对两组数据的波动情况的研究,并画出散点图直观地反映数据的波动情况,在此基础上,教科书引进了利用方差刻画数据离散程度的方法,介绍了方差的公式,并从方差公式的结构上分析了方差是如何刻画数据的波动的.随后,又介绍了利用计算器的统计功能求方差的方法.本节最后,教科书利用所学知识解决本章前言中提出的问题,并研究了用样本方差估计总体方差的问题.20.3课题学习体质健康测试中的数据分析.教科书在最后一节安排了一个具有一定综合性和实践性的“课题学习”.这个“课题学习”选用了与学生生活联系密切的体质健康问题.由于本章是统计部分的最后一章,因此这个课题学习的综合性比前面两章统计中的课题学习更强。
新人教版八年级数学下册《二十章 数据的分析 数学活动》教案_8

第二十章“数据的分析”数学活动教学设计一、活动内容:活动2二、活动内容解析:本活动通过小组活动测量同学每分脉搏次数,进而计算出小组数据的平均数、中位数、众数、方差,交流得出样本正常心脏心率次数,对照资料,体会用样本估计总体的思想。
本活动既巩固了样本平均数、中位数、众数、方差的计算方法,更加深学生对用样本估计总体思想的体验。
三、活动目标:通过活动,加深对数学学以致用的理解和用样本估计总体思想的应用。
同时培养学生小组合作,进一步增强计算能力。
四、课前任务:1、指导学生分组,使男、女生分配均匀,便于样本的合理性,代表性。
同时分工明确,有效开展活动。
2、指导学生学会测量自己脉搏的方法。
3、查找资料,了解心率的知识,明确正常心脏的心率次数。
五、具体活动过程:1、各小组分别测量本组同学的每分脉搏次数(统一秒表计时),组长做好记录。
2、各小组合作计算本组数据的平均数、中位数、众数、方差。
3、小组代表汇报本小组数据的平均数、中位数、众数、方差。
4、交流汇报通过样本平均数、方差估计总体平均数的方法。
5、汇报交流收集的资料,了解正常心跳范围。
6、谈谈对用样本估计总体的感受。
7.深化理解,学以致用某校八年级420名学生参加植树活动,随机调查了其中50名学生植树的数量,并根据数据绘制了如下条形统计图,估计该校八年级学生此次植树活动约植树棵.8、巩固检测某养鱼户搞池塘养鱼,头一年放养鱼20 000尾,其成活率约为70%,在秋季捕捞时,捞出10尾鱼,称得每尾鱼的重量如下:(单位:千克)0.8;0.9;1.2;1.3;0.8;0.9;1.1;1.0;1.2;0.8.(1)根据样本平均数估计这塘鱼的产量是多少千克?(2)如果把这塘鱼全部卖掉,某市场售价为每千克 4元,那么能收入多少元?除去当年的投资成本 16 000元,第一年纯收入多少元?。
人教版八年级下册第二十章数据的分析全章复习优秀教学案例

(四)反思与评价
1.引导学生对学习过程进行反思,总结自己在数据分析和统计方法应用方面的优点和不足。例如,可以让学生回顾自己在解决问题时的思考过程,总结运用所学知识的方法和技巧。
(二)过程与方法
1.通过生活实2.引导学生运用图表和统计方法对数据进行分析,培养学生解决实际问题的能力。
3.鼓励学生参与小组讨论和合作,培养学生的团队协作能力和沟通表达能力。
4.指导学生进行课后练习和自主学习,培养学生自主探索和解决问题的能力。
3.鼓励与激励:对学生的努力和进步给予肯定和鼓励,激发学生的学习兴趣和自信心。例如:“你们在讨论和解决问题时表现出了很好的团队协作能力和数据分析能力,继续加油!”
五、案例亮点
1.生活情境的引入:通过引入实际生活中的数据问题,激发学生的学习兴趣和好奇心,使学生感受到数据分析在生活中的重要性。例如,以国家人口普查数据为例,引发学生对数据分析的思考,让学生了解数据分析在了解我国人口状况方面的作用。
2.设计一系列有针对性的问题,引导学生逐步深入地探讨数据分析和统计方法的应用。例如,在分析成绩分布时,可以提出以下问题:“成绩分布呈现出怎样的形态?如何用统计量来描述这种分布?”
