电磁场与电磁波课后答案(杨儒贵第二版)-2
电磁场与电磁波课后习题及答案

电磁场与电磁波课后习题及答案习题解答如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为U0,求槽内的电位函数。
解根据题意,电位?(x,y)满足的边界条件为y?)?a(y,?) 0①?(0,) 0②?(x,0?③?(x,b)?U0 根据条件①和②,电位?(x,y)的通解应取为y ?(x,y)??Ansinh(n?1?n?yn?x)sin()aa b o U0 条件③,有 a 题图U0??Ansinh(? ax n?1n?bn?x)sin()aa sin(两边同乘以n?x)a,并从0到a对x积分,得到a2U0n?xAn?sin()dx?asinh(n?ba)?a04U0?,n?1,3,5,?n?sinh(n?ba)2U0?(1?cosn?) ??n?2,4,6,n?sinh(n?ba)?0,?(x,y)?故得到槽内的电位分布4U01?,sinh?n?1,3,5nn?(ban?ysinh()a?nx)sin(a ) 两平行无限大导体平面,距离为b,其间有一极薄的导体片y?d到y?b(???x??)。
上板和薄片保持电位U0,下板保持零电位,求板间电位的解。
设在薄片平面上,从y?0到y?d,电位线性变化,?(0,y)?U0yd。
y U0解应用叠加原理,设板间的电位为?(x,y)??1(x,y)??2(x,y) 其中,boxydxy oxy 题图?1(x,y)为不存在薄片的平行无限大导体平面间的电位,即?1(x,y)?U0yb;?2(x,y)是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①?2(x,0)??2(x,b)?0②?2(x,y)?0(x??) U0?U?y??0b?2(0,y)??(0,y)??1(0,y)???U0y ?U0y?b?d③(0?y?d)(d?y?b) ??xn?y?nb?2(x,y)?? Ansin()e?(x,y)的通解为bn?1根据条件①和②,可设 2 U0?U?y?n?y??0bAnsin()???bn?1?U0y?U0 y?b?d条件③有sin(两边同乘以d(0?y?d)(d?y?b) n?y)b,并从0到b 对y积分,得到b2U2Uyn?y11n?yAn?0?(1?)sin()dy?0?(?) ysin()dy?2U02bsin(n?d)b0bbbddbb(n?)db ?xU02bU0?1n?dn?y?nby?sin()sin()e 2?2?(x,y)?bd?bbn?1n故得到求在上题的解中,除开定出边缘电容。
电磁场与电磁波基础教程(第2版)习题解答

《电磁场与电磁波基础教程》(第2版)习题解答第1章1.1 解:(1)==A B=C(2))))23452A x y zB y zC x z ==+-=+=-,,;A a a a a a -a a a a a A(3)()()+2431223x y z x y z =+-+-+=--=+;A B a a a a a a A B (4)()()23411x y z y z ⋅=+-⋅-+=-;A B a a a a a (5)()()234104x y z y z x y z ⨯=+-⋅-+=---;A B a a a a a a a a (6)()()()1045242x y z x z ⨯⋅=-++⋅-=-;A B C a a a a a(7)()()()x 2104522405x y z x z y ⨯⨯=-++⨯-=-+A B C a a a a a a a a 。
1.2解:cos 68.56θθ⋅===︒;A B A BA 在B 上的投影cos 1.37B A θ===A ;B 在A 上的投影cos 3.21A B θ===B 。
1.3 解:()()()()()()()4264280⋅=-++-=正交A B 。
1.4 解:1110x x y y z z x y y z z y ⋅=⋅=⋅=⋅=⋅=⋅=,,;;a a a a a a a a a a a a 0x x y y z z ⨯=⨯=⨯=;a a a a a a x y z y z x z x y ⨯=⨯=⨯=;,a a a a a a a a a 。
1.5 解:(1)111000z z z z ρρϕϕρϕϕρ⋅=⋅=⋅=⋅=⋅=⋅=,,;,,a a a a a a a a a a a a ;000z z z z z ρρϕϕρϕϕρρϕ⨯=⨯=⨯=⨯=⨯=⨯=,,;,,a a a a a a a a a a a a a a a 。
电磁场与电磁波第二版课后答案

电磁场与电磁波第二版课后答案本文档为《电磁场与电磁波》第二版的课后答案,包含了所有章节的练习题的答案和解析。
《电磁场与电磁波》是电磁学领域的经典教材,它讲述了电磁场和电磁波的基本原理和应用。
通过学习本书,读者可以深入了解电磁学的基本概念和原理,并且能够解决一些相关问题。
第一章绪论练习题答案1.电磁场是由电荷和电流产生的一种物质性质,具有电场和磁场两种形式。
电磁波是电磁场的振动。
电磁辐射是指电磁波传播的过程。
2.对于一点电荷,其电场是以该点为中心的球对称分布,其强度与距离成反比。
对于无限长直导线产生的电场,其强度与距离呈线性关系,方向垂直于导线轴线。
3.电磁场的本质是相互作用力。
电场力是由于电荷之间的作用产生的,磁场力是由于电流之间的作用产生的。
解析1.电磁场是由电荷和电流产生的物质性质。
当电荷存在时,它会产生一个电场,该电荷周围的空间中存在电场强度。
同时,当电流存在时,它会产生一个磁场,该电流所在的区域存在磁场。
电磁波是电磁场的振动传播。
电磁波是由电磁场的变化引起的,相邻电磁场的振动会相互影响,从而形成了电磁波的传播。
电磁辐射是指电磁波在空间中的传播过程。
当电磁波从一个介质传播到另一个介质时,会发生折射和反射现象。
2.在一点电荷产生的电场中,电场强度与该点到电荷的距离成反比,即\(E = \frac{{k \cdot q}}{{r^2}}\),其中\(E\)为电场强度,\(k\)为电场常数,\(q\)为电荷量,\(r\)为距离。
对于无限长直导线产生的电场,其电场强度与离导线的距离呈线性关系。
当离无限长直导线的距离为\(r\)时,其电场强度可表示为\(E = \frac{{\mu_0 \cdot I}}{{2 \pi \cdot r}}\),其中\(E\)为电场强度,\(\mu_0\)为真空中的磁导率,\(I\)为电流强度。
3.电磁场的本质是相互作用力。
