数控系统 外文文献 外文翻译 英文文献
数控技术英文参考文献(精选118个最新)

数控技术,英文名称:Numerical Control (简称NC),即采用电脑程序控制机器的方法,按工作人员事先编好的程式对机械零件进行加工的过程。
下面是搜索整理的关于数控技术英文参考文献,欢迎借鉴参考。
数控技术英文参考文献一:[1]Xing Li,Zhouhua Jiang,Xin Geng,Fubin Liu,Leizhen Peng,Shuai Shi. Numerical simulation of a new electroslag remelting technology with current conductive stationary mold[J]. Applied Thermal Engineering,2019,147.[2]Malgorzata Plaza,Wojciech Zebala. A decision model for investment analysis in CNC centers and CAM technology[J]. Computers & Industrial Engineering,2019,131.[3]Rui He,Guoming Chen,Che Dong,Shufeng Sun,Xiaoyu Shen. Data-driven digital twin technology for optimized control in process systems[J]. ISA Transactions,2019.[4]M.J. Zhan,G.F. Sun,Z.D. Wang,X.T. Shen,Y. Yan,Z.H. Ni. Numerical and experimental investigation on laser metal deposition as repair technology for 316L stainless steel[J]. Optics and Laser Technology,2019,118.[5]Andrew Tait,Jonathan G.M. Lee,Bruce R. Williams,Gary A. Montague. Numerical analysis of in-flight freezing droplets: Application to novel particle engineering technology[J]. Food and Bioproducts Processing,2019,116.[6]Gautier Laurent,Caroline Izart,Bénédicte Lechenard,Fabrice Golfier,Philippe Marion,Pauline Collon,Laurent Truche,Jean-Jacques Royer,Lev Filippov. Numerical modelling of column experiments to investigate in-situ bioleaching as an alternative mining technology[J]. Hydrometallurgy,2019,188.[7]. Information Technology; Researchers from University of Orebro Report New Studies and Findings in the Area of Information Technology (Data-driven Conceptual Spaces: Creating Semantic Representations For Linguistic Descriptions Of Numerical Data)[J]. Computers, Networks & Communications,2019.[8]. Energy; Findings from Beijing University of Technology Reveals New Findings on Energy (Numerical investigation of the thermal performance enhancement of latent heat thermal energy storage using longitudinal rectangular fins and flat micro-heat pipe ...)[J]. Energy Weekly News,2019.[9]. Numerical Modeling; Findings on Numerical Modeling Reported by Investigators at University of Shanghai for Science & Technology (Experimental and numerical study on loss characteristics of main steam valve strainer in steam turbine)[J]. Energy Weekly News,2019.[10]. Numerical Modeling; Studies from University of Science and Technology in the Area of Numerical Modeling Described (Modeling of electrochemical properties of potential-induced defects in butane-thiol SAMs by using artificial neural network and impedance ...)[J]. Computers, Networks & Communications,2019.[11]. Numerical Modeling; Study Findings from National University of Defence Science and Technology Provide New Insights into Numerical Modeling (Numerical simulation and structural optimization based on an elliptical and cylindrical raft wave energy conversion device)[J]. Energy Weekly News,2019.[12]. Materials Science - Composite Materials; Investigators at Norwegian University of Science and Technology (NTNU) Detail Findings in Composite Materials (Comparison of numerical modelling techniques for impact investigation on a wind turbine blade)[J]. Energy Weekly News,2019.[13]. Heat Transfer Research; Data on Heat Transfer Research Described by Researchers at AGH University of Science and Technology (A Numerical Analysis of Unsteady Transport Phenomena In a Direct Internal Reforming Solid Oxide Fuel Cell)[J]. Energy Weekly News,2019.[14]. Science - Combustion Science; Investigators at Indian Institute of Technology Describe Findings in Combustion Science (Numerical Simulations of Turbulent Lifted Jet Diffusion Flames In a Vitiated Coflow Using the Stochastic Multiple Mapping Conditioning Approach)[J]. Science Letter,2019.[15]. Science - Combustion Science; Findings from Swiss Federal Institute of Technology in Zurich Provides New Data about Combustion Science (Direct Numerical Simulations of Turbulent Catalytic and Gas-phase Combustion of H-2/air Over Pt At Practically-relevant Reynolds Numbers)[J]. Science Letter,2019.[16]. Science - Combustion Science; Findings from Indian Institute of Technology in Combustion Science Reported (Numerical Modeling of Turbulent Premixed Combustion Using Rans Based Stochastic Multiple Mapping Conditioning Approach)[J]. Science Letter,2019.[17]. Mining and Minerals - Mining Science and Technology; Data on Mining Science and Technology Described by Researchers at Centers for Disease Control and Prevention (Development of a fault-rupture environment in 3D: A numerical tool for examining the mechanical impact of a fault on underground ...)[J]. Medical Letter on the CDC & FDA,2019.[18]. Science - Scientific Computing; Study Results from Missouri University of Science and Technology in the Area of Scientific Computing Reported (A Second Order In Time, Decoupled, Unconditionally Stable Numerical Scheme for theCahn-hilliard-darcy System)[J]. Science Letter,2019.[19]. Science - Applied Sciences; Findings from University of Science and Technology in Applied Sciences Reported (Numerical Study of the Effect of Inclusions On the Residual Stress Distribution In High-strength Martensitic Steels During Cooling)[J]. Science Letter,2019.[20]. Science - Crystallography; New Crystallography Findings Has Been Reported by Investigators at Royal Institute of Technology (On Plowing Frictional Behavior During Scratch Testing: a Comparison Between Experimental and Theoretical/numerical Results)[J]. Science Letter,2019.[21]. Information Technology; Report Summarizes Information Technology Study Findings from University of Defense (Comparison of Static Aerodynamic Data Obtained In Dynamic Wind Tunnel Tests and Numerical Simulation Research)[J]. Computers, Networks & Communications,2019.[22]. Energy; New Findings from Hefei University of Technology Describe Advances in Energy (Numerical Study of the Effect of Combustion Chamber Structure On Scavenging Process In a Boosted Gdi Engine)[J]. Energy Weekly News,2019.[23]. Fuel Research; Study Results from Sahand University of Technology Update Understanding of Fuel Research (Advanced Numerical Analyses On Thermal, Chemical and Dilution Effects of Water Addition On Diesel Engine Performance and Emissions Utilizing Artificial ...)[J]. Energy Weekly News,2019.[24]. Energy - Energy and the Environment; Researchers from Iran University of Science and Technology Describe Findings in Energy and the Environment (Numerical Investigation of the Power Extraction Mechanism of Flapping Foil Tidal Energy Harvesting Devices)[J]. Energy Weekly News,2019.[25]. Energy; Findings from Cracow University of Technology Provide New Insights into Energy (Numerical and Experimental Study On the Thermal Performance of the Concrete Accumulator for Solar Heating Systems)[J]. Energy Weekly News,2019.[26]. Energy; Studies from Huazhong University of Science and Technology Yield New Information about Energy (Numerical Study On Heat Transfer Performance In Packed Bed)[J]. Energy Weekly News,2019.[27]. Energy; Studies from Jiangsu University of Science and Technology Describe New Findings in Energy (Numerical Study On Thermal Hydraulic Performance of Supercritical Lng In Zigzag-type Channel Pches)[J]. Energy Weekly News,2019.[28]. Energy; Studies from Harbin Institute of Technology Add New Findings inthe Area of Energy (A Numerical Study On the Development of Self-similarity In a Wind Turbine Wake Using an Improved Pseudo-spectral Large-eddy Simulation Solver)[J]. Energy Weekly News,2019.[29]. Science - Combustion Science; Studies from Massachusetts Institute of Technology Reveal New Findings on Combustion Science (Numerical Investigation of Strained Extinction At Engine-relevant Pressures: Pressure Dependence and Sensitivity To Chemical and Physical Parameters ...)[J]. Energy Weekly News,2019.[30]. Energy; Findings on Energy Discussed by Investigators at Federal University of Technology Parana (Numerical Two-dimensional Steady-state Evaluation of the Thermal Transmittance Reduction In Hollow Blocks)[J]. Energy Weekly News,2019.数控技术英文参考文献二:[31]. Geofluids; Investigators at China University of Mining and Technology Detail Findings in Geofluids (Numerical Simulations On the Front Motion of Water Permeation Into Anisotropic Porous Media)[J]. Science Letter,2019.[32]. Science - Combustion Science; Studies from National University of Defence Science and Technology Add New Findings in the Area of Combustion Science (Numerical Study of Cellular Detonation Wave Reflection Over a Cylindrical Concave Wedge)[J]. Energy Weekly News,2019.[33]. Energy; Reports Summarize Energy Findings from Darmstadt University of Technology (Numerical Investigation of an Oxyfuelnon-premixed Combustionusing a Hybrid Eulerian Stochastic Field/flamelet Progress Variable Approach: Effects of H-2/co2 Enrichment ...)[J]. Energy Weekly News,2019.[34]. Energy - Hydrogen Energy; Data on Hydrogen Energy Described by Researchers at King Mongkut's University of Technology Thonburi (Comparative Numerical Evaluation of Autothermal Biogas Reforming In Conventional and Split-and-recombine Microreactors)[J]. Energy Weekly News,2019.[35]. Food and Bioproducts; New Data from Indian Institute for Technology Illuminate Findings in Food and Bioproducts (Heat Transfer Analysis During Mixed-mode Solar Drying of Potato Cylinders Incorporating Shrinkage: Numerical Simulation and Experimental Validation)[J]. Food Weekly News,2019.[36]. Energy - Energy Materials; Findings from Dalian University of Technology Broaden Understanding of Energy Materials (Tailoring Active Sites In Mesoporous Defect-rich Nc/v-o-won Heterostructure Array for Superior Electrocatalytic Hydrogen Evolution)[J]. Energy Weekly News,2019.[37]. Science - Water Science and Technology; New Water Science and Technology Study Findings Recently Were Reported by Researchers at Zhejiang University (Numerical Study of the Collapse of Multiple Bubbles and the Energy Conversion During Bubble Collapse)[J]. Energy Weekly News,2019.[38]. Energy - Renewable Energy; Reports from Sharif University of Technology Advance Knowledge in Renewable Energy (A Numerical Study of Dust Deposition Effects On Photovoltaic Modules and Photovoltaic-thermal Systems)[J]. Energy Weekly News,2019.[39]. Science - Combustion Science; New Combustion Science Findings from Beijing Institute of Technology Discussed (Experimental and Numerical Studies On Detonation Reflections Over Cylindrical Convex Surfaces)[J]. Energy Weekly News,2019.[40]Maryann Valentine. CNC Technology at Fresno City College[J]. Tech Directions,2019,78(9).[41]. Science - Applied Sciences; Investigators at Czestochowa University of Technology Describe Findings in Applied Sciences (Numerical Analysis of Flow In Building Arrangement: Computational Domain Discretization)[J]. Science Letter,2019.[42]. Science; Reports Summarize Science Study Results from Indian Institute of Technology Madras (Numerical Modeling of Evaporation and Combustion of Isolated Liquid Fuel Droplets: a Review)[J]. Energy Weekly News,2019.[43]. Science - Fire Science; Dalian University of Technology Details Findings in Fire Science (Fire Resistance of Steel Beam To Square Cfst Column Composite Joints Using Rc Slabs: Experiments and Numerical Studies)[J]. Science Letter,2019.[44]. Energy; Researchers' Work from Sharif University of Technology Focuses on Energy (An Improved Actuator Disc Model for the Numerical Prediction of the Far-wake Region of a Horizontal Axis Wind Turbine and Its Performance)[J]. Energy Weekly News,2019.[45]. Engineering - Wind Engineering; Hefei University of Technology Details Findings in Wind Engineering (Numerical Simulation of Wind-driven Rain Distribution On Building Facades Under Combination Layout)[J]. Energy Weekly News,2019.[46]. Western Digital Technologies Inc.; Patent Issued for Switching Period Control Of Microwave Assisted Magnetic Recording For Pole Erasure Suppression (USPTO 10,283,159)[J]. Computers, Networks & Communications,2019.[47]. Energy - Wind Turbines; Investigators at Huazhong University of Science and Technology Describe Findings in Wind Turbines (Numerical Analysis of a CatenaryMooring System Attached By Clump Masses for Improving the Wave-resistance Ability of a Spar Buoy-type Floating ...)[J]. Energy Weekly News,2019.[48]. Energy - Nuclear Power; New Data from Karlsruhe Institute of Technology Illuminate Findings in Nuclear Power (Numerical Study of Thermal Hydraulics Behavior On the Integral Test Facility for Passive Containment Cooling System Using Gasflow-mpi)[J]. Energy Weekly News,2019.[49]. Energy - Energy Exploration; Researchers from Dawood University of Engineering & Technology Detail Findings in Energy Exploration (Numerical Simulation of Lignocellulosic Biomass Gasification In Concentric Tube Entrained Flow Gasifier Through Computational Fluid Dynamics)[J]. Energy Weekly News,2019.[50]. Fuel Research; Researchers at King Abdullah University of Science and Technology Have Reported New Data on Fuel Research (An Experimental/numerical Investigation of the Role of the Quarl In Enhancing the Blowout Limits of Swirl-stabilized Turbulent ...)[J]. Energy Weekly News,2019.[51]. Technology - Green Technology; Findings from National Institute of Technology Has Provided New Data on Green Technology (Influence of Thermal Energy Storage System On Flow and Performance Parameters of Solar Updraft Tower Power Plant: a Three Dimensional Numerical Analysis)[J]. Energy Weekly News,2019.[52]. Atmosphere Research; Studies from AGH University of Science and Technology Update Current Data on Atmosphere Research (Prediction of Air Temperature In the Polish Western Carpathian Mountains With the Aladin-hirlam Numerical Weather Prediction System)[J]. Science Letter,2019.[53]. Energy - Oil and Gas Research; Researchers at Amirkabir University of Technology Release New Data on Oil and Gas Research (Numerical Investigation for Determination of Aquifer Properties In Newly Developed Reservoirs: a Case Study In a Carbonate Reservoir)[J]. Energy Weekly News,2019.[54]. Science - Refrigeration Science; Findings from Indian Institute of Technology Kanpur Provides New Data about Refrigeration Science (Numerical Investigation of Isothermal and Non-isothermal Ice Slurry Flow In Horizontal Elliptical Pipes)[J]. Science Letter,2019.[55]. Energy - Renewable Energy; Researchers from Delft University of Technology Detail Findings in Renewable Energy (The Dynamic Wake of an Actuator Disc Undergoing Transient Load: a Numerical and Experimental Study)[J]. Energy Weekly News,2019.[56]. Energy; Researchers from Wroclaw University of Science and Technology Describe Findings in Energy (Theoretical and Numerical Analysis of Freezing RiskDuring Lng Evaporation Process)[J]. Energy Weekly News,2019.[57]. Geomechanics; Researchers from Chengdu University of Technology Report Findings in Geomechanics (Behavior and Numerical Evaluation of Cement-fly Ash-gravel Pile-supported Embankments Over Completely Decomposed Granite Soils)[J]. Science Letter,2019.[58]. Macromolecular Research; Investigators from Swiss Federal Institute of Technology Have Reported New Data on Macromolecular Research (Numerical Estimates of the Topological Effects In the Elasticity of Gaussian Polymer Networks and Their Exact Theoretical Description)[J]. Science Letter,2019.[59]. Food Processing; Findings from Institute of Chemical Technology Reveals New Findings on Food Processing (Comparison Between Multiresponse-robust Process Design and Numerical Optimization: a Case Study On Baking of Fermented Chickpea Flour-based Wheat Bread)[J]. Food Weekly News,2019.[60]. Technology; Studies from Sun Yat Sen University Yield New Information about Technology (Numerical Investigation of Influence of Reservoir Heterogeneity On Electricity Generation Performance of Enhanced Geothermal System)[J]. Energy Weekly News,2019.数控技术英文参考文献三:[61]. Energy - Solar Energy; Study Results from Izmir Institute of Technology in the Area of Solar Energy Reported (Experimental and Numerical Investigation of Forced Convection In a Double Skin Facade By Using Nodal Network Approach for Istanbul)[J]. Energy Weekly News,2019.[62]. Science - Earth and Space Science; Investigators at Massachusetts Institute of Technology Report Findings in Earth and Space Science (Esh3d, an Analytical and Numerical Hybrid Code for Full Space and Half-space Eshelby's Inclusion Problems)[J]. Science Letter,2019.[63]. Science - Forensic Science; New Findings from Beijing Institute of Technology in Forensic Science Provides New Insights (The Experimental and Numerical Investigation On the Ballistic Limit of Bb-gun Pellet Versus Skin Simulant)[J]. Science Letter,2019.[64]. Hydrodynamics; Research Conducted at Jiangsu University of Science and Technology Has Updated Our Knowledge about Hydrodynamics (Numerical Investigations of the Effects of Blade Shape On the Flow Characteristics In a Stirred Dead-end Membrane Bioreactor)[J]. Science Letter,2019.[65]. Technology - Fuel Technology; Data on Fuel Technology Reported by Researchers at Northeast Petroleum University (Numerical Simulation of the Air Injection Process In Low Permeability Reservoirs)[J]. Energy Weekly News,2019.[66]. Energy; New Energy Findings from Anhui University of Technology Described (Numerical Study On the Effect of Separated Over-fire Air Ratio On Combustion Characteristics and Nox Emission In a 1000 Mw Supercritical Co2 Boiler)[J]. Energy Weekly News,2019.[67]. Fuel Research; Findings from East China University of Science and Technology Broaden Understanding of Fuel Research (Numerical Study of Dynamic Response Analysis of Slag Behaviors In an Entrained Flow Gasifier)[J]. Energy Weekly News,2019.[68]. Energy; Findings from Babol Noshirvani University of Technology Has Provided New Data on Energy (Numerical Study of Heat Transfer On Using Lobed Cross Sections In Helical Coil Heat Exchangers: Effect of Physical and Geometrical Parameters)[J]. Energy Weekly News,2019.