3.鼓励学生自主探究和解决问题,培养学生的独立思考和解决问题的能力。在学生解决问题的过程中,给予适当的指导和帮助,引导学生运用所学知识。
(三)情感态度与价值观
1.培养学生对数据分析的兴趣和好奇心,使学生感受到数据分析在生活中的重要性。
2.培养学生尊重数据、实事求是的态度,学会从数据中寻找答案和解决问题。
3.培养学生敢于面对困难和挑战的勇气,培养坚持不懈、积极进取的精神。
人教版八年级下册第二十章:数据的分析全章复习优秀教学案例

(一)知识与技能
1.学生能够理解数据的收集、整理、描述和分析的基本方法,掌握频数、频率、众数、中位数、平均数等统计量的计算和应用。
2.学生能够运用图表和统计量对数据进行合理的展示和分析,从而解决实际问题,提高数据处理和分析能力。
3.学生能够熟练运用列表、图表、统计量等工具,对数据的分布特征、集中趋势和离散程度进行描述,提升数据解读和分析能力。
在八年级下册第二十章的教学中,学生需要掌握数据的收集、整理、描述和分析等基本方法,并能运用这些方法解决实际问题。基于此,我将以课程标准为导向,充分考虑学生的认知水平和生活经验,设计富有挑战性和趣味性的教学活动,激发学生的学习兴趣,提高他们的主动参与度。
为了确保教学案例的实用性和有效性,我将结合教材内容,突出重点和难点,注重知识点的相互联系和实际应用。同时,通过合理的教学安排和课堂管理,确保学生能够在复习过程中充分巩固所学知识,提高数据分析能力。
人教版八年级下册第二十章:数据的分析全章复习优秀教学案例
一、案例背景
本教学案例以人教版八年级下册第二十章“数据的分析”全章复习为主题,旨在通过具有针对性的教学方法和策略,帮助学生巩固和提升对数据分析知识的理解和应用能力。在案例中,我将结合学科特点和课程内容,设计一系列实用性强的教学活动,以适应学生的知识深度和兴趣需求。
2.学生能够在解决问题的过程中,体验到合作、交流、分享的乐趣,培养团队协作和沟通能力。
3.学生能够理解到学习数据分析不仅能够提高自己的思维能力,还能够为将来的生活和工作中解决问题提供有力的支持,培养学习的自信心。
4.学生能够在学习过程中,遵循规则、尊重事实,培养诚实守信、勇于担当的品质。
三、教学策略
(一)情景创设
1.教师可以通过引入真实的生活情境,如商场打折、考试分数统计等,激发学生的学习兴趣,引导学生主动参与到数据分析的学习中。
人教版八下数学第20章《数据的分析》复习教案+学案

人教版八下数学第20章《数据的分析》复习教案【思维导图】【教学目标】知识与技能目标了解平均数、众数、中位数、极差、方差有关概念,掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题.过程与方法目标能结合具体情境发现并提出问题,逐步具有观察、猜想、推理、归纳和合作学习能力.情感、态度与价值观目标通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.【教学重点】掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,能进行计算和解决生产、生活中的有关问题.【教学难点】选择合适的统计量表示数据的集中趋势.【教学准备】教师准备:教学中出示的例题和图片.学生准备:复习平均数、中位数、众数,并完成本节学案中的自主学习内容. 【知识梳理与建构】专题一平均数【专题分析】平均数的计算考查频率较高,题型以选择题、填空题为主,也涉及解答题,考查形式有:①直接给一组数据或表格中的数据求平均数;②一组数据中含有未知数,已知某个数据代表求其他数据代表.例1若7名学生的体重(单位:kg)分别是:40,42,43,45,47,47,58,则这组数据的平均数是()A.44B.45C.46D.47解析:这组数据共有7个,可以采用简化公式进行计算.将这组数据的每一个数都减去40,得到一组新数据:0,2,3,5,7,7,18,这组新数据的平均数为6,所以原数据的平均数为40+6=46.故选C.[归纳总结]对于由n个数据x1,x2,…,x n组成的一组数据,如果将这组数据中的每一个数据都减去同一个常数a,这组新数据的平均数为',那么原数据的平均数为='+a.对于由n个数据x1,x2,…,x n组成的一组数据,如果x1出现了f1次,x2出现了f2次,…,x k出现了f k次,其中f1+f2+…+f k=n,那么,这组数据的平均数可用加权平均数公式=(f1x1+f2x2+…+f k x k)进行计算.【跟踪训练1】如图所示的是小芹6月1日~7日每天的自主学习时间统计图,则小芹这七天平均每天的自主学习时间是()A.1小时B.1.5小时C.2小时D.3小时解析:先从折线统计图中获取数据信息,然后用这组数据的和除以数据的个数.