当两个电荷之间有作用力时,这个作用力是由于它们之间的电场力产生的。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)全套完整版

r1 r2 r1r2 因此,
cos sin1 sin2 (cos1 cos2 sin1 sin2 ) cos1 cos2 sin1 sin2 cos(1 2 ) cos1 cos 2
cos( ) cos cos sin sin 证明 由于两矢量位于 z 0平面内,因此均为二维矢量, 它们可以分别表示为
A ex A cos ey A sin B ex B cos ey B sin
已 知 A B A B c o s , 求 得
cos A B cos cos A B sin sin
AB
即
cos( ) cos cos sin sin
1-3 已 知 空 间 三 角 形 的 顶 点 坐 标 为 P1(0, 1, 2) , P2 (4, 1, 3) 及 P3 (6, 2, 5) 。试 问 :① 该 三 角 形 是 否 是 直 角 三 角形;②该三角形的面积是多少? 解 由题意知,三角形三个顶点的位置矢量分别为
解 ① A Ax2 Ay2 Az2 12 22 32 14
B
Bx2
B
2 y
Bz2
32 12 22 14
C Cx2 Cy2 Cz2 22 02 12 5
②
ea
A A
A 14
1 14
ex 2ey 3ez
4
将点 P(1,2,3)
的
坐
标
代
入
,
得
P
e y
6
e3
ez
3 e3 。 2
那么,在 P 点的最大变化率为
电磁场与电磁波课后习题答案 第二章

1-1. (1) 叙述库仑定律,并写出数学表达式。
(2)电荷之间的作用力满足牛顿第三定律吗?请给出证明。
解:(1)库仑定律内容为:真空中两个静止的点电荷之间的相互作用力的大小,与它们的电量q 和'q 的乘积成正比,与它们之间距离R 的平方成反比。
作用力的方向沿两者连线的方向。
两点电荷同号时为斥力,异号时为吸力。
所以:(2)电荷之间的作用力不满足牛顿第三定律,请看下面的例证:1q 以速度1v 运动,q 2以速度2v运动。
如图1-2所示。
此时,2q 在1q 处产生有电场2E和磁场2H 。
而1q 在2q 处也产生电场1E和磁场1H 。
但因2q 在1q 处产生的磁场方向与1v 平行。
故由洛仑兹公式知,q 1所受的力为 )(2120112121N E q H v q E q F=⨯+=μ 只有电场力。
但q 1对q 2的作用力为:10221112H v q E q Fμ⨯+= (N) 既有电场力,又有磁场力,所以两者不相等。
1-2 (1) 洛仑磁力表达式中,哪部分做功,哪部分不做功,为什么? (2) 洛仑兹力满足迭加原理吗?为什么? 解: (1) 洛仑磁力公式为H v q E q F0μ⨯+= (N )洛仑兹力做的功为⎰⋅=csd F W,其中dt v s d = 所以有:⎰⋅=cs d F W=⎰∆⋅tdt v F=⎰∆⨯+tdt v H v q E q)(0μ=⎰⎰∆∆⋅⨯+⋅ttdt v H v q dt v E q)(0μ=⎰∆⋅tdt v E q(J)其中使用了矢量恒等式()()BA C CB A ⨯⋅=⨯⋅所以,洛仑兹力作的功为⎰∆⋅=tdt v E q W=)(J sd E qC⎰⋅所以,洛仑兹力中,因为E q 与电荷的做功无关。
而H v q0μ⨯部分总是与电荷的运动方向垂直,故E q 部分做功,而H v q0μ⨯部分不做功。
(2)因为电荷受力与E 和H间都是线性关系,所以,洛仑兹力满足迭加原理。
电磁场与电磁波第2章课后答案

电磁场与电磁波第2章课后答案2-1.已知真空中有四个点电荷q C 11=,q C 22=,q C 34=,q C 48=,分别位于(1,0,0),(0,1,0),(-1,0,0,),(0,-1,0)点,求(0,0,1)点的电场强度。
解:z y r z x r z y r z xr ??;??;??;??4321+=+=+-=+-=ρρρρ 84?15?6?3)(41024442333222221110πεπεz y xr r q r r q r r q r r q E ++=+++=ρ2-2.已知线电荷密度为ρl 的均匀线电荷围成如图所示的几种形状,求P 点的电场强度。
题2-2图解:(a) 由对称性04321=+++=E E E E E ρρρρρ(b) 由对称性0321=++=E E E E ρρρρ(c) 两条半无限长线电荷产生的电场为yay x y x a E E E ll a ?2)}??()??{(40021περπερ-=+--=+=ρρρ 半径为a 的半圆环线电荷产生的电场为y aE lb ?20περ=ρ总电场为0=+=b a E E E ρρρ2-3.真空中无限长的半径为a 的半边圆筒上电荷密度为ρs ,求轴线上的电场强度。
解:在无限长的半边圆筒上取宽度为?ad 的窄条,此窄条可看作无限长的线电荷,电荷线密度为?ρρad s l =,对?积分,可得真空中无限长的半径为a 的半边圆筒在轴线上的电场强度为y d x y a d r a E ss s ?)?cos ?sin (22?00000??-=--==πππερπερπε?ρρ 题2-3图题2-4图2-4.真空中无限长的宽度为a 的平板上电荷密度为ρs ,求空间任一点上的电场强度。
解: 在平板上'x 处取宽度为'dx 的无限长窄条,可看成无限长的线电荷,电荷线密度为'dx s l ρρ=,在点),(y x 处产生的电场为ρρρπε'?21),(0dx y x E d s =ρ其中 22)'(y x x +-=ρ;22)'(??)'(?yx x y y xx x +-+-=ρ对'x 积分可得无限长的宽度为a 的平板上的电荷在点),(y x 处产生的电场为)}2/2/(2?)2/()2/(ln ?{4),(2222y a x arctg y a x arctg y y a x y a x x y x E s --+++-++=περρ2-5.已知真空中电荷分布为ρ=≤>r a r ar a220;;ρs b r a ==;r 为场点到坐标原点的距离,a ,b 为常数。
电磁场与电磁波课后习题答案(杨儒贵编着)(第二版)

第五章 恒定磁场重点和难点该章重点及处理方法与静电场类似。
但是磁感应强度的定义需要详细介绍,尤其要强调磁场与运动电荷之间没有能量交换,电流元受到的磁场力垂直于电流的流动方向。
说明磁导率与介电常数不同,磁导率可以小于1,而且大多数媒质的磁导率接近1。
讲解恒定磁场时,应与静电场进行对比。
例如,静电场是无散场,而恒定磁场是无旋场。