[69]. Energy; New Energy Study Results Reported from Nanjing University of Science and Technology (Numerical Investigation of the Effect of Sudden Expansion Ratio of Solid Fuel Ramjet Combustor With Swirling Turbulent Reacting Flow)[J]. Energy Weekly News,2019.[70]. Energy; Reports from Amirkabir University of Technology Add New Data to Findings in Energy (Numerical Study of Anode Side Co Contamination Effects On Pem Fuel Cell Performance; and Mitigation Methods)[J]. Energy Weekly News,2019.[71]. Science - Geoscience; Findings from China University of Mining and Technology Broaden Understanding of Geoscience (The Exhumation Along the Kenyase and Ketesso Shear Zones In the Sefwi Terrane, West African Craton: a Numerical Study)[J]. Science Letter,2019.[72]. Science - Refrigeration Science; Findings from Sirjan University of Technology Broaden Understanding of Refrigeration Science (A geometric model for a vortex tube based on numerical analysis to reduce the effect of nozzle number)[J]. Science Letter,2019.[73]. Science - Topography and Metrology; Researchers from Isfahan University of Technology Detail New Studies and Findings in the Area of Topography and Metrology (Numerical and experimental study on the effect of considering plastic and elastoplastic deformation of each asperity in ...)[J]. Science Letter,2019.[74]. Science; New Science Findings from Dalian University of Technology Outlined(Numerical research on the anti-sloshing effect of a ring baffle in an independent type C LNG tank)[J]. Science Letter,2019.[75]. Science - Terramechanics; Findings from National University of Defence Science and Technology in Terramechanics Reported (Development and numerical validation of an improved prediction model for wheel-soil interaction under multiple operating conditions)[J]. Science Letter,2019.[76]. Science - Textile Research; Findings from Lodz University of Technology Update Knowledge of Textile Research (Numerical Analysis of Free Folding of Flat Textile Products and Proposal of New Test Concerning Bending Rigidity)[J]. Science Letter,2019.[77]. Science - Technical Sciences; Findings from Warsaw University of Technology in the Area of Technical Sciences Reported (Pulse Powered Turbine Engine Concept - Numerical Analysis of Influence of Different Valve Timing Concepts On Thermodynamic Performance)[J]. Science Letter,2019.[78]. Energy - Energy Storage; Findings from Iran University of Science and Technology Has Provided New Data on Energy Storage (Numerical investigation of different PCM volume on cold thermal energy storage system)[J]. Energy Weekly News,2019.[79]. Science - Maritime Research; New Maritime Research Findings from Wuhan University of Technology Described (Numerical Simulation of Solid-fluid 2-phase-flow of Cutting System for Cutter Suction Dredgers)[J]. Science Letter,2019.[80]. Energy; Investigators at Swiss Federal Institute of Technology in Zurich Describe Findings in Energy (Numerical Optimization of Methane-based Fuel Blends Under Engine-relevant Conditions Using a Multi-objective Genetic Algorithm)[J]. Energy Weekly News,2019.[81]. Science - Refrigeration Science; Study Data from Jiangsu University of Science and Technology Update Understanding of Refrigeration Science (A Numerical Study On Condensation Flow and Heat Transfer of Refrigerant In Minichannels of Printed Circuit Heat Exchanger)[J]. Science Letter,2019.[82]. Information Technology; Researchers from Sao Paulo State University Provide Details of New Studies and Findings in the Area of Information Technology (Effective Force Area and Discharge Coefficient for Reed Type Valves: a Comprehensive Data Set From a Numerical Study)[J]. Computers, Networks & Communications,2019.[83]. Science - Applied Sciences; Findings on Applied Sciences Discussed by Investigators at Czestochowa University of Technology (A Sequential Approach toNumerical Simulations of Solidification with Domain and Time Decomposition)[J]. Science Letter,2019.[84]. Energy; New Energy Findings from National University of Defence Science and Technology Described (A 3D Numerical Study of Supersonic Steam Dumping Process of the Pressurizer Relief Tank)[J]. Energy Weekly News,2019.[85]. Science and Technology; Study Findings on Science and Technology Are Outlined in Reports from H. Yi and Colleagues (Simulations and error analysis of the CNC milling of a face gear tooth with given tool paths)[J]. Science Letter,2019.[86]. Energy - Wind Turbines; Data on Wind Turbines Reported by Researchers at Lulea University of Technology (Numerical Investigation of the Aeroelastic Behavior of a Wind Turbine with Iced Blades)[J]. Energy Weekly News,2019.[87]. Information Technology - Information and Data Aggregation; Studies from Marchuk Institute of Numerical Mathematics in the Area of Information and Data Aggregation Reported (Domain Decomposition Method for the Variational Assimilation of the Sea Level in a Model of Open Water Areas Hydrodynamics)[J]. Computers, Networks & Communications,2019.[88]. Energy; Investigators at Kaunas University of Technology Describe Findings in Energy (Field Measurements and Numerical Simulation for the Definition of the Thermal Stratification and Ventilation Performance in a Mechanically Ventilated Sports Hall)[J]. Energy Weekly News,2019.[89]. Geomechanics; Data from Wuhan University of Science and Technology Advance Knowledge in Geomechanics (Strength and Failure Characteristics of Rocklike Material Containing a Large-opening Crack Under Uniaxial Compression: Experimental and Numerical Studies)[J]. Science Letter,2019.[90]. Energy - Wind Turbines; Findings on Wind Turbines Reported by Investigators at Hong Kong University of Science and Technology (A Numerical Study On the Performance of a Savonius-type Vertical-axis Wind Turbine In a Confined Long Channel)[J]. Energy Weekly News,2019.数控技术英文参考文献四:[91]. Fuel Research; New Findings from Indian Institute for Technology Describe Advances in Fuel Research (Experimental and numerical investigations on the laminar burning velocity of n-butanol + air mixtures at elevated temperatures)[J]. Energy Weekly News,2019.[92]. Fuel Research; Findings in the Area of Fuel Research Reported from DalianUniversity of Technology (Experimental and numerical study of the effect of injection strategy and intake valve lift on super-knock and engine performance in a boosted GDI engine)[J]. Energy Weekly News,2019.[93]. Energy - Wind Turbines; New Data from Babol Noshirvani University of Technology Illuminate Findings in Wind Turbines (Numerical Investigation of the Savonius Vertical Axis Wind Turbine and Evaluation of the Effect of the Overlap Parameter in Both Horizontal and ...)[J]. Energy Weekly News,2019.[94]. Biosensors; Investigators at East China University of Science and Technology Detail Findings in Biosensors (Numerical and Experimental Assessment of a Miniature Bioreactor Equipped With a Mechanical Agitator and Non-invasive Biosensors)[J]. Biotech Week,2019.[95]. Science - Geoscience; Studies from Warsaw University of Technology Have Provided New Data on Geoscience (Selected components of geological structures and numerical modelling of slope stability)[J]. Science Letter,2019.[96]. Fuel Research; Reports from Huazhong University of Science and Technology Provide New Insights into Fuel Research (Experimental and Numerical Study of the Fuel-nox Formation At High Co2 Concentrations In a Jet-stirred Reactor)[J]. Energy Weekly News,2019.[97]. Energy; Studies from Darmstadt University of Technology Add New Findings in the Area of Energy (Numerical Investigation of Flow through a Valve during Charge Intake in a DISI -Engine Using Large Eddy Simulation)[J]. Energy Weekly News,2019.[98]. Energy; Studies from Shandong University of Technology Provide New Data on Energy (Experimental and Numerical Studies On the Effect of Packed Bed Length On Co and Nox Emissions In a Plane-parallel Porous Combustor)[J]. Energy Weekly News,2019.[99]Weijian Yu,Ze Liu,Baifu An,Fangfang Liu,Yunbo Wang. Numerical Calculation and Stability of the Yield and Enhanced Support Technology for Shaft[J]. Geotechnical and Geological Engineering,2019,37(4).[100]Jorge Manuel Mercado-Colmenero,Miguel Angel Rubio-Paramio,M? Dolores Rubia-Garcia,David Lozano-Arjona,Cristina Martin-Do?ate. A numerical and experimental study of the compression uniaxial properties of PLA manufactured with FDM technology based on product specifications[J]. The International Journal of Advanced Manufacturing Technology,2019,103(5-8).[101]Shuping Chen. Teaching Reform and Practice on Course of Numerical Computation Method in Applied Technology Undergraduate Institutes[P]. Proceedingsof the 2nd International Seminar on Education Research and Social Science (ISERSS 2019),2019.[102]Nouvet Elysée,Knoblauch Astrid M,Passe Ian,Andriamiadanarivo Andry,Ravelona Manualdo,Ainanomena Ramtariharisoa Faniry,Razafimdriana Kimmerling,Wright Patricia C,McKinney Jesse,Small Peter M,Rakotosamimanana Niaina,Grandjean Lapierre Simon. Perceptions of drones, digital adherence monitoring technologies and educational videos for tuberculosis control in remote Madagascar: a mixed-method study protocol.[J]. BMJ open,2019,9(5).[103]He Rui,Chen Guoming,Dong Che,Sun Shufeng,Shen Xiaoyu. Data-driven digital twin technology for optimized control in process systems.[J]. ISA transactions,2019.[104]Tatti Fabio,Petrangeli Papini Marco,Torretta Vincenzo,Mancini Giuseppe,Boni Maria Rosaria,Viotti Paolo. Experimental and numerical evaluation of Groundwater Circulation Wells as a remediation technology for persistent, low permeability contaminant source zones.[J]. Journal of contaminant hydrology,2019.[105]Revels Christy,Burris Christie. NC HealthConnex and Value-based Care: Statewide Health Information Exchange as a Technology Tool for All.[J]. North Carolina medical journal,2019,80(4).[106]Kubit Andrzej,Trzepiecinski Tomasz,?wi?ch ?ukasz,Faes Koen,Slota Jan. Experimental and Numerical Investigations of Thin-Walled Stringer-Stiffened Panels Welded with RFSSW Technology under Uniaxial Compression.[J]. Materials (Basel, Switzerland),2019,12(11).[107]董新峰,仇中柱,韩清鹏. 数控技术课程中超硬材料切削加工所涉及的关键问题的引入[J]. 教育进展,2019,09(03).[108]Hua Chen,Ke-Lun Xia,Zi-Jun Liu,Xun-Si Wang,Xiang-Hua Zhang,Yin-Sheng Xu,Shi-Xun Dai. Experimental and numerical investigation of mid-infrared laser in Pr<sup>3+</sup>-doped chalcogenide fiber Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 61605095), the Natural Science Foundation of Zhejiang Province, China (Grant No. LY19F050004), the Natural Science Foundation of Ningbo City (Grant No. 2015A610038), the Open Fund of the Guangdong Engineering Technology Research and Development Center of Special Optical Fiber Materials and Devi[J]. Chinese Physics B,2019,28(2).[109]Zhengwei Yang,Xingyu Xie,Yin Li,Gan Tian. Numerical Analysis of Influencing Factors and Capability for Line Laser Scanning Thermography Nondestructive Testing Technology in Chemicals Corrosion Defect Detection[J]. IOP Conference Series: Materials Science and Engineering,2019,484(1).。
机床CNC系统的智能数控程序处理器外文文献翻译、中英文翻译

An intelligent NC program processor forCNC system of machine toolYadong Liua,_, Xingui Guoa, Wei Lia, Kazuo Yamazakia,Keizo Kashiharab, Makoto FujishimabAbstract NC program interpreting is one of the most important tasks of CNC in machine tool system. The existing CNC systems only supportvendor-specific NC program input, which restrict the applying of other similar functional NC programs with different program format.Especially for those users owning several machine tools with different CNC from the same provider, the diversity of NC programsdramatically increases their cost and time on operator training and machine tool maintenance. In order to deal with the variety of NC program, an intelligent NC program processor (NCPP) is proposed in this paper.1. IntroductionIn the CNC system of modern machine tool, NCprogram interpreting is very important, which is in charge of the accurate resolving of machining intention generated from CAM system. The major function of NCPP is to decode the input into motion command and programmable logiccontroller (PLC) command, and send them to the motion control processor (MCP) and PLC of CNC separately in order to control the movement of the cutting tool and auxiliary machine logic. Most CNC systems can handle only one specific NC program format, while the diversity of NC programs always entangles the machine tool users,especially for those owning several machine tools with different CNC but from the same provider.2. Interface of NC program processorNCPP is one module of the CNC, which requires cooperation between different modules; therefore it’s quite necessary to clarify the interface before starting design. The purpose of NCPP is to translate the input NC program into machine instruction, such asmotion command, PLC command or simple parameter settings and error messages. NIST calls these outputs as Canonical Machining Functions.The canonical machining functions were devised with two objectivesin mind:_ All the functionality of common 3- to 5-axis machining centers had tobe covered by the functions; for any function a machining center can perform, there has to be a way to tell it to do that function._ It must be possible to interpret RS274-compatible NC program into canonical machining function calls.3. Conceptual model of proposed NCPPCompared to the traditional design, the major feature of this NCPPis the structure with separation of NCSD and processing engine.Within thisNCPP, different NC program could be interpreted in terms of different NCSD, while the processing engine keeps the same. For example, suppose the input NC program follows Fanuc specification, the engine will refer to the Fanuc NCSD to do interpretation. Next time, if a NC program following Mitsubishi specification is given, the same engine will refer to the Mitsubishi NCSD to interpret it. For the two cases, it can be seen that each time only different NCSD is chosen, while the processing engine does not change. Such a solution provides dramatic flexibility and stability for the NCPP development, only one set of software code of the processing engine needs to be maintained. Even if there is an input NC program following a NC specification which is not available in the existing NCSDs, a new NCSD can be generated and added easily without recompiling the source code of the processing engine..4. Design of proposed NCPPBased on the conceptual model of the proposed NCPP If looking inside the NCPP, the key portion is the interpreting (processing) engine mentioned before, from a compiler’s point of view, the engine can be divided into four steps in order to check and decode an input NC program.These four steps are:_ Lexical analysis, which checks the character-based error within a NC program._ Syntax analysis, which makes sure the logic relation within each block of NC program is correct._ Semantic analysis, which checks the inter-block logic correctness of a NC program._ Optimization and code generation, which decode block and generate the canonical machining functions.4.1. Lexical analysisThe major functionality of lexical analysis is to merge a sequence of characters from the input NC program intosequence of words, which is a high-level representation unit,Meanwhile, in this step, all blank and comments within the program will be deleted. After lexical analysis, a symbol table with the same information but more systematic compared to the original character-based program will be built. During analysis, all character-based error will be checked, for example whether the unacceptable address letters has been used or not. In this paper, one dictionary has been designed in this step to store all the valid address letters.4.2. Syntax and semantic analysisSyntax analysis is to determine if a sequence of words within a block is syntactically correct, it is also called intra-block check. It includes the range checking of the data portion of a word and the parameters format checking.Semantic analysis checks the major inter-block error,which means tomake sure whether the logical relationship among several blocks of NC program is correct or not, for example, the same group G/M word cannot appear more than once in a block; block/word sequence should be subject to the G/M word execution order table, spindle should be turned on before any cutting motion starts, etc.In order to design NCSD for syntax and semanticanalysis, three kinds of cases of NC blocks should be analyzed:Case 1: Extract data expression in each word of NCprogram. For example, ‘‘X [1+2_3–4/5], Zsin[30],#1 2.0 F #1’’ should be correctly decoded as ‘‘X6.2, Z0.5, F2.0’’. Case 2: Check syntax relation of words within each block. For example, within block ‘‘G17 G02 X10 Y20 I-10F15 S100 M03’’, Z-axis value should not appear since in_ Terms with quote symbol as header and ender are terminal symbol._ Interpreting an expression is to apply one or more of the syntax rules.NC language can be considered as one type of simple computer programming language; therefore it’s quite reasonable to use EBNF to represent the NC program syntax. Based on that, the structure of NCSD can be systematically defined.4.3.1. Syntax representation using EBNFBased on these EBNF representations, case 1 mentioned in Section 4.2 can be easily solved. The fig shows an example of how to interpret word ‘‘X[1+2_3–4/5]’’ using these EBNF representations, as shown in this figure, two stacks (first in last outFundamental EBNF representation of NC languagemechanism) are used: value stack and operator stack. The operator stack is subject to a rule: the priority of each item is always in a decreasing order while the execution with highest priority always happens first. Following is the ordered operation list of interpreting:(1) Apply first EBNF rule defined, read the symbol ‘[’ and push it into the operator stack.