(2+1+1+1+1+1.5+3)÷7=1.5.故选B.专题二中位数和众数【专题分析】中位数和众数的计算考查频率较高,题型大多以选择题、填空题为主,考查形式有:①直接给出一组数据或表格中的数据求中位数和众数;②一组数据中含有未知数,已知某个数据代表求其他数据代表.例2数据1,2,4,0,5,3,5,中位数和众数分别是()A.3 和2B.3和3C.0和5D.3和5解析:这7个数据按从小到大的顺序排列,位于第4个的是3,故中位数是3;这7个数据中出现次数最多的数据是5,一共出现了2次,所以众数是5.故选D.[规律方法]找中位数要把数据按从小到大(或从大到小)的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数,当数据个数为奇数时,中位数即为中间的一个,当数据个数为偶数时,中位数就是中间两个数的平均数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【跟踪训练2】空气质量状况已引起全社会的广泛关注,某市统计了2013年每月空气质量达到良好以上的天数,整理后制成如下折线统计图和扇形统计图.某市2013年每月空气质量良好以上天数折线统计图某市2013年每月空气质量良好以上天数扇形统计图根据以上信息解答下列问题:(1)该市2013年每月空气质量达到良好以上天数的中位数是天,众数是天;(2)求扇形统计图中扇形A的圆心角的度数;(3)根据以上统计图提供的信息,请你简要分析该市的空气质量状况.(字数不超过30字)解析:(1)将这组数据按照一定的顺序排列,取中间两个数的平均数就是中位数;取次数出现最多的那个数就是众数;(2)20天以上的一共有两个数据,360°×=60°,就是扇形A的圆心角的度数;(3)根据题意只要回答正确就可以.解:(1)由题意可得数据为8,9,12,13,13,13,15,16,17,19,21,21,最中间的是13,15,故该市2013年每月空气质量达到良好以上天数的中位数是14天,众数是13天. (2)360°×=60°,答:扇形A的圆心角的度数是60°.(3)答案不唯一,合理即可.月空气质量良好以上的天数在10~20天的占了多数.专题三方差【专题分析】方差是从不同层面反映一组数据的特征数,在解决问题时,准确掌握这些特征数的概念、对应公式,以及灵活运用公式是关键.题型以选择题、填空题为主,考查形式有:①直接给出一组数据或表格中的数据求方差;②根据比较方差值的大小,判定稳定性,解决实际问题.例1一组数据3,4,5,x,7,8的平均数为6,则这组数据的方差是.解析:可以先根据平均数求出x的值,然后根据方差公式求解.∵3,4,5,x,7,8的平均数为6,∴x=9.∴方差为s2=×[(3-6)2+(4-6)2+(5-6)2+(7-6)2+(8-6)2+(9-6)2]=.故填.[归纳总结]数据中有未知数时,一般先求出这个未知数,再根据方差公式计算即可.若一组数据是由另一组数据逐个加几或减几得到的,则这两组数据的方差相同.【跟踪训练3】我市射击队为了从甲、乙两名运动员中选出一名运动员参加省运会比赛,组织了选拔测试,两人分别进行了五次射击,成绩(单位:环)如下:甲10 9 8 9 9乙10 8 9 8 10则应选派运动员参加省运会比赛.〔解析〕甲的平均数是×(10+9+8+9+9)=9,乙的平均数是×(10+8+9+8+10)=9,甲的方差是=×[(10-9)2+(9-9)2+(8-9)2+(9-9)2+(9-9)2]=0.4,乙的方差是=×[(10-9)2+(8-9)2+(9-9)2+(8-9)2+(10-9)2]=0.8,∵<,∴甲的成绩稳定,∴应选择甲运动员参加省运会比赛.故填甲.专题四用样本估计总体【专题知识】一般情况下,如果总体的容量较大,不便分析其数据特征,我们可以通过随机抽取一定的样本,通过样本的数据特征来对总体的数据特征进行估计,但难免有一定误差.本章主要利用平均数、方差的公式,通过计算样本的平均数、方差,估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.【专题分析】考查用样本估计总体的题目,选择题、填空题或解答题的形式均有可能出现,一般在3~5分.例4杨静在承包的果园里种植了100棵樱桃树,今年已经进入收获期,从中任意采摘了6棵树上的樱桃,分别称得每棵树的产量(单位:千克)如下表:序号 1 2 3 4 5 6产量17 21 19 18 20 19设这组数据的中位数为m,樱桃的总产量为n,则m,n分别为()A.18,2000B.19,1900C.18.5,1900D.19,1850解析:把数据17,21,19,18,20,19按从小到大的顺序排列为17,18,19,19,20,21,∴中位数为19,平均数为==19,即每棵樱桃树的产量约为19千克,∴樱桃的总产量约为19×100=1900千克.