在任何边界上电场强度的切向分量是连续的,而磁感应强度的法向分量是连续的。
重要公式磁感应强度定义:根据运动电荷受力: B v F ⨯=q 根据电流元受力: B l F ⨯=d I 根据电流环受力: B m T ⨯=真空中恒定磁场方程: 积分形式: I ⎰=⋅ll B 0d μ⎰=⋅SS B 0d微分形式:J B 0 μ=⨯∇0=⋅∇B已知电流分布求解电场强度:1,A B ⨯∇=V V ''-'=⎰'d )(4)( 0 r r r J r A πμ2,V V ''-'-⨯'=⎰'d )()( 4)(3 0 r r r r r J r B πμ 毕奥─萨伐定律。
3,I ⎰=⋅ll B 0d μ安培环路定律。
面电流产生的矢量磁位及磁感应强度分别为S ''-'=⎰'d )(4)(0r r r J r A S S πμS ''-'-⨯'=⎰'d )()(4)( 30 r r r r r J r B S S πμ 线电流产生的矢量磁位及磁感应强度分别为⎰''-'=l r r l r A d 4)(0I πμ ⎰''-'-⨯'=l r r r r l r B 30 )(d 4)(I πμ矢量磁位满足的微分方程:J A 0 2μ-=∇无源区中标量磁位满足的微分方程: 0 2=∇m ϕ 媒质中恒定磁场方程: 积分形式: I l =⋅⎰l H d⎰=⋅SS B 0d微分形式:J H =⨯∇ 0=⋅∇B磁性能均匀线性各向同性的媒质:场方程积分形式:⎰=⋅lI d μl B⎰=⋅BS H 0d场方程微分形式: J B μ=⨯∇ 0=⋅∇H矢量磁位微分方程:J A 2μ-=∇ 矢量磁位微分方程的解:V V ''-'=⎰'d )(4)(r r r J r A πμ 恒定磁场边界条件:1,t t H H 21=。
电磁场与电磁波第二章课后答案

第二章静电场重点和难点电场强度及电场线等概念轻易接收,重点讲授若何由物理学中积分情势的静电场方程导出微分情势的静电场方程,即散度方程和旋度方程,并强调微分情势的场方程描写的是静电场的微分特征或称为点特征.应用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系.经由过程书中列举的4个例子,总结归纳出根据电荷散布盘算电场强度的三种办法.至于媒质的介电特征,应侧重解释平均和非平均.线性与非线性.各向同性与各向异性等概念.讲授介质中静电场方程时,应强调电通密度仅与自由电荷有关.介绍鸿沟前提时,应解释仅可根据积分情势的静电场方程,因为鸿沟上场量不持续,因而微分情势的场方程不成立.关于静电场的能量与力,应总结出盘算能量的三种办法,指出电场能量不相符迭加道理.介绍应用虚位移的概念盘算电场力,常电荷体系和常电位体系,以及广义力和广义坐标等概念.至于电容和部分电容一节可以从简.主要公式真空中静电场方程: 积分情势:⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分情势:ερ=⋅∇E0=⨯∇E已知电荷散布求解电场强度:1,)()(r r E ϕ-∇=;⎰''-'=V Vd )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 30d |4))(()(|r r r r r r E περ 3,⎰=⋅S S E 0d εq高斯定律介质中静电场方程: 积分情势: q S=⋅⎰ d S D⎰=⋅ll E 0d微分情势:ρ=⋅∇D0=⨯∇E线性平均各向同性介质中静电场方程: 积分情势: εqS=⋅⎰ d S E ⎰=⋅ll E 0d微分情势:ερ=⋅∇E0=⨯∇E静电场鸿沟前提: 1,t t E E 21=.对于两种各向同性的线性介质,则2,s n n D D ρ=-12.在两种介质形成的鸿沟上,则 对于两种各向同性的线性介质,则3,介质与导体的鸿沟前提:0=⨯E e n ;S n D e ρ=⋅若导体四周是各向同性的线性介质,则ερSn E =; ερϕS n -=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ==离散带电体的能量:∑==ni i i e Q W 121Φ散布电荷的能量:l S V W l l S S Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w对于各向同性的线性介质,则2 21E w e ε=电场力:库仑定律:r r q q e F 24πε'=常电荷体系:常数=-=q e lW F d d常电位体系:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分离为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,体系处于均衡状况,试求q '的大小及地位. 解 要使体系处于均衡状况,点电荷q '受到点电荷q 1及q 2的力应当大小相等,偏向相反,即q q q q F F ''=21.那么,由1222022101244r r r q q r q q =⇒'='πεπε,同时斟酌到d r r =+21,求得可见点电荷q '可以随意率性,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 31.2-2 已知真空中有三个点电荷,其电量及地位分离为:试求位于)0,1,0(-P 点的电场强度.解 令321,,r r r 分离为三个电电荷的地位321,,P P P 到P 点的距离,则21=r ,32=r ,23=r .应用点电荷的场强公式re E 204r q πε=,个中r e 为点电荷q 指向场点P 的单位矢量.那么,1q 在P 点的场壮大小为021011814πεπε==r q E ,偏向为()z yr e ee +-=211.2q 在P 点的场壮大小为0220221214πεπε==r q E ,偏向为()z y xr e e ee ++-=312.3q 在P 点的场壮大小为023033414πεπε==r q E ,偏向为y r e e -=3则P 点的合成电场强度为2-3 直接应用式(2-2-14)盘算电偶极子的电场强度.解 令点电荷q -位于坐标原点,r 为点电荷q -至场点P 的距离.再令点电荷q +位于+z 坐标轴上,1r 为点电荷q +至场点P 的距离.两个点电荷相距为l ,场点P 的坐标为(r,θ,).