(2) Apply EBNF rule 2,1,7,9 in turn, read value ‘1’ and symbol ‘+’, and then push them into value stack and operator stack, respectively.(3) Continue to apply rule 1,7,9 twice, read ‘2’/‘3’ and ‘*’/‘_’ separately, and push them into corresponding stacks.(4) Since operator ‘*’ on the top of the operator stack has higher priority than its previous one ‘+’ and higher than the current one ‘_’, current value 3’ is used to execute multiplication with ‘2’ popped up from the value stack. The result is pushed back into the value stack, while current operator ‘_’ is pushed into the operator stack.(5) Continue the quite similar operation as above mentioned until the operator stack is empty and the last value ‘6.2’ is popped up from the value stack.(6) The last value ‘6.2’ is the final result. Therefore, ‘‘X [1+2_3–4/5’’ is interpreted as ‘‘X6.2’’.For case 2 and 3, Fig. 9 gives the EBNF representation of a general NC block while Fig. 10 shows partial syntax EBNF representation of each G/M/F/S/T word in a group manner.Let us use a NC blocks example shown before in Section4.2 to explain how these EBNF rules are being applied. For each block of the following example:‘‘N0010 G91 G40N0020 S100 M03N0030 G01 G53 X20 F15’’EBNF rules B.1 in Fig. 9 will be firstly applied, and then the detailed word EBNF rules in Fig. 10 will be applied. Now for the first block, assuming the default modal is G01, the rule 1, 2 and 6 of B.1 will take effective, then in rule 6 of B.1, rule B.3 is applied further and a correct check result will be returned. The similar procedure will be done for the second block. Then for the third block, as rule B.3 is applied, rule 4 of B.2 will be applied too, which is (G53_Expr ‘g53’+ABS_Mode+G40_Expr+‘g00’|’g01’). In this rule, ‘ABS_Mode’ (‘g90’) is required when ‘g53’ isEBNF representation of G/M word. given with ‘g01’, however, the third block does not satisfy this rule because ‘INC_Mode’ (‘g91’) is effective (this is given in the first block); therefore a syntax error is found.4.3.2. Syntax dictionary implementation using tool command languageThe above-mentioned EBNF-based syntax of NC program is programmed using tool command language (TCL), one kind of script language which works in an interpretive execution manner instead of compiling way. As all the NC program syntax is represented using TCL as TCL procedures, it will be loaded to work as the syntax dictionary of NCSD in the proposed NCPP.4.4. Processing engine design4.4.1. Conceptual model of processing engine. An event generator and an embedded TCL interpreter are involved to handle each input NC block in terms of the loaded syntax dictionary of NCSD.The event generator triggers the TCL interpreter by extracting words within a NC block according to priority.For each word’s syntax, a corresponding TCL procedure defined in syntax dictionary will be called by the TCL interpreter. The Syntax and semantic analysis will be done during this process; canonical machining functions will be generated too. The dictionary generator in this figure is used to generate the syntax dictionary from NC program syntax EBNFrepresentation whenever a new NC specification is given.4.4.2. Processing flowThe fig shows the complete processing flow of proposed NCPP using one NC block example:(1) Initialization of the environment, which involves initializing parameters of NCPP (such as tool information, tool offset, coordination origin etc), loading the NCSD and starting the embedded TCL interpreter(2) Suppose one block ‘‘N10 G94 G01 G90 X2 Y4 F5 M03 ‘‘is ready to process.(3) NCPP processing engine search for the WORD with highest priority within this block in terms of the priority rules table. In this case first is word G01 and second is M03. As shown in the figure, priority rules table gives the definition of priority of words as they explicitly appear in the same block. Basically, group 1 of G word has the highest priority, followed by group 0 and other groups. For example, if G01 (group 1) and G92 (group 0) both given in a block, G01 should be taken care first. In the same sense, G words precede F, M and T words. In addition, modal information has the same effect, which means that the G modal word from higher priority group takes effect, as there is no G word explicitly appearing in the block.5. Prototype system implementationSo far, a prototype system of proposed NCPP has been implemented using C and TCL. This prototype was developed based on an existing RS274NGC interpreter written by Thomas Kramer from NIST in 2000. The current version realized almost all the functionality proposed in this paper, while the dictionary generator of NCSD is still under developing. By using the standard RS274 and Fanuc specification NC program as input, the result of the developed prototype system shows that a successful design was obtained. After being processed by A NC program example with syntax errors proposed NCPP, two syntax errors are both detected out with error messages, as those shown in the fig in italic and bold fonts. The corresponding canonical machining functions of the given NC program are generated too.6. ConclusionAn intelligent NCPP is proposed for the CNC system of machine tool. It has separated NCSD and processing engine. NCSD varies in terms of different NC program format, while the engine is fixed. Based on this new structure, it is easy to adjust the CNC system to adapt to various NC program format by only updating the corresponding NCSD in NCPP. In this paper, the NCSD has been designed by using EBNF and implemented as TCL procedures.AcknowledgementsThe authors wish to express their sincere appreciation for the generous support from Mori Seiki Corporation which makes this research possible. We also owe our thanks to the work of Dr. Thomas Kramer from NIST, whose work laid a great foundation for this research project. Further readin g[1] Vickors GW, Ly MH, Oetter RG. Numerically controlled machine tools. Chichester, UK: Ellis Horwood; 1990.[2] Peter S. CNC programming handbook. Industrial Press; 2000.[3] Karen AL. Fundamentals of compilers—an introduction to computer language translation. Englewood Cliffs, NJ: Prentice-Hall; 1992. [4] Thomas RK. The NIST RS274/NGC Interpreter—version 3, ISD of NIST; 2000.[5] Frederick MP. Canonical machining functions, ISD of NIST; 1997[6] Ronald M. Writing compilers and interpreters—an applied approach; 1991.[7] ISO/IEC 14977:1996(E) The standard of extended BNF,1997.[8] John KO. TCL and the TK Toolkit. Reading, MA: Addison-Wesley; 1994.机床CNC系统的智能数控程序处理器Yadong Liua,_, Xingui Guoa 、 Wei Lia , Kazuo Yamazakia,Keizo Kashiharab,Makoto Fujishimab摘要NC程序编译是机床CNC 的最重要工作之一。
数控技术外文文献翻译

数控技术外文文献翻译(含:英文原文及中文译文)英文原文The development trend of numerical control technology AbstractThe current trends in the development of numerical control technology and equipment in the world and the status quo of the development and industrialization of CNC equipment technology in China are briefly introduced. On this basis, we discuss the development of CNC technology and equipment in China under the new environment of China's accession to the WTO and further opening to the outside world. The importance of improving the level of China's manufacturing informatization and international competitiveness, and put forward some views on the development of China's CNC technology and equipment from both strategic and strategic aspects.The technological level and degree of modernization of the equipment industry determine the level of the entire national economy and the degree of modernization. Numerical control technology and equipment are the development of emerging high-tech industries and cutting-edge industries (such as information technology and its industries, biotechnology and its industries, aviation, aerospace, etc.) (Defense Industry Industry) enabling technology and basic equipment. Marx oncesaid that “the difference between various economic times is no t what is produced but how it is produced and what labor data it is used to produce”. Manufacturing technology and equipment are the most basic production materials for human production activities, and numerical control technology is the core technology of today's advanced manufacturing technologies and equipment. In the manufacturing industry of the world today, CNC technology is widely used to improve manufacturing capabilities and levels, and to improve the adaptability and competitiveness of dynamic markets. In addition, various industrialized countries in the world have also listed numerical control technology and numerical control equipment as strategic materials of the country. They not only take significant measures to develop their own numerical control technologies and their industries, but also have the key technology and equipment of “high-precision” numerical control. Our country adopts a policy of blockade and restriction. In short, the vigorous development of advanced manufacturing technologies centered on numerical control technology has become an important way for all developed countries in the world to accelerate economic development and improve their overall national strength and national status.Numerical control technology is a technology that uses digital information to control mechanical movement and work process. Numerical control equipment is a mechatronic product formed by thepenetration of new technologies represented by numerical control technology into traditional manufacturing industries and emerging manufacturing industries, namely, so-called digital equipment. Its technical scope covers many fields: (1) machinery manufacturing technology; (2) information processing, processing, and transmission technology; (3) automatic control technology; (4) servo drive technology;(5) sensor technology; (6) software Technology and so on. Keywords: CNC technology, machinery manufacturing, information processing, sensors1 Development Trends of Numerical Control TechnologyThe application of numerical control technology has not only brought about revolutionary changes in the traditional manufacturing industry, but also made manufacturing a symbol of industrialization. With the continuous development of numerical control technology and the expansion of application fields, he has made important contributions to the national economy and people's livelihood (IT, automotive The development of light industry, light industry, medical care, etc. is playing an increasingly important role, because the digitalization of the equipment required by these industries is a major trend of modern development. From the current trend of numerical control technology and its equipment development in the world, its main research hotspots are the following aspects [1~4].1.1 New trends in high-speed, high-precision processing technology and equipmentEfficiency and quality are the mainstays of advanced manufacturing technology. High-speed, high-precision machining technology can greatly improve efficiency, improve product quality and grade, shorten production cycle and increase market competitiveness. To this end, the Japanese Advanced Technology Research Institute will list it as one of the five major modern manufacturing technologies. The International Association of Production Engineers (CIRP) has identified it as one of the central research directions for the 21st century.In the passenger car industry, the production cycle of 300,000 vehicles per year is 40 seconds per vehicle, and multi-species processing is one of the key issues that must be addressed for car equipment. In the aviation and aerospace industries, the parts processed by them are mostly thin-walled. With thin ribs, the rigidity is poor, and the material is aluminum or aluminum alloy. These ribs and walls can be processed only when the high cutting speed and cutting force are small. Recently, the method of “hollowing out” large-size aluminum alloy billets has been used to manufacture large parts such as wings and fuselage to replace multiple parts and assembled by numerous rivets, screws, and other coupling methods to obtain strength, stiffness, and reliability of components. improve. All of these require high-speed, high-precision andhigh-flexibility for processing equipment.From the standpoint of EMO2001, the feed rate of high-speed machining centers can reach 80m/min, or even higher, and the airspeed can reach around 100m/min. At present, many automobile plants in the world, including China's Shanghai General Motors Corporation, have adopted a part of the production line consisting of a high-speed machining center to replace the combined machine tools. The HyperMach machine tool feed rate of CINCINNATI, USA is up to 60m/min, the speed is 100m/min, the acceleration is 2g, and the spindle speed has reached 60,000r/min. It takes only 30 minutes to machine a thin-walled aircraft part, and the same part takes 3h for general high-speed milling and 8h for normal milling; the spindle speed and acceleration of the twin-spindle lathe of DMG, Germany, reach 12*!000r/mm respectively. And 1g.In terms of machining accuracy, in the past 10 years, the machining accuracy of ordinary CNC machine tools has increased from 10μm to 5μm, precision machining centers have increased from 3~5μm to 1~1.5μm, and ultra-precision machining precision has begun to enter the nanometer level. (0.01μm).In terms of reliability, the MTBF value of foreign numerical control devices has reached more than 6000 hours, and the MTBF value of the servo system has reached more than 30,000 hours, showing very highreliability.In order to achieve high-speed, high-precision machining, the supporting functional components such as electric spindles and linear motors have been rapidly developed and the application fields have been further expanded.1.2 Rapid development of 5-axis simultaneous machining and compound machiningThe use of 5-axis simultaneous machining of 3D surface parts allows cutting with the best geometry of the tool, resulting in not only a high degree of finish, but also a significant increase in efficiency. It is generally considered that the efficiency of a 5-axis machine tool can be equal to 2 3-axis linkage machines. Especially when using ultra-hard material milling tools such as cubic boron nitride for high-speed milling of hardened steel parts, 5-axis simultaneous machining can be compared with 3-axis linkage. Processing to play a higher efficiency. In the past, due to the complexity of the 5-axis linkage CNC system and the host machine structure, the price was several times higher than that of the 3-axis linkage CNC machine tool, and the programming technology was more difficult, which restricted the development of 5-axis linkage machine tools.At present, due to the emergence of electric spindles, the structure of the composite spindle head that realizes 5-axis simultaneous machining isgreatly simplified, its manufacturing difficulty and cost are greatly reduced, and the price gap of the numerical control system is reduced. As a result, the development of composite spindle head type 5-axis linkage machine tools and compound machine tools (including 5-sided machine tools) has been promoted.At the EMO2001 exhibition, the new 5-axis machine tool of Nippon Machine Tool Co., Ltd. adopts a compound spindle head, which can realize the processing of four vertical planes and processing at any angle, so that 5-sided machining and 5-axis machining can be realized on the same machine tool. It can realize the processing of inclined surface and inverted cone. Germany DMG company exhibited DMUV oution series machining center, which can be processed in five-face machining and five-axis linkage in a single clamping. It can be directly or indirectly controlled by CNC system control or CAD/CAM.1.3 Intelligentization, openness, and networking have become major trends in the development of modern digital control systemsThe 21st century CNC equipment will be a certain intelligent system. The intelligent content is included in all aspects of the CNC system: in order to pursue the processing efficiency and processing quality in the intelligent, such as the process of adaptive control, process parameters automatically Generated; To improve the driving performance and the use of convenient connection intelligent, such as feed-forward control,adaptive calculation of motor parameters, automatic identification load automatic selection model, self-tuning, etc.; simplify the programming, simplify the operation of intelligent, such as smart The automatic programming, intelligent man-machine interface, etc.; as well as the contents of intelligent diagnosis, intelligent monitoring, convenient system diagnosis and maintenance.In order to solve the problems of traditional CNC system closure and industrial application of CNC application software. At present, many countries have conducted research on open numerical control systems such as NGC of the United States, OSACA of the European Community, OSEC of Japan, and ONC of China. The openness of numerical control systems has become the future of CNC systems. The so-called open CNC system is the development of CNC system can be in a unified operating platform, for machine tool manufacturers and end users, by changing, adding or cutting structure objects (CNC function), to form a series, and can be convenient to the user's special The application and technology are integrated into the control system to quickly realize open numerical control systems of different varieties and different grades to form brand-name products with distinctive personality. At present, the architecture specification, communication specification, configuration specification, operation platform, numerical control system function library and numerical control system function software development toolof open CNC system are the core of current research.Networked