故选B.[易错点津]在求中位数时容易出现的错误是没有把数据按大小顺序排列,而是直接求了表格中从左到右中间两个数的平均数.【跟踪训练4】据省环保网发布的消息,吉首市空气质量评价连续两年居全省14个省辖市城市之首,下表是吉首市2014年5月份前10天的空气质量指数统计表.2014年5月1日~10日空气质量指数(AQI)情况(表一)日期1日2日3日4日5日6日7日8日9日10日空气质量指数(AQI) 28 38 94 53 63 149 53 90 84 35空气质量污染指数标准(AQI)(表二)污染指数等级0~50 优51~100 良101~150 轻微污染151~200 轻度污染(1)请你计算这10天吉首市空气质量指数的平均数,并据此判断这10天吉首市空气质量平均状况属于哪个等级;(用科学计算器计算或笔算,结果保留整数)(2)按规定,当空气质量指数AQI≤100时,空气质量才算“达标”,请你根据表(一)和表(二)所提供的信息,估计今年(365天)吉首市空气质量“达标”的天数.(结果保留整数)解析:(1)算出10天空气质量指数的平均数并根据对应表作出判断即可;(2)先统计出样本中“达标”的天数并算出达标率,再算出今年(365天)吉首市空气质量“达标”的天数即可.解:(1)=×(28+38+94+53+63+149+53+90+84+35)=68.7≈69,这10天空气质量平均状况属于良.(2)∵这10天中“达标”的天数为9天,∴365×=328.5≈329,∴今年吉首市空气质量“达标”的天数为329天.专题五统计思想【专题知识】统计学是用方法论科学,在所有涉及实质性现象的领域中,统计方法都发挥着越来越重要的作用.这些统计方法具有内在的联系和逻辑关系,在认识事物时存在比较通用的模式,这些认识模式是统计学的基本思想.本章中,统计思想就是通过数据收集、数据处理和数据分析,更合理地解决实际问题.【专题分析】统计学是与数据打交道的一门学科,研究如何搜集、整理、计算和分析数据,然后从中找出一些规律,统计思想是用统计知识解决现实生活中涉及数据的问题.题型可以以多种形式出现.例5 某工厂有220名员工,财务科要了解员工收入情况.现在抽测了10名员工的本月收入,结果如下:(单位:元)166001540015100167001620015800158001600016200 16200(1)这组数据的中位数和众数分别是多少?(2)员工的月平均收入是多少?(3)估算一下财务科本月应准备多少钱发工资.解:(1)将这组数据按照从小到大的顺序排列为15100,15400,15800,15800,16000, 16200,16200,16200,16600,16700,处于中间位置的两个数为16000和16200,故中位数为16100.该组数据中,出现次数最多的数为16200,故众数是16200.(2)员工的月平均收入为(15100×1+15400×1+15800×2+16000×1+16200×3+16600×1+16700×1)÷10=16000(元).(3)从(2)得到员工的月平均收入为16000元,工厂共有220名员工,所以估计财务科本月应准备16000×220=3520000(元).【针对训练5】请根据所给信息,帮助小颖同学完成她的调查报告.2013年4月叶邑八年级学生每天干家务活平均时间的调查报告调查目的了解八年级学生每天干家务活的平均时间调查内容叶邑中学八年级学生干家务活的平均时间调查方式抽样调查调查步骤1.数据的收集:(1)在回龙八年级每班随机调查5名学生(2)统计这些学生2013年4月每天干家务活的平均时间(单位: min),结果如下(其中A表示10 min,B表示20 min,C表示30 min)B A A B B B B AC B B A B B CA B A A C A B B C B A B B A C2.数据的处理:以统计图的形式呈现上述统计结果,请补全统计图3.数据的分析:列式计算随机调查的学生每天干家务活平均时间的平均数(结果保留整数)调查结论叶邑中学八年级共有240名学生,其中大约有名学生每天干家务活的平均时间是20 min解析:先从表格中得出平均每天干家务活的时间为30 min的有5名学生,从而补全统计图,再根据A表示10 min,B表示20 min,C表示30 min和学生数即可求出随机调查的学生每天干家务活的平均时间的平均数,最后根据每天干家务活的平均时间是20 min所占的百分比乘240,即可得出大约每天干家务活的平均时间是20 min的学生数.