根据叠加道理,电偶极子在场点P 产生的电场为斟酌到r >> l ,1r e = e r ,θcos 1l r r -=,那么上式变成式中 ()2122212211cos 211cos 2---⎪⎪⎭⎫⎝⎛-+=-+=θθr l r lr rl l r r认为rl变量,并将2122cos 21-⎪⎪⎭⎫ ⎝⎛-+θr lr l 在零点作泰勒睁开.因为r l <<,略去高阶项后,得应用球坐标系中的散度盘算公式,求出电场强度为 2-4 已知真空中两个点电荷的电量均为6102-⨯C,相距为2cm, 如习题图2-4所示.试求:①P 点的电位;②将电量为6102-⨯C 的点电荷由无穷远处迟缓地移至P 点时,外力必须作的功.解 根据叠加道理,P 点的合成电位为 是以,将电量为的点电荷C1026-⨯由无穷远处迟缓地移到P 点,外力必须做的功为()J 5==q W ϕ2-5 经由过程电位盘算有限长线电荷 的电场强度.习题图2-4解 树立圆柱坐标系. 令先电荷沿z 轴放置,因为构造以z 轴对称,场强与φ无关.为了简略起见,令场点位于yz 平面.设线电荷的长度为L ,密度为l ρ,线电荷的中点位于坐标原点,场点P 的坐标为⎪⎭⎫⎝⎛z r ,2,π.应用电位叠加道理,求得场点P 的电位为式中()220r l z r +-=.故因ϕ-∇=E ,可知电场强度的z 分量为 电场强度的r 分量为 式中2tanarc ,2tan arc 21Lz r L z r -=+=θθ,那么,合成电强为当L时,πθθ→→ ,021,则合成电场强度为可见,这些成果与教材2-2节例4完整雷同.2-6 已知散布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度.y习题图2-5r 0Pzzrod ll θ1θ2解 树立直角坐标,令线电荷位于xy平面,且以y 轴为对称,如习题图2-6所示.那么,点电荷l l d ρ在圆心处产生的电场强度具有两个分量E x 和E y .因为电荷散布以y 轴为对称,是以,仅需斟酌电场强度的y E 分量,即斟酌到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为2-7 已知真空中半径为a 的圆环上平均地散布的线电荷密度为l ρ,试求经由过程圆心的轴线上任一点的电位及电场强度.解 树立直角坐标,令圆环位于坐标原点,如习题图2-7所示.那么,点电荷上P 点产l l d ρ在z 轴生的电位为习题图2-6习题图2-7y根据叠加道理,圆环线电荷在P 点产生的合成电位为因电场强度ϕ-∇=E ,则圆环线电荷在P 点产生的电场强度为2-8 设宽度为W ,面密度为S ρ的带状电荷位于真空中,试求空间任一点的电场强度.解 树立直角坐标,且令带状电荷位于xz 平面内,如习题图2-8所示.带状电荷可划分为许多条宽度为x 'd 的无穷长线电荷,其线密度为x s 'd ρ.那么,该无穷长线电荷产生的电场强度与坐标变量z 无关,即 式中 ()22y x x r +'-=得()[]()[]y x x yx x x s yxe e E +'-+'-'=2202d d περ习题图2-8yy(a)(b))那么()[]()[]y x x yx x x s w w yxe e E +'-+'-'=⎰-220222d περ2-9 已知平均散布的带电圆盘半径为a ,面电荷密度为S ρ,位于z = 0平面,且盘心与原点重合,试求圆盘轴线上任一点电场强度E .解 如图 2-9所示,在圆盘上取一半径为r ,宽度为rd 的圆环,该圆环具有的电荷量为s r r q ρπd 2d =.因为对称性,该圆环电荷在z 轴上任一点P 产生的电场强度仅的r 有z 分量.根据习题2-7成果,获知该圆环电荷在P 产生的电场强度的z 分量为那么,全部圆盘电荷在P 产生的电场强度为2-10 已知电荷密度为S ρ及S ρ-的两块无穷大面电荷分离位于x = 0及x = 1平面,试求10 ,1<<>x x 及0<x 区域中的电场强度.解 无穷大平面电荷产生的场强散布必定是平均的,其电场偏向垂直于无穷大平面,且分离指向两侧.习题图2-9y是以,位于x = 0平面内的无穷大面电荷S ρ,在x < 0区域中产生的电场强度11E x e E -=-,在x > 0区域中产生的电场强度11E x e E =+.位于x = 1平面内的无穷大面电荷S ρ-,在x < 1区域中产生的电场强度22E x e E =+,在x > 1区域中产生的电场强度22E x e E -=-.由电场强度法向鸿沟前提获知,即 01010==+x sE E ρεε12020=-=--x sE E ρεε由此求得212ερsE E ==根据叠加定理,各区域中的电场强度应为2-11 若在球坐标系中,电荷散布函数为试求b r a a r <<<< ,0及b r >区域中的电通密度D . 解 作一个半径为r 的球面为高斯面,由对称性可知式中q 为闭合面S 包抄的电荷.那么在a r <<0区域中,因为q = 0,是以D = 0. 在b r a <<区域中,闭合面S 包抄的电荷量为是以,()r e D 2336310ra r -=- 在b r >区域中,闭合面S 包抄的电荷量为是以,()r e D 2336310ra b -=-2-12 若带电球的表里区域中的电场强度为 试求球表里各点的电位. 解 在a r <区域中,电位为在a r >区域中,()rq r r =⋅=⎰∞r E d ϕ 2-13 已知圆球坐标系中空间电场散布函数为 试求空间的电荷密度.解 应用高斯定理的微分情势0ερ=⋅∇E ,得知在球坐标系中那么,在a r ≤区域中电荷密度为 在a r ≥区域中电荷密度为2-14 已知真空中的电荷散布函数为式中r 为球坐标系中的半径,试求空间各点的电场强度.解 因为电荷散布具有球对称性,取球面为高斯面,那么根据高斯定理在a r ≤≤0区域中 在a r >区域中2-15 已知空间电场强度z y x e e e E 543-+=,试求(0,0,0)与(1,1,2)两点间的电位差.解 设P 1点的坐标为(0,0,0,), P 2点的坐标为(1,1,2,),那么,两点间的电位差为式中 z y x d d d d ,543z y x z y x e e e l e e e E ++=-+=,是以电位差为2-16 已知同轴圆柱电容器的内导体半径为a ,外导体的内半径为b .若填充介质的相对介电常数2=r ε.试求在外导体尺寸不变的情形下,为了获得最高耐压,表里导体半径之比.解 已知若同轴线单位长度内的电荷量为q 1,则同轴线内电场强度r e E rq πε21=.为了使同轴线获得最高耐压,应在保持表里导体之间的电位差V 不变的情形下,使同轴线内最大的电场强度达到最小值,即应使内导体概况a r =处的电场强度达到最小值.