CNC equipment is a new bright spot in the international well-known machine tool exposition in the past two years. The networking of CNC equipment will greatly satisfy the requirements of information integration for production lines, manufacturing systems, and manufacturing companies. It is also the basic unit for realizing new manufacturing models such as agile manufacturing, virtual enterprise, and global manufacturing. Some famous domestic and foreign CNC machine tools and numerical control system manufacturing companies have introduced relevant new concepts and prototypes in the past two years. For example, at the EMO 2001 exhibition, the “Cyber Production Center” exhibited by Japan's Mazak company Mazak Production Control Center (CPC); Okuma Machine Too l Company, Japan exhibited “ITplaza” (Information Technology Plaza, IT Plaza); Open Manufacturing Environment (Open Manufacturing Environment, OME), exhibited by Siemens, Germany Etc., reflecting the trend of the development of CNC machine tools to the direction of the network.1.4 Emphasizing the Establishment of New Technology Standards and Specifications1.4.1 About Design and Development of CNC SystemsAs mentioned above, the open CNC system has better versatility, flexibility, adaptability, and expandability. The United States, theEuropean Community, and Japan have implemented strategic development plans one after another, and have conducted the open architecture system specification (OMAC). , OSACA, OSEC) research and development, the world's three largest economies in the short term carried out almost the same set of scientific plans and norms, indicating that the arrival of a new revolution in digital technology. In 2000, China began to conduct research and development of the regulatory framework for China's ONC numerical control system.1.4.2 About CNC StandardsCNC standards are a trend in the development of manufacturing informatization. The information exchange in the 50 years since the birth of CNC technology was based on the ISO 6983 standard. That is how the G and M codes describe how to process. The essential feature is the processing-oriented process. Obviously, he has been unable to meet the high speed of modern CNC technology. The need for development. For this purpose, a new CNC system standard ISO14649 (STEP-NC) is being researched and developed internationally. Its purpose is to provide a uniform data model that can describe the entire life cycle of a product without relying on a neutral mechanism of a specific system. , in order to achieve the entire manufacturing process, and even the standardization of product information in various industrial fields. The emergence of STEP-NC may be a revolution in CNC technology. It will have aprofound impact on the development of CNC technology and even the entire manufacturing industry. First, STEP-NC proposes a brand-new manufacturing concept. In the traditional manufacturing concept, NC machining programs are concentrated on a single computer. Under the new standard, NC programs can be distributed on the Internet. This is the direction of open and networked CNC technology. Secondly, STEP-NC CNC system can also greatly reduce the processing drawings (about 75%), processing program preparation time (about 35%) and processing time (about 50%).At present, European and American countries attach great importance to the research of STEP-NC, and Europe has initiated STEP-NC's IMS plan ( Participation in this program comes from 20 CAD/CAM/CAPP/CNC users, vendors and academic institutions in Europe and Japan. STEPTools of the United States is the developer of global manufacturing data exchange software. He has developed a SuperModel for the information exchange of CNC machine tools. Its goal is to describe all machining processes with a unified specification. This new data exchange format has now been validated on prototype prototypes equipped with SIEMENS, FIDIA and European OSACA-NC numerical control systems.2 Basic Estimates of China's CNC Technology and Its Industrial DevelopmentCNC technology in China started in 1958. The development process in the past 50 years can be roughly divided into three stages: the first stage from 1958 to 1979, which is the closed development stage. At this stage, the development of numerical control technology is relatively slow due to the limitations of foreign technology and China's basic conditions. The second stage is the introduction of technology during the “sixth and fifth” periods of the country, the “seventh five-year plan” period, and the “eighth five-year plan period,”and it will be digested and absorbed to initially establish the stage of the national production system. At this stage, due to the reform and opening up and the country’s attention, as well as the improvement of the research and development environment an d the international environment, China’s CNC technology has made great progress in research, development, and localization of products. The third stage is the implementation of industrialization research in the later period of the "Eighth Five-Year Plan" and the "Ninth Five-Year Plan" period of the country, entering the stage of market competition. At this stage, the industrialization of domestically-manufactured CNC equipment has achieved its essenceSexual progress. At the end of the “Ninth Five-Year Plan” period, the domestic market share of domestic CNC machine tools reached 50%, and the number of domestically-manufactured numerical control systems (pervasive models) also reached 10%.Looking at the development process of CNC technology in China in the past 50 years, especially after four five-year plans, the overall results are as follows:a. It lays the foundation for the development of CNC technology and basically masters modern CNC technology. China has now basically mastered the basic technologies from numerical control systems, servo drives, numerical control mainframes, special planes and their accessories. Most of these technologies already have the basis for commercial development. Some technologies have been commercialized and industrialized.b. Initially formed a CNC industrial base. Based on the research results and the commercialization of some technologies, we have established numerical control system production plants such as Huazhong Numerical Control and Aerospace Numerical Control which have mass production capabilities. Lanzhou Electric Machinery Factory, Huazhong Numerical Control and a number of servo systems and servo motor manufacturers, as well as a number of CNC machine manufacturers such as Beijing No. 1 Machine Tool Plant and Jinan No. 1 Machine Tool Plant. These production plants have basically formed China's CNC industrial base.c. Established a basic team of CNC research, development and management talents.Although significant progress has been made in the research, development, and industrialization of numerical control technology, we must also soberly realize that the research and development of high-end numerical control technologies in China, especially the status quo of the technological level of industrialization and the actual needs of China There is a big gap. Although our country's development speed is very fast in the vertical direction, the horizontal ratio (compared with foreign countries) not only has a gap in the level of technology, but also has a gap in the development speed in certain aspects, that is, the gap in the technological level of some highly sophisticated numerical control equipment has expanded. From the international point of view, the estimated level of China's numerical control technology and industrialization is roughly as follows:a. On the technical level, it will be about 10 to 15 years behind the advanced level in foreign countries, and it will be even bigger in terms of sophisticated technology.b. At the industrialization level, the market share is low, the variety coverage is small, and scale production has not yet been established; the specialized production level of functional components and the complete set capacity are low; the appearance quality is relatively poor; the reliability is not high, and the degree of commercialization is insufficient; The domestic CNC system has not established its own brand effect, andthe user's confidence is insufficient.c. On the ability of sustainable development, the research and development and engineering capabilities of pre-competitive numerical control technology are weak; the application of numerical control technology is not strong; the research and formulation of related standard specifications is lagging behind.The main reasons for analyzing the above gaps are as follows:a. Awareness. Insufficient understanding of the arduous, complex and long-term characteristics of the domestic CNC industry process; Insufficient estimates of market irregularities, foreign blockades, killings, and systems; and insufficient analysis of the application level and capabilities of CNC technology in China.b. Systematic aspects. From the point of view of technology, attention has been paid to the issue of CNC industrialization. It has been a time to consider the issue of CNC industrialization from the perspectives of system and industry chain; there is no complete supporting system of high-quality supporting systems, perfect training, and service networks. .c. Mechanisms. Bad mechanisms have led to brain drain, which in turn has restricted technological and technological route innovations and product innovations, and has constrained the effective implementation of planning. It is often planned to be ideal and difficult to implement.d. Technical aspects. Enterprises have little ability to independentlyinnovate in technology, and the engineering ability of core technologies is not strong. The standard of machine tools is backward, the level is low, and the new standard of CNC system is not enough.3 Strategic Thinking on the Development of CNC Technology and Industrialization in China3.1 Strategic ConsiderationsChina is a manufacturing country, and we must try to accept the transfer of the front-end rather than the back-end in the industrial transfer of the world. That is to master the advanced manufacturing core technologies, otherwise, in the new round of international industrial restructuring, China's manufacturing industry will further “empty core”. At the expense of resources, the environment, and the market, we may obtain only the international "processing centers" and "assembly centers" in the world's new economic structure, rather than the status of manufacturing centers that master core technologies. This will seriously affect our country. The development of modern manufacturing.We should pay attention to numerical control technology and industrial issues from the perspective of national security strategy. First of all, we must look at social security because manufacturing industry is the industry with the largest number of employed people in China. Manufacturing industry development can not only improve the people’s living standards, but also ease the country’s The pressure of employmentguarantees social stability. Secondly, from the perspective of national defense security, Western developed countries classify high-precision numerical control products as national strategic materials and implement embargoes and restrictions on China. The “Toshiba Incident” and the “Cox Report” "This is the best illustration.3.2 Development StrategyFrom the perspective of China’s basic national conditions, taking the country’s strategic needs and the market demand of the national economy as the guide, and aiming at improving the comprehensive competitiveness and industrialization le vel of China’s manufacturing equipment industry, we can use systematic methods to choose to dominate the early 21st century in China. The key technologies for the development and upgrade of the manufacturing equipment industry and supporting technologies and supporting technologies for supporting industrialization development are the contents of research and development and the leap-forward development of the manufacturing equipment industry. Emphasizing the market demand as the orientation, that is, taking CNC terminal products as the mainstay, and driving the CNC industry with complete machines (such as large-scale CNC lathes, milling machines, high-speed, high-precision and high-performance CNC machine tools, typical digital machines, key equipment of key industries, etc.). development of. The focus is on the reliability and production scale of CNC systems andrelated functional components (digital servos and motors, high-speed spindle systems and accessories for new equipment, etc.). Without scale, there will be no high-reliability products; without scale, there will be no cheap and competitive products; of course, CNC equipment without scale in China will be difficult to come to the fore. In the research and development of high-precision equipment, we must emphasize the close integration of production, learning, research, and end-users, and aim at “doing, using, and selling off” as a goal, and implement national research on the will of the country to solve the urgent need of the country. . Before the competition, CNC technology emphasizes innovation, emphasizes research and development of technologies and products with independent intellectual property rights, and lays a foundation for the sustainable development of China's CNC industry, equipment manufacturing industry, and even the entire manufacturing industry.中文译文数控技术的发展趋势摘要本文简要介绍了当今世界数控技术及装备发展的趋势及我国数控装备技术发展和产业化的现状, 在此基础上讨论了在我国加入WTO 和对外开放进一步深化的新环境下, 发展我国数控技术及装备、提高我国制造业信息化水平和国际竞争能力的重要性, 并从战略和策略两个层面提出了发展我国数控技术及装备的几点看法。
分析数控机床改造外文文献翻译、中英文翻译、外文翻译

Analysis of transformation of numerical controlmachine toolIn order to survival and development of enterprises, improve the rate of CNC machine tools is necessary. Transformation of the equipment needed for NC machine tools in general, including traditional and recently introduced from abroad, due to a problem can not be put into the machine tool equipment and production lines. First, transform the contents of the NCCNC machine tools and production line transformation of the main contents are: (1) restoration of the original function, machine tools, production lines there is some fault diagnosis and recovery; (2)NC-based, in the general machine tools addend remarkable device or add numerical control system; ( 3) The renovation, to improve accuracy, efficiency and degree of automation, mechanical, electrical parts of the renovation, the mechanical part of there-assembly process, to restore the original precision; can not meet the production requirements of its CNC system be updated with the latest CNC; (4) technology updates or technical innovation, in order to improve performance or grade, or for the use of new technology, new technology, based on the original large-scale technology updates or technical innovation.Second, the development trend of CNC systeml. To open, the sixth generation of PC-based directionThe openness of the PC-based, low-cost, high reliability, rich in natural resources such as hardware and software features, and more CNC system manufacturer will be to go down this path. At least with PC, as its front-end machines, to deal with man-machine interface, programming, networking and communications issues, the original system to take over some tasks PC CNC machines has the friendly interface, will reach all of the CNC system. The remote communication, remote diagnostics and maintenance of applications will be more common.2. To the development of high-speed and high precision.3. To the intelligent direction(1) The application of adaptive control technology. Numerical control system can detect the process of important information and automatically adjust system parameters, improving the system operation status.2) the introduction of expert systems to guide processing. Will be skilled workers and expertise, processing and general laws and special laws into the system to process parameter database support, establish an artificial intelligence expert system.(3) the introduction of fault diagnosis expert system(4) intelligent digital servo drives. Can automatically identify the load and automatically adjust the parameters of the drive system to get the best state of operation.Third, the choice of numerical control system1. Open-loop systemThe system's servo-driven device is a stepper motor, power stepper motors, electro-hydraulic pulse motors. This system does not require position and velocity feedback, displacement accuracy depends mainly on the angular displacement precision stepper motor and gear drive components such as precision screw, so displacement of low accuracy. But the system is simple, debugging easy maintenance, reliable, low cost, easily converted successfully.2. Closed-loop systemThe system consists of grating, sensor position detection device synchronization, etc. The actual measured position signal fed back to the computer, compared with a given value, the difference between the two amplification and transformation, driving the implementing agencies in order to eliminate bias. The system complexity, high cost and strict temperature requirements on the environment. But thesystem of high precision, speed and big power. According to technological requirements and decide whether to adopt.3. Semi-closed-loop systemSemi-closed-loop system detects components installed in the middle of transmission parts, the indirect measurement of the location of the implementation of parts. It can only compensate for part of the components within the system loop error, and therefore its more accurate than the accuracy of closed-loop system is low, but its structure and debugging as compared with the closed-loop system is simple.Current production numerical control system are more companies and manufacturers, foreign companies such as Siemens of Germany, Japan, Fanuc, Inc.; domestic Everest companies such as China, the Beijing Aerospace CNC System Corporation, Huazhong CNC CNC high-grade corporate and Shenyang National Engineering Research Center. Select CNC systems are mainly based on numerical control after transformation to be achieved in a variety of precision machine tools, drive motor power and the user's requirements to determine. Fourth, the main steps CNC transformation1. Determination of rehabilitation programs(1) Mechanical and Electrical Repair transformation combined.Generally speaking, in need of transformation of electrical machines, are in need of mechanical repair. To determine repair requirements, scope and content; have to ascertain the electrical modification of the mechanical structure in need of transformation requirements and content; but also determine the transformation of electrical and mechanical repair, reconstruction staggered between the time requirements. Mechanical properties of intact are electrical transformation success.