解:从表中可以看出C的学生数是5人,如图所示,每天干家务活平均时间的平均数是(10×10+15×20+5×30)÷30≈18(min),根据题意得240×=120(人),回龙八年级共有240名学生,其中大约有120名学生每天干家务活的平均时间是20 min.专题六方程思想【专题分析】本章中运用方程思想主要是将一组数据中的未知数据用x,y表示,然后根据已知条件列出方程或方程组求解.例6 八(1)班五位同学参加学校举办的数学素养竞赛.试卷中共有20道题,规定每题答对得5分,答错扣2分,未答得0分.赛后A,B,C,D,E五位同学对照评分标准回忆并记录了自己的答题情况(E同学只记得有7道题未答),具体如下表:参赛同学答对题数答错题数未答题数A19 0 1B17 2 1C15 2 3D17 1 2E//7(1)根据以上信息,求A,B,C,D四位同学成绩的平均分;(2)最后获知A,B,C,D,E五位同学的成绩分别是95分,81分,64分,83分,58分.①求E同学的答对题数和答错题数;②经计算A,B,C,D四位同学实际成绩的平均分是80.75分,与(1)中算得的平均分不相符,发现是其中一位同学记错了自己的答题情况.请指出哪位同学记错了,并写出他的实际答题情况(直接写出答案即可).解析:本题考查了统计知识及二元一次方程(组)的综合应用,解题的关键是能根据题目的条件建立方程或方程组求解实际问题.(1)根据得分规则分别求得4名学生的成绩,再求平均数.(2)①根据E同学的总分和得分规则利用方程组或方程求得E同学的答对题数和答错题数;②根据题目中出现的表格计算A,B,C,D四位同学的得分,与最后获知的A,B,C,D四位同学的成绩进行比较确定记错答题情况的同学,最后求得他的实际答对题数和答错题数.解:(1)A同学的成绩为5×19-2×0+0×1=95(分),B同学的成绩为5×17-2×2+0×1=81(分),C同学的成绩为5×15-2×2+0×3=71(分),D同学的成绩为5×17-2×1+0×2=83(分).A,B,C,D四位同学成绩的平均分为=82.5(分).答:A,B,C,D四位同学成绩的平均分为82.5分.(2)①设E同学答对x题,答错y题.由题意,得解得答:E同学答对12题,答错1题.②C同学,他实际答对14题,答错3题,未答3题.[归纳总结]根据得分规则及学生答题情况建立方程或方程组解决问题.【跟踪训练6】下表是某校九年级(1)班30名学生期末考试的数学成绩表(已污损):成绩/分50 60 70 80 90 100人数/人 2 5 7 3已知该班学生期末考试的数学成绩的平均分是76分.(1)求该班成绩为80分和90分的各有多少人;(2)设该班30名学生数学成绩的众数为a,中位数为b,求a+b的值.解析:(1)根据已知条件,利用平均数的计算公式列出方程组求解即可.(2)根据众数和中位数的概念确定这组数据的众数和中位数,即可求出a +b 的值. 解:(1)设该班有x 人得80分,有y 人得90分,根据题意和平均数的意义,可列出方程组为:⎪⎩⎪⎨⎧----=+=⨯+++⨯+⨯+⨯375230763031009080770560250y x y x , 整理得⎩⎨⎧=+=+1310998y x y x ,解得⎩⎨⎧==58y x 因此该班成绩为80分的学生有8人,成绩为90分的学生有5人.(2)分析表格中的数据可知该班30名学生数学成绩的众数为80分,中位数(按从小到大排序后第15个数和第16个数的平均数)为80分,所以a +b =80+80=160.专题七 数形结合思想【专题知识】数形结合是指将数(或量)与形(图形)结合起来对问题进行研究,本章中许多题目的信息都是通过统计图给出的,有些问题将数据表现在图上,更能直观地反映数据的特点,解决此类题目我们要把抽象的数据和直观的图形结合起来,使问题达到“化难为易、化抽象为直观”.【专题分析】统计中的题目大部分都是以图表形式提供信息,所以涉及运用数形结合思想较广泛.可以以选择题、填空题或解答题的形式出现.例7 某高中学校为使高一新生入校后及时穿上合身的校服,现提前对某校九年级三班学生所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如下两个不完整的统计图(校服型号以身高作为标准,共分为6种型号).根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿175型号校服的学生有多少?(2)在条形统计图中,请把空缺的部分补充完整;(3)在扇形统计图中,请计算185型号校服所对应扇形圆心角的大小;(4)求该班学生所穿校服型号的众数和中位数.解析: (1)由条形统计图确定165型号的人数,由扇形统计图确定165型号占的百分比,得出总人数,再用总人数乘175型号占的百分比求出穿175型号校服的学生人数;(2)根据人数把条形统计图补充完整;(3)由条形统计图得出穿185型号校服的人数,再计算出百分比,用360°乘百分比求出圆心角的度数;(4)观察各个数据,出现次数最多的是众数,排序后中间的两个数据的平均数是中位数.