因为同轴线单位长度内的电容为则同轴线内导体概况a r =处电场强度为令b 不变,以比值ab 为变量,对上式求极值,获知当比值e ab =时,()a E 取得最小值,即同轴线获得最高耐压.2-17 若在一个电荷密度为ρ,半径为a 的平均带电球中,消失一个半径为b 的球形空腔,空腔中间与带电球中间的间距为d ,试求空腔中的电场强度.解 此题可应用高斯定理和叠加道理求解.起首设半径为a的全部球内充满电荷密度为ρ的电荷,则球内P 点的电场强度为式中r 是由球心o 点指向P 点的地位矢量,再设半径为b 的球腔内充满电荷密度为ρ-的电荷,则其在球内P 点的电场强度为式中r '是由腔心o '点指向P 点的地位矢量.那么,合成电场强度P P E E 21+等于本来空腔内任一点的电场强度,即式中d 是由球心o 点指向腔心o '点的地位矢量.可见,空腔内的电场是平均的. 2-18 已知介质圆柱体的半径为a ,长度为l ,当沿轴线偏向产生平均极化时,极化强度为P ,试求介质中约束电荷在圆柱表里轴线上产生的电场强度.解 树立圆柱坐标,且令圆柱的下端面位于xy 平面.因为是平均极化,故只斟酌面约束电荷.并且该约束电荷仅消失圆柱高低端面.已知面约束电荷密度与极化强度的关系为式中e n 为概况的外法线偏向上单位矢量.由此求得圆柱体上端面的约束电荷面密度为P s =1ρ,圆柱体习题图2-18下端面的约束面电荷密度为P s -=2ρ.由习题2-9获知,位于xy 平面,面电荷为s ρ的圆盘在其轴线上的电场强度为是以,圆柱下端面约束电荷在z 轴上产生的电场强度为而圆柱上端面约束电荷在z 轴上产生的电场强度为那么,高低端面约束电荷在z 轴上任一点产生的合成电场强度为2-19 已知内半径为a ,外半径为b 的平均介质球壳的介电常数为ε,若在球心放置一个电量为q 的点电荷,试求:①介质壳表里概况上的约束电荷;②各区域中的电场强度.解 先求各区域中的电场强度.根据介质中高斯定理在a r ≤<0区域中,电场强度为 在b r a ≤<区域中,电场强度为 在b r >区域中,电场强度为再求介质壳表里概况上的约束电荷.因为()E P 0εε-=,则介质壳内概况上约束电荷面密度为外概况上约束电荷面密度为2-20 将一块无穷大的厚度为d 的介质板放在平均电场E 中,四周媒质为真空.已知介质板的介电常数为ε,平均电场E 的偏向与介质板法线的夹角为1θ,如习题图2-20所示.当介质板中的电场线偏向42πθ=时,试求角度1θ及介质概况的约束电荷面密度.解 根据两种介质的鸿沟前提获知,鸿沟上电场强度切向分量和电通密度的法向分量持续.是以可得221sin sin θθE E =; 221cos cos θθD D =已知220 ,E D E D εε==,那么由上式求得已知介质概况的约束电荷)(0E D e P e ερ-⋅=⋅='n n s ,那么,介质左概况上约束电荷面密度为10021020211cos 111θεεεεεεερE n s⎪⎭⎫⎝⎛--=⋅⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⋅=⋅='D e D e P e n n1介质右概况上约束电荷面密度为100220202222cos 111θεεεεεεερE n s⎪⎭⎫⎝⎛-=⋅⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⋅=⋅='D e D e P e n n 2-21 已知两个导体球的半径分离为6cm 及12cm,电量均为6103-⨯C,相距很远.若以导线相连后,习题图2-202e试求:①电荷移动的偏向及电量;②两球最终的电位及电量.解 设两球相距为d ,斟酌到d >> a , d >> b ,两个带电球的电位为⎪⎭⎫ ⎝⎛+=d q a q 210141πεϕ;⎪⎭⎫ ⎝⎛+=d q b q 120241πεϕ 两球以导线相连后,两球电位相等,电荷从新散布,但总电荷量应当守恒,即21ϕϕ=及()C 106621-⨯==+q q q ,求得两球最终的电量分离为可见,电荷由半径小的导体球转移到半径大的导体球,移动的电荷量为()C 1016-⨯.两球最终电位分离为2-22 已知两个导体球的重量分离为m 1=5g ,m 2=10g ,电量均为6105-⨯C,以无重量的绝缘线相连.若绝缘线的长度l = 1m ,且弘远于两球的半径,试求;①绝缘线割断的瞬时,每球的加快度;②绝缘线割断良久今后,两球的速度. 解 ①绝缘线割断的瞬时,每球受到的力为是以,两球获得的加快度分离为② 当两球相距为l 时,两球的电位分离为⎪⎪⎭⎫⎝⎛+=l q r q 2110141πεϕ; ⎪⎪⎭⎫⎝⎛+=l q r q 1220241πεϕ此时,体系的电场能量为22112121q q W ϕϕ+=绝缘线割断良久今后,两球相距很远(l >>a ,l >>b ),那么,两球的电位分离为10114r q πεϕ=;20224r q πεϕ=由此可见,绝缘线割断良久的前后,体系电场能量的变更为这部分电场能量的变更改变成两球的动能,根据能量守恒道理及动量守恒定理可得下列方程:2222112121v m v m W +=,02211=+v m v m由此即可求出绝缘线割断良久今后两球的速度v 1和v 2:()m 74.71=v ;()s m 87.32=v2-23 如习题图2-23所示,半径为a 的导体球中有两个较小的球形空腔.若在空腔中间分离放置两个点电荷q 1及q 2,在距离a r >>处放置另一个点电荷q 3,试求三个点电荷受到的电场力.解 根据原书2-7节所述,关闭导体空腔具有静电屏障特征.习题图2-23是以,q 1与q 2之间没有感化力,q 3对于q 1及q 2也没有感化力.但是q 1及q 2在导体外概况产生的感应电荷-q 1及-q 2,对于q 3有感化力.斟酌到r >>a ,根据库仑定律获知该感化力为2-24 证实位于无源区中任一球面上电位的平均值等于其球心的电位,而与球外的电荷散布特征无关. 解 已知电位与电场强度的关系为ϕ-∇=E ,又知ερ=⋅∇E ,由此获知电位知足下列泊松方程 应用格林函数求得泊松方程的解为 式中()r r r r,'-='π410G .斟酌到()3041r r r r r r,'-'-='∇'πG ,代入上式得若闭合面S 内为无源区,即0=ρ,那么若闭合面S 为一个球面,其半径为a ,球心为场点,则a ='-r r ,那么上式变成斟酌到差矢量r r '-的偏向为该球面的半径偏向,即与s 'd 的偏向正好相反,又ϕ-∇=E ,则上式变成因为在S 面内无电荷,则0d ='⋅'⎰S s E ,那么由此式可见,位于无源区中任一球面上的电位的平均值等于其球心的电位,而与球外的电荷散布无关. 