(2) the easier issues first, after the first partial overall. Determine the transformation step, the whole electrical part of the transformation should be divided into several sub-systems, the basic shape of various systems to be connected after the completion of the whole system work. In each subsystem, we should do first the less technical, workload the larger work, and then do a technical high, requiring fine work, can focus people's attention to key areas.(3) selection system under conditions of use. For the transformation of the object to determine its environment and conditions, which the selection of electrical system protection, anti-jamming, self-cooling and air filtering performance can provide the correct basis. Electrical system options must also be considered mature products, their performance should be reasonable and practical, there are spare parts to provide maintenance support, features a number of years to meetthe current and future development requirements.(4) The implementation and responsibilities of personnel involved in reconstruction.(5) The transformation of the determination of the scope and cycle.2. Transformation of the technical preparation(1) mechanical parts ready. In line with the transformation of mechanical electrical repairs should be completed in advance. The same time, be demolished and replaced and processing should be part of such advance planning is necessary to properly interface with the entire transformation.(2) The electrical information on the new system to digest.(3) The conversion of the old system interface design. According to the scope of each of the different equipment modification required to pre-designed interface, part of the conversion, if the entire transformation should be designed to convert mechanical and electrical interfaces, operation panel control and configuration, the Internet part of the contact, parameter measurement, the maintenance and so on. Require the operation and maintenance easy and reasonable, alignments, fluent, primary and secondary connection point less electrical interference with the strength of the smallest, with an appropriate margin and so on. Local transformation, but also need to consider the performance of the system match theold and new, the voltage polarity and size of change, the installation location, digital-analog conversion, etc., if necessary, need to create their own interfaces.(4) operation and programming staff technical training. ①training should cover the new control panel configuration, function and meaning of the instructions; ②the scope of the new system features, use, and the difference between the old system; ③maintenance requirements; ④programming standards and automated programming and more. Focused understood, grasp operating instructions and programming instructions.(5) Debugging steps and acceptance criteria for the determination. Debugging should be done by the project leader carried out with the others. Debugging step can be from simple to complex, from small to large, from outside to inside, you can also after the first local situation, the whole system after the first subsystem. The development of acceptance criteria must be realistic, too high or too low a standard will have a negative impact on the transformation.3. The implementation of reform(1) The overall maintenance of the machine. The long-term use of the original machine, you need to conduct a comprehensive maintenance. Secondly, the response to machine tools to make achange before the geometric accuracy, dimensional accuracy of measurement, and for the record. In this way pairs of reference to guide the transformation of the role, but also in the transformation of the end for comparison analysis.(2) to retain the electrical adjustment of some of the best. If the electrical system as part of the transformation, in turn, should retain the parts of the maintenance and optimization adjustments, such as high power part of the spare parts replacement, electrical maintenance, drying transformer insulation, pollution, cleaning, ventilation and cooling equipment cleaning, servo Drive optimization adjustments, update aging wires and cables, connectors and other fastening. Only the electrical part of the reservation and do excellent optimization adjustment, in order to ensure that transformed the machine tool have lower failure rates.(3) The original systems were dismantled. The removal of the original system must be controlled carefully to the original drawings in time to make mark in the drawings to prevent the omission or been demolished. In the process of demolition will find some of the new system design in the gaps, it is timely to add and correction. Removed the system should be properly safeguarded in case of unsuccessful reconstruction resume use. There is a definite value, and can be used for spare parts.(4) reasonable arrangements for the location and wiring the new system. Connection must be a clear division of labor, there is one person review the inspection to ensure that the connection process specifications, diameter suitable, correct, reliable and beautiful. (5) debugging. Debug must be pre-established procedures and requirements. Debugging the first to test the safety protection system sensitivity, personal and equipment to prevent accidents. Debugging the site must be clean; the moving coordinate extension units at the center of the whole trip; be able to load test, the first no-load after load; can simulate the experiment, the first real action after simulated; be manual, first manually and automatically.4. Acceptance and post-work(1) The mechanical properties of machine tool acceptance. Machine tool should meet the requirements of the mechanical properties, geometric accuracy should be within the limits prescribed.(2) The electrical control functions and control accuracy and acceptance. The various functions of electrical control actions must meet the normal, sensitive and reliable. Control precision application system itself functions (such as step size, etc.) and standard measuring apparatus (such as laser interferometer, coordinate measuring machine, etc.) control checks, to reach within a range. Should also be modified before the machine with the functions andaccuracy to make comparison, access to quantifiable indicators of difference.(3) The test piece cutting and acceptance. Can refer to the relevant domestic and international standards for CNC cutting specimens, in a qualified operator, the programmer with the trial under the cut. Specimen cutting machine tools can be acceptance of stiffness, cutting force, noise, motion trajectory, related actions, are generally not suitable for specimen use of a product part.(4), drawings, information and acceptance. Machine transformation finished, should be promptly drawings, data, transform the file summary, collate, transfer into the file. This is the future and stable operation of the equipment is very important.(5) Summary and improve.5, numerical examples of reconstruction1. Milling machine with the Siemens 810M transformation X53In 1998, the company invested 200,000 yuan, with Germany's Siemens 810M CNC system, 611A AC servo drive system on the company's X53 model of a milling machine to X, Y, Z three-axis numerical control transformation. Retained the original spindle system and cooling system. -Axis transformation of a ball screw used in the machinery and gear transmission mechanism. Thetransformation of work includes mechanical design, electrical design, PLC program preparation and debugging, machine tool repair, machine installation and debugging. After transformation, milling, processing and effective travel X, Y, Z axis respectively, 880mm, 270mm, 280mm; maximum speed of X, Y, Z axis respectively, 5 000mm/min, 1 500mm/min, 800mm/min; point moving speed of X, Y, Z axis respectively 3 000mm/min, 1 000mm/min, 500 mm / min; machining accuracy of ± 0.001 mm. Machine tools, coordinate linkage to be completed by a variety of complex curve or surface processing.2. GSK980T and stepper drive system with the transformation ofC6140 latheIn 1999, the company invested 8 million yuan, with Guangzhou CNC Equipment Factory production GSK980T numerical control system, DY3 hybrid stepper drive unit on the company's a longerC6140 lathe X, Z 2-axis transform. Retained the original spindle system and cooling system. Transformation of two-axis ball screw in the machinery used, and synchronous transmission. The transformation of work includes mechanical design, electrical design, machine overhaul and machine installation and debugging. Lathe After the transformation, processing and effective stroke X, Z axis respectively, 390mm, 1400mm; maximum speed X, Z axisrespectively, 1 200mm/min, 3 000mm/min; jog speed 400mm/min; point moving fast X, Z-axis respectively, 1 200mm/min, 3000mm/min; machine smallest mobile unit 0.001mm.6, numerical transformation of the issues and recommendations1. Transformation problems in NCCNC machine tools through several transformation and found work, there are also many problems, mainly reflected in: (a) The departments, developers uncertain functions, organizational chaos, a serious impact on progress in the transformation; (2) to develop the work process and plans are mostly developed rule of thumb, less reasonable; (3) the training of relevant personnel is not in place, resulting in machine tool technology officers will not be modified after programming, the operator of the machine operator unskilled and so on.2. Transformation of the proposed NC(1) is responsible for transformation of the staff responsibilities of clear penalties and rewards, fully mobilize the enthusiasm of the staff; train a batch of high-quality applications and maintenance personnel, training for selected officers to go out and learn the advanced technologies;(2) To focus on users, maintenance of CNC system of technicaltraining, the establishment of numerical control technology at home and abroad resource library. The establishment of technical data files, do the work of spare parts.分析数控机床改造为了我国民营企业的生存与发展,提高数控机床的速度是必要的。
机械类数控车床外文翻译外文文献英文文献数控

数控加工中心技术开展趋势与对策原文来源:Zhao Chang-ming Liu Wang-ju(C Machining Processand equipment,2002,China)一、摘要Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment.Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry,Keywords:Numerical ControlTechnology, E quipment,industry二、译文数控技术和装备开展趋势与对策装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术与装备是开展新兴高新技术产业和尖端工业〔如信息技术与其产业、生物技术与其产业、航空、航天等国防工业产业〕的使能技术和最根本的装备。
数控论文带英文版

数控论文带英文版第一篇:数控论文带英文版Development and maintenance of CNC1946 On the birth of the world's first electronic computer, which indicates that human beings created to enhance and replace the mental part of the tool.It is human in the agricultural, industrial society created a tool that is enhanced compared to manual qualitative leap, he entered the information society for human foundation.Half a century, and the core of computer-driven information technology, both through the TV, modern communications, improve the quality of human life, but also improve productivity fast forward, creating a history of human civilization, the production history of the era.The rapid development of information technology led directly to the arrival of the knowledge economy.In 1952, computer technology applied to the machine.Born in the United States first CNC machine puters and control technology in the application of machinery equipment manufacturing industry within the century's most significant technological advances.Since then, the conventional machine produced a qualitative change.Nearly half a century, has undergone two phases of CNC machine tools and the development of six generations.(1)Numerical control(NC)phase(1952-1970 years) early computing speed is low, which was affected scientific computing and data processing is not large, can not meet the requirements of real-time control machine tools.People have used digital logic circuits, “ride” into a dedicated computer as numerical control machine tool system, known as the hardware connection NC(HARD WIREDNC), referred to as NC(NC).With thedevelopment of components, at this stage after three generations, that in 1952 the first generationthe transistor;1965, the third generationpresent)In 1970, GM has a small computer and into mass production there.Its operation faster than the fifties and sixties have increased significantly, more than a special “ride” into a dedicated computer, low cost, high reliability.So it came as a CNC porting the core components, entered a computer numerical control(CNC)stage.By 1971, INTEL Corporation in the United States the world's first computer of the two core componentsthe microprocessor;1990, the sixth generationBASED).CNC system nearly five decades gone through two stages six generation of development, but development to the fifth generation only after a fundamental solution to the reliability is low, the price is extremely expensive, extremely convenient application is very critical issue.Thus, even in industrialized countries, large-scale numerical control system has been applied and popularity in the late seventies early eighties after the thing, that is numerical control technology after nearly three decades of development before wider application to.Abroad has been renamed as early as the computer numerical control(ie CNC), while China is still often called numerical control(NC).So we talk about everyday, “NC” in essence is that “computer numerical control” of C machine tool numerical control system is the core component, therefore, the maintenance of CNC machine tool numerical control system is mainly to maintain.After a NC system for a longer period of use, performance of electronic components to aging or damaged, and some mechanical parts especially, to try to extend the lifetime of components and parts wear cycle, to prevent all kinds of failures, particularly fatal accidents theoccurrence of the numerical control system must be routine maintenance.T o sum up, pay attention to the following aspects.1 NC system maintenance formulate rulesRegulations according to the characteristics of various components to determine their maintenance regulations.Expressly provided, such as what areas need cleaning every day(such as CNC system input / output unit-optical reading machines for cleaning, inspection is well-oiled machine structural parts, etc.), which parts should be regularly checked or replaced(such as brush DC servo motors and commutator should be checked once a month).(2)As less as possible open CNC ark and high voltage ark of the doorBecause in machining workshop in the air of general contain oil mist, dust and even metal powder.Once they fall within the NC system or electrical components on printed circuit, easily lead to decreased insulation resistance between components, and even lead to damage to components and printed circuits.Some users in the summer to make long-term work overload CNC system, CNC cabinet door open to heat, which is not desirable kind of approach will eventually lead to accelerated damage to the CNC system.The correct way is to reduce the numerical control system of the external ambient temperature.Therefore, there should be a strict requirement, unless the necessary adjustments and repairs, just open the doors is not allowed, but not allowed to open doors when in use.Regular cleaning the ark of the numerical control heat ventilation systemShould every day to check on the numerical control system each cooling fan is functioning properly, should inspect working environment condition, every half an year or quarterly review of a duct filter whether jam phenomenon.If excessive dust build-upInternet filter, the need for timely clean-up, otherwise it will cause the temperature inside the high numerical control system(generally not exceed 55 ℃), resulting in overheating or NC alarm system does not work reliably.4 CNC systems are often used to monitor voltage produced by FANUC CNC system, allowing the grid voltage rating of 85% to 110% of range fluctuations.If you exceed this range, it will cause the system not working properly, or even cause damage to electronic components within the NC system.5 periodic replacement of memory battery FANUC CNC production company within the system memory in two ways:(1)No batteries to keep the magnetic bubble memory.