解:(1)15÷30%=50(人),50×20%=10(人),即该班共有50名学生,其中穿175型号校服的学生有10人.(2)补充如下:(3)圆心角的度数为360°×=14.4°.(4)165和170出现的次数最多,都是15次,故众数是165和170;共50个数据,第25个和第26个数据都是170,故中位数是170.[解题策略]本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.除此之外,此题还需要准确掌握平均数、中位数、众数的概念及计算方法.【跟踪训练7】在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是() A.众数是90 B.中位数是90 C.平均数是90 D.极差是15解析:根据折线统计图,可以发现数据80出现次数是1,数据85出现次数是2,数据90 出现次数是5,数据95 出现次数是2,按照数据由小到大的次数累加确定中位数,根据次数出现多少判断众数,结合平均数计算方法确定平均数,极差用最大数据减去最小数据即可.易于看出众数是90,A正确,中位数是90,B正确,极差是95-80=15,D正确,运用排除法C错误,也可进一步计算平均数为(80×1+85×2+90×5+95×2)÷10=89,C错误.故选C.人教版八下数学第20章《数据的分析》复习学案【学习目标】知识与技能了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理.过程与方法经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力.情感态度与价值观培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值.【学习重点】应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容.【学习难点】方差概念的理解和应用.【自主学习】Step 1:梳理知识夯实基础知识线索:平均数中位数众数极差方差集中趋势波动大小数字特征应用本章思想:平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二十章数据的分析
教学目标
【知识与技能】:了解总体、个体、样本等概念,理解统计的基本思想是用样本的特征去估计总体的特征,会用平均数、中位数、众数、极差、方差进行数据处理。
【过程与方法】:经历探索数据的收集、整理、分析过程,在活动中发展学生的统计意识和数据处理的方法与能力。
【情感态度与价值观】:培养合作交流的意识与能力,提高解决简单的实际问题能力,形成一定的数据意识和解决问题的能力,体会特征数据的应用价值。
教学重点与难点
【重点】:应用样本数字特征估计总体的相应特征,处理实际问题中的统计内容。
【难点】:方差概念的理解和应用。
教学过程
第一步:回顾交流、系统跃进
知识线索:
平均数中位数众数极差方差
集中趋势波动大小
数字特征
应用
本章思想:
平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。
(定义法)
且f 1+f 2+……+f k =n (加权法)
当一组数据中个别数据与其它数据差异较大时,可求出其中位数来观察集中趋势;理解当一组数据中不少数据多次重复出现时,可通过众数观察其集中趋势,理解另一类是反映数据波动大小(即离散趋势)的特征数——极差、方差。
设有n 个数据n x x x ,,
, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用
])()()[(1
222212x x x x x x n
x n -++-+-=
第二步:联系实际 主动探索
问题1、已知;某学校六年级学生的身高的一个样本如下(单位:cm ) 158 162 146 151 153 168 159 154 167 159 167 166 159 154 160 162 164 160 157 149 (1)试填写下面的频数分布表,并绘制相应的频数颁布直方图
分组 频数累计
频数 146 ~ 149 150 ~ 152 153 ~ 155 156 ~ 158 159 ~ 161 162 ~ 164 165 ~ 167 168 ~ 170
合计
(2)估算这个年段学生的平均身高。
(3)求出这个年段学生的身高的极差。
问题2:在一次中学生田径运动会上,参加男子跳高的23名运动员的成绩如下表所示:(单位:米)
成绩 1.