2-25 已知可变电容器的最大电容量pF 100max =C ,最小电容量pF 10min =C ,外加直流电压为300V,试求使电容器由最小变成最大的进程中外力必须作的功. 解 在可变电容器的电容量由最小变成最大的进程中,电源作的功和外力作的功均改变成电场储能的增量,即式中 )J (101.8)(Δ6min max -⨯=-==V C V C V q V W 电源 是以,外力必须作的功为2-26 若使两个电容器均为C 的真空电容器充以电压V 后,断开电源互相并联,再将个中之一填满介电常数为r ε的幻想介质,试求:①两个电容器的最终电位;②转移的电量.解 两电容器断开电源互相并联,再将个中之一填满相对介电常数为r ε幻想介质后,两电容器的电容量分离为两电容器的电量分离为21,q q ,且因为两个电容器的电压相等,是以 联立上述两式,求得rCV q ε+=121,rr CV q εε+=122是以,两电容器的最终电位为 斟酌到12q q >,转移的电量为 2-27半径为a ,外导体半径为b ,其 内一半填充介电常数为1ε的介质,另一半填充介质的介电常 数为2ε,如习题图2-27所示.当外加电压为V 时,试求:①电容器中的电场强度; ②各鸿沟上的电荷密度;③电容及储能. 解 ①设内导体的外概况上单位长度的电量为q ,外导体的内概况上单位长度的电量为q -.取表里导体之间一个同轴的单位长度圆柱面作为高斯面,由高斯定理 求得()q D D r =+21π已知222111 ,E D E D εε==,在两种介质的分界面上电场强度的切向分量必须持续,即21E E =,求得表里导体之间的电位差为即单位长度内的电荷量为 ()ab Vq ln 121εεπ+=故同轴电容器中的电场强度为 r e E ab r V ln=②因为电场强度在两种介质的分界面上无法向分量,故此鸿沟上的电荷密度为零.内导体的外概况上的电荷面密度为ab a Vs ln111εερ=⋅=E e r ; aba Vs ln222εερ=⋅=E e r外导体的内概况上的电荷面密度为ab b Vs ln111εερ=⋅=E e r ;abb Vs ln222εερ-=⋅-=E e r③单位长度的电容为()ab Vq C ln 21εεπ+==电容器中的储能密度为2-28 一平板电容器的构造如习题图2-28所示,间距为d ,极板面积为l l ⨯.试求:① 接上电压V 时,移去介质前后电容器中的电场强度.电通密度.各鸿沟上的电荷密度.电容及储能; ② 断开电源后,再盘算介质移去前后以上各个参数.解,介质鸿沟上电场强E是相等的但是介质表里的电通密度不dV E εε=,介质外dVE D 000εε==.两部分极板概况自由电荷面密度分离为dV s ερε=,dV s 00ερ=电容器的电量 ()()d V l l q s s 222002εερρε+=+=电容量为()dl V q C 220εε+==电容器储能为dV l qV W 4)(21220εε+==若接上电压时,移去介质,那么电容器中的电场强度为dVE =电通密度为极板概况自由电荷面密度为dV E s 00εερ==电容器的电量为 dVl l q s 202ερ==电容量为dl V q C 2ε==电容器的储能为 dV l qV W 221220ε==②断开电源后,移去介质前,各个参数不变.但是若移去介质,因为极板上的电量q 不变,电场强度为电通密度为()dV E D 200εεε+==极板概况自由电荷面密度为 ()dV s 20εερ+=南北极板之间的电位差为()002εεε+==V Ed V电容量为dl V q C 02ε==电容器的储能为 ()02022821εεεd V l qV W +==2-29 若平板电容器的构造如习题图2-29所示,尺寸同上题,盘算上题中各类情形下的参数.解 ①接上电压,介质消失时,介质表里的电通密度均为2l qD =,εε2l 020εl q=南北极板之间的电位差为()()020022εεεεεl qd E E d V +=+=. 则 ()()()dV E d V E d V l q 00000022,22εεεεεεεεεεεε+=+=⇒+=则电位移矢量为()dV E D 002εεεεεεε+==;()dV E D 000002εεεεεεε+==极板概况自由电荷面密度为()dV s 002εεεερε+=;()dV s 0002εεεερε+=介电常数为ε的介质在接近极板一侧概况上约束电荷面密度为介电常数为ε与介电常数为0ε的两种介质鸿沟上的约束电荷面密度为此电容器的电量 ()dVl l l q s s 0020222εεεερρεε+===则电容量为 ()dl V qC 0022εεεε+==电容器的储能为 ()dl V qV W 00222221εεεε+==接上电压时,移去介质后:d/2 ε 习题图2-29电场强度为 dV E =电位移矢量为 dV E D 00εε==极板概况自由电荷面密度为 dV s 0ερ=电容器的电量 dVl l q s 202ερ==电容量为 dl V q C 2ε==电容器的储能为 dV l qV W 221220ε==(2) 断开电源后,介质消失时,各个参数与接上电源时完整雷同.但是,移去介质后,因为极板上的电量q 不变,电容器中电场强度为()dV l q E 0202εεεε+==,电通密度为极板概况自由电荷面密度为()dV s 002εεεερ+=南北极板之间的电位差为 ()02εεε+==V Ed V电容量为dl V q C 2ε==电容器的储能为()dl V qV W 200222221εεεε+==2-30 已知两个电容器C 1及C 2的电量分离为q 1及q 2,试求两者并联后的总储能.若请求并联前后的总储能不变,则两个电容器的电容及电量应知足什么前提?解 并联前两个电容器总储能为并联后总电容为21C C C +=,总电量为21q q q +=,则总储能为要使后前W W =,即请求方程双方同乘21C C +,整顿后得 方程双方再同乘21C C ,可得 即()022112=-q C q C由此获知两个电容器的电容量及电荷量应当知足的前提为2-31 若平板电容器中介电 常数为平板面积为A ,间距为d ,如 习题2-31所示.试求平板电 容器的电容.解 设极板上的电荷密度分离为s ρ±,则由高斯定理,可得电通密度s D ρ=,是以电场强度为 那么,南北极板的电位差为 ()12120ln d εεεερ-==⎰d x x E V s d则电容量为 ()1212lnεεεερd A VA V q C s -===2-32 若平板空气电容器的电压为V ,极板面积为A ,间距为d ,如习题图2-32所习题图2-31示.