(2)the need to maintain the CMOS RAM with battery device is not powered on CNC system in order to maintain the contents of the storage period, with internal rechargeable battery to maintain the circuit, in the NC system is powered by the +5 V power supply through a diode to the CMOS RAM power, and can charge the rechargeable battery;cut off power when the numerical control system is replaced by a battery to maintain the information in CMOS RAM, under normal circumstances, even if the battery has not yet expired, the battery should be replaced once a year, in order to ensure that the system can work properly.In addition, we must note that the battery replacement should be carried out under the NC system power C long-term maintenance when not in numerical order to improve system utilization and reduce the numerical control system failure, CNC machine tools should be used at full capacity, and not long idle, for some reason, resulting in long idle CNC system, in order to numerical control system to avoid damage, please note the following two points:(1)should always power to the CNC system, especially in high humidity environment of therainy season and even more so, lock the machine does not move in the case(that is, the servo motor does not turn time), let dry run CNC e of electrical components to disperse their heat moisture within the NC system, to ensure stable and reliable performance of electronic devices, proved in the air humidity areas, power is to reduce the failure rate is often an effective measure.(2)CNC machine tool feed servo drives using DC and DC servo spindle drive, brush should be removed from the DC motor, so as not due to chemical corrosion, the commutator surface corrosion, resulting in change to the performance deterioration, and even entire motor damage.At present, the field of sheet metal stamping, CNC punching machine / CNC turret punch press with its fast, high precision machining, mold versatile, flexible products, etc., are widely er in choosing a quality mold, its use and maintenance of the level of direct impact to the workpiece machining quality and mold life.Mold control equipment is also an important part of operating costs.First,ensure the best mold clearanceMould clearance is to point to the punch into the next model, the sum of the clearance between the sides.It and thickness, material and the stamping process and suitable mould clearance, can guarantee good punching quality, reduce burr and collapse and keep the sheet metal level off, effectively prevent take material, prolong die life.Through the examination of stamping waste, we can determine whether appropriate mould clearance.If too much clearance waste will be rough rolling fractures and smaller light face.The greater the clearance, fractures and light the viewpoint of the formation of surface and the more they can form punching edge and fracture, appear even a thin rim bumps.Conversely, if the clearance is too small, waste will besmall Angle fractures and larger light face.When slot, step blunt, cutting local stamping, lateral force will make the punch deflection and cause unilateral gap is too small, sometimes edge migration will scratch lower die, causing the lower die quickly wear.Mould to best clearance stamping, waste of fractures and bright surface with the same Angle, and overlap each other, so that can make the cutting force minimum, punching the burr was very small.Second, timely grinding can effectively extend the life of the mold if too large of a workpiece or stamping burrs generated when abnormal noise may die passivation.Check the punch and the die, when its blade edges have a radius of approximately 0.10mm wear arc, it is necessary sharpening of.Practice has shown that frequent small amounts of sharpening rather than waiting until non-grinding mill can not be again when, not only to maintain good quality of the workpiece, reducing the blanking force, but die life can be extended more than doubled.In addition to knowing when to die grinding, the grinding master the correct method is especially important.Mold grinding procedure is as follows:1)grinding, it will punch a vertical grip on the surface grinder's magnetic chuck or fixture within the V-groove, each grinding capacity of 0.03 ~ 0.05mm, repeat until the punch grinding sharp, the maximum amount of grinding is generally 0.1 ~ 0.3mm.2)the use of sintered aluminum oxide grinding wheel, the hardness D ~ J, grit sizes 46 to 60, preferably for high-speed steel grinding wheel.3)When the grinding force or mold near the wheel, add coolant to prevent overheating and cracking the mold or annealing, should be required in accordance with the manufacturer of high quality multi-purpose coolant.4)The amount of feed wheel down 0.03 ~ 0.08 mm, lateral feed rate0.13 ~ 0.25 mm, lateral feed rate 2.5 ~ 3.8m/min.5)After grinding, oil stone polished edge, remove the burr, and grind the radius of 0.03 ~ 0.05 mm round, to prevent edge cracking.6)punch to the magnetic treatment and sprayed with oil to prevent rust.Third, the elimination and reduction of adhesive material way because when the pressure and heat stamping, sheet metal fine particles will bond to the surface of the punch, resulting in poor quality punching.Removal of binder used fine whetstone grinding, sanding should be directed to the direction of movement with the same punch, so the light will avoid the generation of further binder.Do not use gauze and other coarse grinding, to avoid the punch surface is more rough and more prone to sticky material.Reasonable die clearance, good stamping process, and the necessary lubrication sheet, will reduce the production of sticky material.Prevent overheating, the general lubrication of the way, this will reduce the friction.If you can not waste lubricating or rebound occurs, may take the following approach: alternate punch than the same size turns punching,Can make its repeated in before use have long cooling time.Overheating will use all die.Through the programming control changing mould, the interrupt their long time of repetition of work, or reduce its pressing frequency.Four, blunt is when the deformation of sheet metal porous to prevent measuresIf in a rush on board a porous, due to the accumulation of shear stress plank cannot maintain level.Every time punching, around the hole material will down deformation, causing the surface appears on the sheet metal tensile stress, and under the surface have compressive stress.For a small amount of punching, and its effect is not obvious, but when punching quantity is increased, the pull, compressive stress somewhere inaccumulation, until materials.Eliminate such deformation of a method is: to every one KongChong cut, and then returns to the rest of the punching holes.So although also can produce stress, but easing in the same direction order stamping of stress at accumulation, also can make the two groups before and after the stress of offset each other holes, so as to prevent the deformation of sheet metal.Five, try to avoid cutting through the narrow strip materialWhen the used for cutting width of less than in the process of sheet metal sheet thickness, lateral force for and make the punch to bending deformation, make side of the gap is too small or wear is intensified, serious scratch when the mould, make fluctuation mode and damage.Suggestions don't step blunt width of less than 2.5 times the thickness of the narrow a sheet metal sheet.Cutting through the narrow strip material, sheet metal tend to turn into the mode of open, and not be completely cut off, and even wedge dies profile.If can't avoid the above situation, the proposed use output slabs supported the role of the punch fully guided mold.Six, the punch surface hardening and the applicable scopeAlthough heat treatment and surface coating can improve the punch surface properties, but is not the solution to the problems and prolong die life is pressing the general method.Generally speaking, the coating surface hardness and improve the punch that side lubricity improved, but in large tonnage, hard materials stamping, these advantages in about 1000 times after stamping and disappeared.According to the following circumstance can use surface hardening the punch: Blunt soft or sticky materials(such as aluminum);Blunt thin non-abrasive materials(such as glass epoxypieces);Blunt thin hard material(such as stainless steel);Frequent point blunt;Abnormal lubrication.Surface hardening usually adopts of titanium coating and seepage nitrogen, method, its surface hardening layer thickness for 12 ~ 60 μ m molecular structure, it is a part of the matrix punch, and not only is the coating.Surface hardening of the mould can press usually way further.Through the surface hardening will lower mould in the stainless steel plate wear behavior, but can not prolong its service life, and the appropriate and timely lubrication, according to procedures, burrs, is the effective way.Seven, CNC turret punch die a neutral is bad for the overhaulIf a punch mould to neutral is bad, cause mould fast passivation, workpiece machining quality is poor, can the following maintenance: Check the level of the machine tool, when necessary to adjust;Check and lubrication of model hole on the wheel and the direction key, if there is damage timely repair;Clean the next mould seat, so as to lower die accurate installation, check and its key or the keyway wear and, when necessary, to change;Use the special mandrel calibration mould location, such as a deviation adjust in time.The contents of the situation is usually concerned, in view of the press and the concrete types die specifications are different, the user should combine the actual to know and summarizing the experience, and displays the best use of the mould performance.数控的发展及设备维护浅谈1946年诞生了世界上第一台电子计算机,这表明人类创造了可增强和部分代替脑力劳动的工具。
关于数控车床编程外文文献翻译中英文翻译外文翻译

关于数控车床编程外文文献翻译、中英文翻译、外文翻译英文原文On the NC latheCNC machine tool numerical control machine tools (Computer numerical control machine tools) abbreviation, is provided with a program control system of automatic machine tools. The logic control system can deal with the control code or other symbolic instruction specified program, and decoding the digital code, said information carrier, through the numerical control device input. After processing by CNC device control signals, control the machine movements, by drawing the shape and size requirements, will be automatically processed by the parts.Features: CNC machine tool operation and monitoring of all completed inthe numericalcontrol unit, it is the brain of CNC machine tools. Compared with the general machine tools, CNC machine tools has the following characteristics:● the processing object adaptability, adapt to the characteristics of mold products such as a single production, provide the appropriate processing method for die and mould manufacturing; ● high machining accuracy, processing with stable quality; ● can coordinate linkage, processing complex shape parts;● machining parts change, only need to change the program, can save the preparation time of production;● the machine itself high precision, rigidity, can choose the am ount of processing good, high productivity (3~5 times as common machine);The machine is a high degree of automation, reducing labor intensity;● conducive to the production management modernization. The use of CNC machine tools and the standard code of digital information processing, information transmission, the use of computer control method, has laid the foundation for the integration of computer aided design, manufacturing and management;● on the operators of higher quality, higher demands for the repair ofthe technical staff;● high reliability.Composition: CNC machine tools in general by the input medium, man-machine interactive equipment, CNC equipment, feed servo drive system, spindle servo drive system, the auxiliary control device, feedback apparatus and adaptive control device etc.. [4] in NC machining, NC milling processing is the most complex, need to solve most problems. NC programming of NC line in addition to CNC milling, cutting, CNC EDM, CNC lathe, CNC grinding, each with its own characteristics, servo system is the role of the motion signal is convertedinto the machine moving parts from the numerical control device of pulse. Concrete has the following parts: the structure of CNC machine tools.Driver: he is driving parts of CNC machine tools, actuator, including spindle drive unit, feeding unit, spindle motor and feed motor. He through the electric or electro-hydraulic servo system to realize the spindle and feeddrive under the control of numerical control device. When several feed linkage, can complete the positioning, processing line, plane curve and space curve.The main performance (1) the main dimensions. (2) the spindle system. (3) feed system. (4) tool system.(5) electrical. Including the main motor, servo motor specifications and power etc.. (6) cooling system. Including the cooling capacity, cooling pump output. (7) dimensions. Expressed as length * width * height.Development trend of CNC lathe:High speed, precision, complex, intelligent and green is the general trend in the development of CNC machine tool technology, in recent years, made gratifying achievements in practicality and industrialization. Mainly in the:1 machine tool composite technology to further expand with the CNC machine tool technology, composite processing technology matures, including milling - car compound, car millingcompound, car - boring - drill - gear cutting compound, composite grinding, forming, composite processing, precision and efficiency of machining isgreatly improved. \processing factory\the development of compound processing machine tool is the trend of diversified.Intelligent technology 2 CNC machine tools have a new breakthrough, in the performance of NC system has been reflected more. Such as: automaticallyadjust the interference anti-collision function, after the power of workpiece automatically exit safety power-off protection function, machining parts detection and automatic compensation function of learning, high precisionmachining parts intelligent parameter selection function, process automatic elimination of machine vibration functions into the practical stage, intelligent upgrade the function of machine and quality.The 3 robots enable flexible combination of flexible combination of higher efficiency of robot and the host are widely used, make flexible line more flexible, extending the function, flexible line shorten further, more efficient. Robot and machining center, milling composite machine, grinder, gear processing machine tool, tool grinding machine, electric machine, sawing machine, punching machine, laser cutting machine, water cutting machine etc. various forms of flexible unit and flexible production line has already begun the application.4 precision machining technology has the machining precision of CNC metal cutting machine tools from the yarn in the original (0.01mm) up to micronlevel (0.001mm), some varieties has reached about 0.05 μ M. Micro cutting and grinding machining of ultra precision CNC machine tools, precision can reach about 0.05 μ m, shape precision can reach about 0.01 μ M. Special processing precision by using optical, electrical, chemical, energy can reach nanometer level (0.001 μ m). By optimizing the design of machine tool structure, machine tool parts of ultra precision machining and precision assembly, using high precision closed loop control andtemperature, vibration and other dynamic error compensation technology, improve the geometric accuracy of machine tool processing, reduce the shape of error, surface roughness, and into the submicron, nano super finishing tiThe 5 functional component to improve the performance of functional components are at a high speed, high precision, high power and intelligent direction, and obtain the mature application. A full digital AC servo motor and drive device, high technology content of the electric spindle, linear motor, torque motor, linear motion components with high performance, application of high precision spindle unit and other function parts, greatly improving the technical level of CNC machine tools.The feed drive system of CNC lathe: Effect of feed drive system,The feed drive system of CNC machine tools will be received pulse command issued by the numerical control system, and the amplification and conversion machine movements carry the expected movement.Two, the feeding transmission system requirementsIn order to guarantee the machining accuracy of NC machine tool is high,the feed drive system of transmission accuracy, sensitivity high (fast response), stable work, high stiffness and friction and inertia small, service life, and can remove the transmission gap. Category three, feed drive system 1, stepping motor servo system Generally used for NC machine tools. 2, DC servo motor servo systemPower is stable, but because of the brush, the wear resulting in use needto change. Generally used for middle-grade CNC machine tools. 3, AC servomotor servo systemThe application is extremely widespread, mainly used in high-end CNC machine tools. 