50 1.60 1.65 1.70 1.75 1.80 1.85 1.90 人数
1
2
4
5
7
2
1
1
求出它们的跳高成绩的平均数、众数、中位数。
(答案:1。
71、1。
75、1。
70) 第三步;复习巩固 提高深化:
1、右图是一组数据的折线统计图,这组数据的极差 是 ,平均数是 .
2.若样本数据1,2,3,2的平均数是a ,中位数是
b ,众数是
c ,则数据a 、b 、c 的方差是 .
3、某校八年级学生开展踢毽子比赛活动,每班派5名学生参加.按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个)经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考.请你回答下列问题:
(1)计算甲、乙两班的优分率;(2)求两班比赛数据的中位数。
(3)估计两个比赛数据的方差哪一个小?(4)根据以上信息,你认为应该把冠军奖状发给哪一个班级?简述理由.
3、某市射击队甲、乙两位优秀队员在相同的条件 下各射靶10次,每次射靶的成绩情况如图所示: (1)请填写下表:
1号 2号 3号 4号 5号 总分 甲班 100 98 110 89 103 500 乙班
86
100
98
119
97
500
(2)请从下列四个不同的角度对这次测试结果进行分析:
①从平均数和方差结合看;(分析谁的成绩好些);
②从平均数和中位数相结合看(分析谁的成绩好些);
③从平均数和命中9环以上的次数结合看(分析谁的成绩好些);
④如果省射击队到市射击队靠选拔苗子进行培养,你认为应该选谁?
4、某同学进行社会调查,随机抽查了某
个地区的20个家庭的年收人情况,并绘制了统计
图.请你根据统计图给出的信息回答:
(1)填写完成下表:这20个家庭的年平均收入为万元.
(2)样本中的中位数、众数分别是多少?
(3)在平均数、中位数两数中,哪个更能反映这个地区家庭的年收入水平.为什么?
5、甲、乙两班举行电脑汉字输入比赛,参赛学生每分钟输入汉字的个数统计结果如下表
班级参加人数中位数方差平均数
甲55149191135
乙55151110135
丙同学分析上表后得出如下结论:
①甲、乙两班学生成绩平均水平相同②乙班优秀的人数多于甲班优秀的人数(每分钟
输入汉字汉字≥150个为优秀)③甲班成绩的波动比乙班大。
上述结论正确是()
A、①②③
B、①②
C、①③
D、②③
6、某商场服务部为了调动营业员的积极性,决定实行目标管理,即确定一个月销售目标,根据目标的完成情况进行适当的奖惩。
为了确定一个合适的目标,商场统计了每个营业员在某月的销售额,数据如下(单位:万元):
17 18 16 13 24 15 28 26 18 19 22 17 16 19 32
30 16 14 15 26 15 32 23 17 15 15 28 28 16 19
(1)月销售额在哪个值的人数最多?中间的月销售额是多少?平均的月销售额是多少?(2)如果想确定一个较高的目标,你认为月销售额定多少合适?说明理由?
(3)如果想让一半左右的营业员都能达到目标,你认为月销售额定多少合适?说明理由?
7、某公司10名销售员,去年完成的销售额情况如下表:
(1)求销售额的平均数、众数、中位数;
(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?
欢迎您的下载,资料仅供参考!。