若将一块厚度为)(d t t < 的导体板平行地拔出该平板 电容器中,试求外力必须作 的功.解 未拔出导体板之前,电容量dAC 0ε=.拔出导体板后,可看作两个电容串联,个中一个电容器的电容xAC 01ε=,另一个电容器的电容xt d AC --=02ε,那么总电容量为根据能量守恒道理,电源作的功和外力作的功均改变成电场能的增量,即 式中()()20ΔV t d d AtV CV V C qV W -=-'==ε电源则()2021V t d d AtW --=ε外2-33 已知线密度)C/m (106-=l ρ的无穷长线电荷位于(1,0, z )处,另一面密度)C/m (1026-=S ρ的无穷大面电荷散布在x = 0平面.试求位于⎪⎭⎫⎝⎛0,0,21处电量C 109-=q 的点电荷受到的电场力. 解 根据题意,两种电荷的地位如图2-33所示.由习题 2-10知,无穷大面电荷在P点产生的电场强度为无穷长线电荷在P 点产生的电场强度为是以,P 点的总电场强度为所以位于P 点的点电荷受到的电场力为2-34 已知平板电容器的极板尺寸为b a ⨯,间距为d ,两板间拔出介质块的介电常数为ε,如习题图2-34所示.试求:①当接上电压V 时,拔出介质块受的力;②电源断开后,再拔出介质时,介质块的受力.解 ①此时为常电位体系,是以介质块受到的电场力为constex W F ==ϕd d式中x 为沿介质块宽边b 的位移.介质块拔出后,引起电容改变.设拔出深度x ,则电容器的电容为 电容器的电场能量可暗示为那么介质块受到的x 偏向的电场力为② 此时为常电荷体系,是以介质块受到的电场力为式中x 为沿介质块宽边b 的位移.习题图2-34介质块拔出后,极板电量不变,只有电容改变.此时电容器的电场能量可暗示为是以介质块受到的x偏向的电场力为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 静电场重点和难点电场强度及电场线等概念容易接受,重点讲解如何由物理学中积分形式的静电场方程导出微分形式的静电场方程,即散度方程和旋度方程,并强调微分形式的场方程描述的是静电场的微分特性或称为点特性。
利用亥姆霍兹定理,直接导出真空中电场强度与电荷之间的关系。
通过书中列举的4个例子,总结归纳出根据电荷分布计算电场强度的三种方法。
至于媒质的介电特性,应着重说明均匀和非均匀、线性与非线性、各向同性与各向异性等概念。
讲解介质中静电场方程时,应强调电通密度仅与自由电荷有关。
介绍边界条件时,应说明仅可依据积分形式的静电场方程,由于边界上场量不连续,因而微分形式的场方程不成立。
关于静电场的能量与力,应总结出计算能量的三种方法,指出电场能量不符合迭加原理。
介绍利用虚位移的概念计算电场力,常电荷系统和常电位系统,以及广义力和广义坐标等概念。
至于电容和部分电容一节可以从简。
重要公式真空中静电场方程:积分形式: ⎰=⋅SS E 0d εq⎰=⋅ll E 0d微分形式: 0ερ=⋅∇E 0=⨯∇E已知电荷分布求解电场强度:1,)()(r r E ϕ-∇=; ⎰''-'=V V 0d )(41)(|r r |r r ρπεϕ2,⎰'''-'-'=V V 3d |4))(()(|r r r r r r E περ3,⎰=⋅SS E 0d εq高斯定律介质中静电场方程:积分形式: q S=⋅⎰ d S D⎰=⋅ll E 0d微分形式: ρ=⋅∇D 0=⨯∇E线性均匀各向同性介质中静电场方程:积分形式: εqS=⋅⎰ d S E⎰=⋅ll E 0d微分形式: ερ=⋅∇E 0=⨯∇E静电场边界条件:1,t t E E 21=。
对于两种各向同性的线性介质,则2211εεttD D =2,s n n D D ρ=-12。
在两种介质形成的边界上,则n n D D 21=对于两种各向同性的线性介质,则n n E E 2211εε=3,介质与导体的边界条件:0=⨯E e n ;S n D e ρ=⋅若导体周围是各向同性的线性介质,则ερS n E =;ερϕS n-=∂∂静电场的能量:孤立带电体的能量:Q C Q W e 21212Φ== 离散带电体的能量:∑==ni i i e Q W 121Φ分布电荷的能量:l S V W llSS Ve d 21d 21d 21ρϕρϕρϕ⎰⎰⎰===静电场的能量密度:E D ⋅=21e w对于各向同性的线性介质,则221E w e ε=电场力:库仑定律:r rq q e F 24πε'=常电荷系统:常数=-=q e lW F d d常电位系统:常数==ϕlW F e d d题 解2-1 若真空中相距为d 的两个电荷q 1及q 2的电量分别为q 及4q ,当点电荷q '位于q 1及q 2的连线上时,系统处于平衡状态,试求q '的大小及位置。
解 要使系统处于平衡状态,点电荷q '受到点电荷q 1及q 2的力应该大小相等,方向相反,即q q q q F F ''=21。
那么,由1222022101244r r r q q r q q =⇒'='πεπε,同时考虑到d r r =+21,求得d r d r 32 ,3121==可见点电荷q '可以任意,但应位于点电荷q 1和q 2的连线上,且与点电荷1q 相距d 31。
2-2 已知真空中有三个点电荷,其电量及位置分别为:)0,1,0( ,4 )1,0,1( ,1 )1,0,0( ,1332211P C q P C q P C q === 试求位于)0,1,0(-P 点的电场强度。
解 令321,,r r r 分别为三个电电荷的位置321,,P P P 到P 点的距离,则21=r ,32=r ,23=r 。
利用点电荷的场强公式r e E 204rq πε=,其中r e 为点电荷q 指向场点P 的单位矢量。
那么,习题图2-2zx1q2q 3q PE 3E 2E 11q 在P 点的场强大小为021011814πεπε==r q E ,方向为()z yr e ee +-=211。
2q 在P 点的场强大小为0220221214πεπε==r q E ,方向为()z y xr e e ee ++-=312。
3q 在P 点的场强大小为023033414πεπε==r q E ,方向为y r e e -=3则P 点的合成电场强度为⎥⎦⎤⎢⎣⎡⎪⎪⎭⎫ ⎝⎛++⎪⎪⎭⎫ ⎝⎛+++-=++=z e e e E E E E y x 312128141312128131211 0321πε2-3 直接利用式(2-2-14)计算电偶极子的电场强度。