4, the linear motor servo systemNo intermediate transmission chain, high precision, the feed speed, no length limit; but the poor heat dissipation, protection requirements are particularly high, mainly used for high-speed machine.Driving component four, feed system 1, the ball screw nut pairNC machining, the rotary motion into linear motion, so the use of screwnut transmissionmechanism. NC machine tools are commonly used on the ball screw, as shownin Figure 1-25, it can be a sliding friction into rolling friction, meet the basic requirements of the feed system to reduce friction. The transmissionside of high efficiency, small friction, and can eliminate the gap, no reverse air travel; but the manufacturing cost is high, can not lock, size is not too big, generally used for linear feed in small CNC machine tool. 2, rotary tableIn order to expand the scope of the process of NC machine tools, CNC machine tools in addition to make linear feed along the X, Y, Z three coordinate axes, often also need a circumferential feed movement around Y or Z axis. Circular feed motion of CNC machine tools in general by the rotary table to realize, for machining center, rotary table has become an indispensablepart of. Rotary table of commonly used CNC machine tools in the indexing table and NC rotary table. (1) indexing tableIndexing table can only finish dividing movement, not circular feed, it is in accordance with the instructions in the NC system, when indexing will work together with the workpiece rotation angle. When indexing can also use manual indexing. Provisions of indexing table is generally only rotary angle (such as 90, 60 and 45 degree). (2) NC rotary tableNC rotary table appearance similar to the indexing table, but the internal structure and function is not the same. The main function of the NC rotary table is based on the numerical control device sends command pulse signal, complete circumferential feed movement, various arc processing and surface processing, it can also be graduation work. 3, guideRail is an important part of feed drive system, is one of the basic elements of the structure of machine tool, rigidity, precision and accuracy of NC machine tool which determines to a large extent retention. At present, guide the NC machine tool are sliding rail, rolling guideway and hydrostatic guideway. (1) sliding guideSliding guide rail has the advantages of simple structure, easy manufacture, good stiffness, vibration resistance and high performance, widely used in CNC machine tools, the use of most metal plastic form, known as the plastic guide rail, as shown in figure 1-26.On characteristics of the plastic sliding guide: friction characteristicis good, good wear resistance, stable movement, good manufacturability, low speed. (2) rolling guideRolling guide is placed in the rail surface between the ball, roller or needle roller, roller, the rolling friction instead of sliding surface of the guide rail between wipe.Rolling guide rail and the sliding rail, high sensitivity, small friction coefficient, and the dynamic, static friction coefficient is very small, so the motion is uniform, especially in the low speed movement, the stick-slip phenomenon is not easy to occur; high positioning accuracy,repeatability positioning accuracy is up to 0.2 μ m; traction force is small, wear small, portable in movement; good precision, long service life. But the vibration of rolling guide, high requirements on protection, complicated structure, difficult manufacture, high cost.Automatic tool changer:One, the function of automatic tool changerAutomatic tool changing device can help save the auxiliary time of CNC machine tools, and meet in an installation completed procedure, stepprocessing requirements. Two, on the requirement of automatic tool changerNumerical control machine tool for automatic tool changer requirement is: tool change quickly, time is short, high repetitive positioning accuracy, tool storage capacity is sufficient, small occupation space, stable and reliable work. Three, change the knife form 1, rotary cutter replacementIts structure is similar to the ordinary lathe turret saddle, according to the processing of different objects can be designed into square or six angle form, consists of the NC system sends out the instruction to the rotary cutter.2, the replacement of the spindle head tool changeThe spindle head pre-loaded required tools, in order to machining position, the main motor is switched on, drives the cutter to rotate. The advantage of this method is that eliminates the need for automatic clamping, cutting tool, clamping and cutting tool moving and a series of complex operation, reducetool change time, improve The ATC reliability. 3, the use of changing toolThe processing required tools are respectively arranged in the standard tool, adjust the size of the machine after certain way add to the knife, the exchange device from the knife and the spindle take knife switch.感谢您的阅读,祝您生活愉快。
数控技术类外文文献翻译、中英文翻译、外文翻译

外文原文:NC Technology1、Research current situation of NC lathe in our timesResearch and development process to such various kinds of new technologies as numerical control lathe , machining center , FMS , CIMS ,etc. of countries all over the world, linked to with the international economic situation closely. The machine tool industry has international economy to mutually promote and develop, enter 21 alert eras of World Affairs, the function that people's knowledge plays is more outstanding, and the machine tool industry is regarded as the foundation of the manufacturing industry of the machine, its key position and strategic meaning are more obvious. Within 1991-1994 years, the economic recession of the world, expensive FMS, CIMS lowers the temperature, among 1995-2000 years, the international economy increases at a low speed, according to requisition for NC lathe and the world four major international lathes exhibition in order to boost productivity of users of various fields of present world market (EMO , IMTS , JIMTOF , China CIMT of Japan of U.S.A. of Europe), have the analysis of the exhibit, there are the following several points mainly in the technical research of NC lathe in our times:(1)、Pay more attention to new technology and innovationWorldwide , are launching the new craft , new material , new structure , new unit , research and development of the new component in a more cost-effective manner, developmental research of for instance new cutter material , the new electric main shaft of main shaft structure , high speed , high-speed straight line electrical machinery ,etc.. Regard innovating in improvement of the processing technology as the foundation, for process ultra and hard difficult to cut material and special composite and complicated part , irregular curved surface ,etc. research and develop new lathe variety constantly.(2)、Improve the precision and research of machine toolingIn order to improve the machining accuracy of the machining center, are improving rigidity of the lathe, reduction vibration constantly, dispel hotly and out of shape, reduce the noise , improve the precision of localization of NC lathe, repeat precision, working dependability , stability , precision keeping, world a lot of country carry on lathe hot error , lathe sport and load out of shape software of error compensate technical research, take precision compensate, software compensate measure improve , some may make this kind of error dispel 60% already. And is developing retrofit constantly, nanometer is being processed.(3)、Improve the research of the machine tooling productivityWorld NC lathe, machining center and corresponding some development of main shaft, electrical machinery of straight line, measuring system, NC system of high speed, under the prerequisite of boosting productivity.(4)、What a lot of countries have already begun to the numerical control system melt intelligently, openly, study networkedlyA、Intelligent research of the numerical control systemMainly showing in the following aspects: It is intelligent in order to pursue the efficiency of processing and process quality, the self-adaptation to the processing course is controlled, the craft parameter produces research automatically; Join the convenient one in order to improve the performance of urging and use intelligently, to the feedback control, adaptive operation , discerning automatically load selects models automatically, since carries on research whole definitely ,etc. of the electrical machinery parameter; There are such research of the respect as intelligent automatic programming , intelligent man-machine interface , intelligence diagnosing , intelligent monitoring ,etc..B、The numerical control system melts and studies openMainly showing in the following aspects: The development of the numerical control system is on unified operation platform, face the lathe producer and support finally, through changing, increasing or cutting out the structure target(numerical control target ), form the seriation, and can use users specially conveniently and the technical know-how is integrated in the control system, realize the open numerical control system of different variety, different grade fast, form leading brand products with distinct distinction. System structure norm of the open numerical control system at present, norm, disposing the norm, operation platform, numerical control systematic function storehouse and numerical control systematic function software developing instrument, etc. are the core of present research to pass through.C、Meeting the manufacture system of the production line , demand for the information integration of the manufacturing company networkedly greatly of numerical control equipment, it is a basic unit of realizing the new manufacture mode too.2、Classification of the machining center(1)Process according to main shaft space position when it classifies to be as follows, horizontal and vertical machining center.Horizontal machining center, refer to the machining center that the axis level of the main shaft is set up. Horizontal machining center for 3-5 sport coordinate axis, acommon one three rectilinear motion coordinate axis and one turn the coordinate axis of sports round (turn the working bench round), it can one is it is it finish other 4 Taxi processing besides installing surfaces and top surfaces to insert to install in work piece, most suitable for processing the case body work piece. Compared with strength type machining center it, the structure is complicated, the floor space is large, quality is large, the price is high.Vertical machining center, the axis of the main shaft of the vertical machining center, in order to set up vertically, its structure is mostly the regular post type, the working bench is suitable for processing parts for the slippery one of cross, have 3 rectilinear motion coordinate axis generally, can find a room for one horizontal numerical control revolving stage (the 4th axle) of axle process the spiral part at working bench. The vertical machining center is of simple structure, the floor space is small, the price is low, after allocating various kinds of enclosures, can carry on the processing of most work pieces.Large-scale gantry machining center, the main shafts are mostly set up vertically, is especially used in the large-scale or with complicated form work piece , is it spend the many coordinate gantry machining center to need like aviation , aerospace industry , some processing of part of large-scale steam turbine.Five machining centers, this kind of machining center has function of the vertical and horizontal machining center, one is it after inserting, can finish all five Taxi processing besides installing the surface to install in work piece, the processing way can make form of work piece error lowest, save 2 times install and insert working, thus improve production efficiency, reduce the process cost.(2)Classify by craft useIs it mill machining center to bore, is it mill for vertical door frame machining center, horizontal door frame mill the machining center and Longmen door frame mill the machining center to divide into. Processing technology its rely mainly on the fact that the door frame is milled, used in case body, shell and various kinds of complicated part special curve and large processes , curved surface of outline process, suitable for many varieties to produce in batches small.Complex machining center, point five times and compound and process mainly, the main shaft head can be turned round automatically, stand, lie and process, after the main shaft is turned round automatically, realize knowing that varies in the horizontal and vertical direction.(3)Classify by special functionSingle working bench, a pair of working bench machining center;Single axle, dual axle, three axle can change machining center, main shaft of case;Transfer vertically to the tower machining center and transfer;One hundred sheets of storehouses adds the main shaft and changes one one hundred sheets of machining centers;One hundred sheets of storehouses connects and writes hands to add the main shaft and change one hundred sheets of machining centers;One hundred sheets of storehouses adds the manipulator and adds one pair of main shafts to transfer to the tower machining center.3、Development trend of the current numerical control latheAt present, the advanced manufacturing technology in the world is rising constantly, such application of technology as ultrafast cutting , ultraprecision processing ,etc., the rapid development of the flexible manufacturing system and integrated system of the computer one is constant and ripe, have put forward higher demand to the process technology of numerical control. Nowadays the numerical control lathe is being developed in several following directions.(1). The speed and precision at a high speed , high accuracy are two important indexes of the numerical control lathe, it concerns directly that processes efficiency and product quality. At present, numerical control system adopt-figure number, frequency high processor, in order to raise basic operation speed of system. Meanwhile, adopt the super large-scale integrated circuit and many microprocessors structure, in order to improve systematic data processing ability, namely improve and insert the speed and precision of mending operation. Adopt the straight line motor and urge the straight line of the lathe working bench to be servo to enter to the way directly, it is quite superior that its responds the characteristic at a high speed and dynamically. Adopt feedforward control technology, make it lag behind error reduce greatly, thus improve the machining accuracy cut in corner not to track.For meet ultrafast demand that process, numerical control lathe adopt main shaft motor and lathe structure form that main shaft unite two into one, realize frequency conversion motor and lathe main shaft integrate , bearing , main shaft of electrical machinery adopt magnetism float the bearing , liquid sound pigeonhole such forms as the bearing or the ceramic rolling bearing ,etc.. At present, ceramic cutter and diamond coating cutter have already begun to get application.(2). Multi-functional to is it change all kinds of machining centers of organization (a of capacity of storehouse can up to 100 of the above ) automatically tofurnished with, can realize milling paring , boring and pares , bores such many kinds of processes as paring , turning , reaming , reaming , attacking whorl ,etc. to process at the same time on the same lathe , modern numerical control lathe adopt many main shaft , polyhedron cut also , carry on different cutting of way process to one different position of part at the same time. The numerical control system has because adopted many CPU structure and cuts off the control method in grades, can work out part processing and procedure at the same time on a lathe, realize so-called "the front desk processes, the backstage supporter is an editor ". In order to meet the needs of integrating the systematic one in flexible manufacturing system and computer, numerical control system have remote serial interface , can network , realize data communication , numerical control of lathe, can control many numerical control lathes directly too.(3). Intelligent modern numerical control lathe introduce the adaptive control technology, according to cutting the change of the condition, automatic working parameter, make the processing course can keep the best working state , thus get the higher machining accuracy and roughness of smaller surface , can improve the service life of the cutter and production efficiency of the equipment at the same time . Diagnose by oneself, repair the function by oneself, among the whole working state, the system is diagnosed, checked by oneself to CNC system and various kinds of equipment linking to each other with it at any time. While breaking down, adopt the measure of shutting down etc. immediately, carry on the fault alarm, brief on position, reason to break down, etc.. Can also make trouble module person who take off automatically, put through reserve module ,so as to ensure nobody demand of working environment. For realize high trouble diagnose that requires, its development trend adopts the artificial intelligence expert to diagnose the system.(4).Numerical control programming automation with the development of application technology of the computer, CAD/CAM figure interactive automatic programming has already get more application at present, it is a new trend of the technical development of numerical control. It utilize part that CAD draw process pattern , is it calculate the trailing punishing to go on by cutter orbit data of computer and then, thus produce NC part and process the procedure automatically, in order to realize the integration of CAD and CAM. With the development of CIMS technology , the full-automatic programming way in which CAD/CAPP/CAM integrates has appeared again at present, it, and CAD/CAM systematic programming great differencetheir programming necessary processing technology parameter needn't by artificial to participate in most, get from CAPP database in system directly.(5). The dependability of the dependability maximization numerical control lathe has been the major indicator that users cared about most all the time. The numerical control system will adopt the circuit chip of higher integrated level, will utilize the extensive or super large-scale special-purpose and composite integrated circuit, in order to reduce the quantity of the components and parts, to improve dependability. Through the function software of the hardware, in order to meet various kinds of demands for controlling the function, adopt the module, standardization, universalization and seriation of the structure lathe noumenon of the hardware at the same time, make not only improve the production lot of the hardware but also easy to is it produce to organize and quality check on. Still through operating and starting many kinds of diagnostic programs of diagnosing, diagnosing, diagnosing off-line online etc. automatically, realize that diagnoses and reports to the police the trouble to hardware, software and various kinds of outside equipment in the system. Utilize the warning suggestion, fix a breakdown in time; Utilize fault-tolerant technology, adopt and design the important part " redundantly ", in order to realize the trouble resumes by oneself; Utilize various kinds of test, control technology, excess of stroke, knife damages, interfering, cutting out, etc. at the time of various kinds of accidents as production, carry on corresponding protection automatically.(6). Control system miniaturization systematic miniaturization of numerical control benefit and combine the machine, electric device for an organic whole. Adopt the super large-scale integrated component , multi-layer printed circuit board mainly at present, adopt the three-dimensional installation method , make the electronic devices and components must use the high density to install, narrow systematic occupying the space on a larger scale. And utilize the new-type slim display of colored liquid crystal to substitute the traditional cathode ray tube, will make the operating system of numerical control miniaturize further. So can install it on the machine tool conveniently, benefit the operation of the numerical control lathe correctly even more.本文出自:Shigley J E. Mechanical Engineering Design. New York: McGraw-Hill, 1998译文:数控技术1、当前世界NC机床的研究现状世界各国对数控机床、加工中心以至FMS、CIMS等各种新技术的研究与发展进程,是与世界经济形势紧密相连的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Numerical Control SystemThe numerical control system is the digital control system abbreviation. By early is composed of hardware circuit is called hardware numerical control (Hard NC), after 1970, hardware circuit components gradually instead by the computer called for computer numerical control system.Computerized numerical control system is a system that is use computer control processing function to achieve numerical control system. CNC system according to the computer memory stored in the control program execution part or all, numerical control function, and is equipped with interface circuit and servo drive the special computer system.CNC system consists of NC program, input devices; output devices, computer numerical control equipment (CNC equipment), programmable logic controllers (PLC), the spindle and feed drive (servo) drive (including detection devices) and so on.The core of CNC system is equipment. By using the computer system with the function of software and PLC instead of the traditional machine electric device to make the system logic control more compact, its flexibility and versatility, reliability become more better, easy to implement complex numerical control function, use and maintenance can be more convenient, and it also has connected and super ordination machine and the remote communication function.At present, the numerical control system has variety of different forms; composition structure has its own characteristics. These structural features from the basic requirements of the initial system design and engineering design ideas. For example, the control system of point and continuous path control systems have different requirements. For the T system and the M system, there are also very different, the former applies to rotary part processing, the latter suitable for special-shaped the axially symmetrical parts processing. For different manufacturers, based on historical development factors and vary their complex factors, may also be thinking in the design is different. For example, the United States Dynapath system uses a small plate for easy replacement and flexible combination of the board; while Japan FANUC system is a large plate structure tends to make the system work in favor of reliability, make the system MTBF rate continues to increase. However, no matter what kind of system, their basic principle and structure are very similar.The numerical control system generally consists of three major components, namely the control system, servo system and position measuring system. Control procedures by interpolation operation work piece, issue control instructions to the servo drive system; servo drive system control instructions amplified by the servo motor-driven mechanical movement required; measurement system detects the movement of mechanical position or speed, and feedback to the control system, to modify the control instructions. These three parts combine to form a complete closed-loop control of the CNC system.Control system mainly consists of bus, CPU, power supply, memory, operating panel and display, position control unit, programmable logic controller control unit and datainput / output interface and so on. The latest generation of CNC system also includes a communication unit; it can complete the CNC, PLC's internal data communications and external high-order networks. Servo drive system including servo drives and motors. Position measuring system is mainly used grating, or circular grating incremental displacement encoder.CNC system hardware from the NC device, input / output devices, drives and machine logic control devices, electrical components, between the four parts through the I / O interface to interconnect.Numerical control device is the core of CNC system, its software and hardware to control the implementation of various CNC functions.The hardware structure of no device by CNC installations in the printed circuit board with infixing pattern can be divided into the big board structure and function module (small board) structure; Press CNC apparatus hardware manufacturing mode, can be divided into special structure and personal computer type structure; Press CNC apparatus in the number of microprocessor can be divided into single microprocessor structure and many microprocessor structure.(1)Large panel structure and function templates structure1) Large panel structurePanel structures CNC system CNC equipment from the main circuit board, position control panels, PC boards, graphics control panel, additional I / O board and power supply unit and other components. The main circuit board printed circuit board is big; the other circuit board is a small plate, inserted in the large printed circuit board slot. This structure is similar to the structure of micro-computer.2) Function templates structure(2)Single-microprocessor structure and mulct-microprocessor structure1) Single-microprocessor structureIn a single-microprocessor structure, only a microprocessor to focus on control, time-sharing deals with the various tasks of CNC equipment.2) melt-microprocessor structureWith the increase in numerical control system functions, CNC machine tools to improve the processing speed of a single microprocessor CNC system can not meet the requirement; therefore, many CNC systems uses a multi-microprocessor structure. If a numerical control system has two or more microprocessors, each microprocessor via the data bus or communication to connect, share system memory and common I / O interfaces, each processor sharing system Part of the work, which is multi-processor systems.CNC software is divided into application software and system software. CNC system software for the realization of various functions of the CNC system, the preparation of special software, also known as control software, stored in the computer EPROM memory. CNC Systems feature a variety of settings and different control schemes, and their system software in the structure and size vary widely, but generally include input data processing procedures, computing interpolation procedures, speed control procedures, management procedures and diagnostic procedures.(1)Input data processing proceduresIt receives input part program, the standard code, said processing instructions and datadecoding, data processing, according to the prescribed format for storage. Some systems also calculated to compensate, or interpolation operation and speed control for pre-computation. Typically, the input data processing program, including input, decoding and data processing three elements.(2)Computing interpolation proceduresCNC work piece processing system according to the data provided, such as curve type, start, end, etc. operations. According to the results of operations were sent to each axis feed pulse. This process is called interpolation operation. Feed drive servo system Impulsive table or by a corresponding movement of the tool to complete the procedural requirements of the processing tasks.Interpolation for CNC system is the side of the operation, while processing, is a typical real-time control, so the interpolation directly affects the speed of operation the machine feed rate, and should therefore be possible to shorten computation time, which is the preparation of interpolation Complements the key to the program.(3)Speed control proceduresSpeed control program according to the given value control the speed of operation of the frequency interpolation, in order to maintain a predetermined feed rate. Changes in speed is large, the need for automatic control of acceleration and deceleration to avoid speed drive system caused by mutations in step.(4)Management proceduresManagement procedures responsible for data input, data processing, interpolation processing services operations as the various procedures for regulation and management. Management process but also on the panel command, the clock signal, the interrupt caused by fault signals for processing.(5)Diagnostic proceduresDiagnostic features are found in the running system failure in a timely manner, and that the type of failure. You can also run before or after the failure, check the system main components (CPU, memory, interfaces, switches, servo systems, etc.) function is normal, and that the site of failure.MachiningAny machining must have three basic conditions: machining tools, work piece and machining sports. Machining tool edge should be, the material must be rigid than the work piece. Different forms of tool structure and cutting movements constitute different cutting methods. Blade with a blade-shaped and have a fixed number of methods for cutting tools for turning, drilling, boring, milling, planning, broaching, and sawing, etc.; edge shape and edge with no fixed number of abrasive or abrasive Cutting methods are grinding, grinding, honing and polishing.Machining is the most important machinery manufacturing processing methods. Although the rough improve manufacturing precision, casting, forging, extrusion, powder metallurgy processing applications on widely, but to adapt to a wide range of machining,and can achieve high accuracy and low surface roughness, in Manufacturing still plays an important role in the process. Cutting metal materials have many classifications. Common are the following three kinds.By cutting process feature distinguishing characteristics of the decision process on the structure of cutting tools and cutting tools and work piece relative motion form. According to the technical characteristics of cutting can be divided into: turning, milling, drilling, boring, reaming, planning, shaping, slotting, broaching, sawing, grinding, grinding, honing, super finishing, polishing, gear Processing, the worm process, thread processing, ultra-precision machining, bench and scrapers and so on. By material removal rate and machining accuracy distinction can be divided into: ① rough: with large depth of cut, one or a few times by the knife away from the work cut out most or all allowances, such as rough turning, rough planning, Rough milling, drilling and sawing, etc., rough machining precision high efficiency low, generally used as a pre-processing, and sometimes also for final processing. ② Semi-finishing: General roughing and finishing as the middle between the process, but the work piece accuracy and surface roughness on the less demanding position, but also can be used as the final processing. ③ finishing: cutting with a fine way to achieve higher machining surface accuracy and surface quality, such as fine cars, fine planning, precision hinges, grinding and so on. General is the final finishing process. ④Finishing process: after the finish, the aim is to obtain a smaller surface roughness and to slightly improve the accuracy. Finishing processing allowance is small, such as honing, grinding, ultra-precision grinding and super finishing and so on. ⑤Modification process: the aim is to reduce the surface roughness, to improve the corrosion, dust properties and improve appearance, but does not require higher precision, such as polishing, sanding, etc. ⑥ultra-precision machining: aerospace, lasers, electronics, nuclear energy and other cutting-edge technologies that need some special precision parts, high accuracy over IT4, surface roughness less than Ra 0.01 microns. This need to take special measures to ultra-precision machining, such as turning mirror, mirror grinding, chemical mechanical polishing of soft abrasive.Distinguished by method of surface machining, the work piece is to rely on the machined surface for cutting tool and the work piece to obtain the relative motion. By surface methods, cutting can be divided into three categories. ①tip trajectory method: relying on the tip relative to the trajectory of the surface to obtain the required work piece surface geometry, such as cylindrical turning, planning surface, cylindrical grinding, with the forming surface, such as by turning mode. The trajectory depends on the tool tip provided by the cutting tool and work piece relative motion. ② forming tool method: short forming method, with the final work piece surface profile that matches the shape forming cutter or grinding wheel, such as processing a shaped surface. At this time forming part of the machine movement was replaced by the blade geometry, such as the shape of turning, milling and forming grinding forming and so on. The more difficult the manufacture of forming cutter, machine - clamp - work piece - tool formed by the process system can withstand the cutting force is limited, forming method is generally used for processing short shaped surface. ③ generating method: also known as rotary cutting method, cutting tool and work piece during processing as a relatively developed into a campaign tool (or wheel) and the work piece instantaneous center line of pure rolling interaction between thetwo maintain a certain ratio between Is obtained by processing the surface of the blade in this movement in the envelope. Gear machining hobbling, gear shaping, shaving, honing, and grinding teeth (not including form grinding teeth), etc. are generating method processing.PLCEarly called the programmable logic controller PLC (Programmable Logic Controller, PLC), which is mainly used to replace the logic control relays. With the technology, which uses micro-computer technology, industrial control device function has been greatly exceeded the scope of logic control, therefore, such a device today called programmable logic controller, referred to as the PC. However, in order to avoid personal computer (Personal Computer) in the short confusion, it will be referred to as programmable logic controller PLC, plc since 1966, the U.S. Digital Equipment Corporation (DEC) developed there, the current United States, Japan, Germany, PLC Good quality and powerful.The basic structure of Programmable Logic ControllerA. PowerPLC's power in the whole system plays a very important role. If you do not have a good, reliable power system is not working, so the PLC manufacturers design and manufacture of power very seriously. General AC voltage fluctuations of +10% (+15%) range, you can not take other measures to PLC to connect directly to the AC line.B.Central processing unit (CPU)Central processing unit (CPU) is the central PLC control. It is given by the function of PLC system program from the programmer receives and stores the user program and data type; check the power supply, memory, I / O and timer alert status, and to diagnose syntax errors in the user program. When the PLC into run-time, first it scans the scene to receive the status of various input devices and data, respectively, into I / O image area, and then one by one from the user program reads the user program memory, after a shell and press Provisions of the Directive the result of logic or arithmetic operations into the I / O image area or data register. And the entire user program is finished, and finally I / O image area of the state or the output of the output register data to the appropriate output device, and so on to run until stopped.To further improve the reliability of PLC, PLC is also large in recent years constitutes a redundant dual-CPU system, or by three voting systems CPU. Thus, even if a CPU fails, the whole system can still work properly.C.MemoryStorage system software of memory called system program memory. Storage application software of memory called the user program memory.D.Input and output interface circuit1, the live input interface circuit by the optical coupling circuit and the computer input interface circuit, the role of PLC and field control of an interface for input channels.2, Field output interface circuit by the output data registers, interrupt request strobe circuit and integrated circuit, the role of PLC output interface circuit through the on-siteimplementation of parts of the output to the field corresponding control signal.E.Function moduleSuch as counting, positioning modules.munication moduleSuch as Ethernet, RS485, Prefab’s-DP communication module.数控系统数控系统是数字控制系统简称,英文名称为Numerical Control System,早期是由硬件电路构成的称为硬件数控(Hard NC),1970年代以后,硬件电路元件逐步由专用的计算机代替称为计算机数控系统。