解 令点电荷q -位于坐标原点,r 为点电荷q -至场点P 的距离。
再令点电荷q +位于+z 坐标轴上,1r 为点电荷q +至场点P 的距离。
两个点电荷相距为l ,场点P 的坐标为(r,θ,φ)。
根据叠加原理,电偶极子在场点P 产生的电场为⎪⎪⎭⎫⎝⎛-=31134r r q r r E πε考虑到r >> l ,1r e = e r ,θcos 1l r r -=,那么上式变为r r r r r r r r qr r r r q e e E ⎪⎪⎭⎫⎝⎛+-=⎪⎪⎭⎫⎝⎛-=2121102122210))((44πεπε式中()2122212211cos 211cos 2---⎪⎪⎭⎫ ⎝⎛-+=-+=θθr l rl r rl l r r以r l为变量,并将2122cos 21-⎪⎪⎭⎫⎝⎛-+θr l r l 在零点作泰勒展开。
由于r l <<,略去高阶项后,得θθcos 1cos 11211rl r r l r r +=⎪⎭⎫ ⎝⎛+=- 利用球坐标系中的散度计算公式,求出电场强度为θr e e E 3030204sin 2cos 1cos 14r ql r ql r r l rq πεθπεθθπε+=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∇-⎪⎭⎫ ⎝⎛+∇-=2-4 已知真空中两个点电荷的电量均为6102-⨯C ,相距为2c m , 如习题图2-4所示。
试求:①P 点将电量为6102-⨯C 的点电荷由无限远处缓慢地移的电位;②至P 点时,外力必须作的功。
P1c mr解 根据叠加原理,P 点的合成电位为()V 105.24260⨯=⨯=rq πεϕ因此,将电量为C 1026-⨯的点电荷由无限远处缓慢地移到P 点,外力必须做的功为()J 5==q W ϕ2-5 通过电位计算有限长线电荷 的电场强度。
解 建立圆柱坐标系。
令先电 称,场强与φ无关。
为了简单起见,荷沿z 轴放置,由于结构以z 轴对令场点位于y z 平面。
设线电荷的长度为L ,密度为 l ρ,线电荷的中点位于坐标原点,场点P 的坐标为⎪⎭⎫⎝⎛z r ,2,π。
利用电位叠加原理,求得场点 P 的电位为⎰-=22d 4LL l r l περϕ式中()220rl z r +-=。
故()222222222222ln 4 ln 4rL z L z rL z L z r l z l z l LL l +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++=⎥⎦⎤⎢⎣⎡+-+--=-περπερϕ因ϕ-∇=E ,可知电场强度的z 分量为22222222ln 4rL z L z rL z L z zzE l z +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++∂∂-=∂∂-=περϕy习题图2-5r 0Pzzrod ll θ1θ2⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛+-=222221214rL z rL z lπερ ⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-+-⎪⎭⎫ ⎝⎛++-=2202112114r L z r L z r l περ ()()⎪⎪⎭⎫⎝⎛-+-++-=22220224L z rr L z rr r lπερ ()120sin sin 4θθπερ-=rl电场强度的r 分量为22222222ln 4rL z L z rL z L z rrE l r +⎪⎭⎫ ⎝⎛-+-+⎪⎭⎫ ⎝⎛+++∂∂-=∂∂-=περϕ()() ⎝⎛-⎪⎭⎫ ⎝⎛++++++-=222202224r L z L z r L z rl περ()()⎪⎪⎪⎪⎭⎫⎪⎭⎫ ⎝⎛+-+-+-2222222r L z L z r L z r-⎝⎛⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛++++⎪⎭⎫ ⎝⎛++-=2202122114r L z r L z r L z r l περ⎪⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛-++-⎪⎭⎫ ⎝⎛-+22212211r L z r L z r L z⎝⎛-⎪⎪⎭⎫⎝⎛+++-=121120tan 11tan 1tan 1114θθθπερr l⎪⎪⎪⎪⎪⎪⎭⎫⎪⎪⎭⎫ ⎝⎛+++22222tan 11tan 1tan 111θθθ ()()()210cos 1cos 14θθπερ----=rl()210cos cos 4θθπερ-=rl式中2t a na r c ,2t a na r c 21L z r L z r -=+=θθ,那么,合成电强为()()[]r z lre e E 12120cos cos sin sin 4θθθθπερ---=当L →∞时,πθθ→→ ,021,则合成电场强度为r lre E 02περ=可见,这些结果与教材2-2节例4完全相同。
2-6 已知分布在半径为a 的半圆周上的电荷线密度πφφρρ≤≤=0 ,sin 0l ,试求圆心处的电场强度。
解 建立直角坐标,令线电荷位于xy 平面,且以y 轴为对称,如那么,点电荷l l d ρ在圆心处产生的电场强度具有习题图2-6所示。
两个分量E x 和E y 。
由于电荷分布以y 轴为对称,因此,仅需考虑电场习题图2-6ayx o ld φE强度的y E 分量,即φπερsin 4d d d 20al E E l y ==考虑到φρρφsin ,d d 0==l a l ,代入上式求得合成电场强度为y y aae e E 0002008d sin 4ερφφπερπ==⎰2-7 已知真空中半径为a 的圆环上均匀地分布的线电荷密度为l ρ,试求通过圆心的轴线上任一点的电位及电场强度。
解 建立直角坐标,令圆环位于坐标原点,如习题图2-7所示。
l l d ρ在z 轴上P 点产生的电位为那么,点电荷rl l 04d περϕ=根据叠加原理,圆环线电荷在P 点产生的合成电位为()2220202d 4d 41za al rl rz l alal+===⎰⎰ερπερρπεϕππ因电场强度ϕ-∇=E ,则圆环线电荷在P 点产生的电场强度为()()232202za azzz l zz +=∂∂-=ερϕe e E设宽度为W ,面密度为S ρ的带状电荷位2-8 于真空中,试求空间任一点的电场强度。