竖管降膜蒸发器的性能研究_朱玉峰

竖管降膜蒸发器的性能研究_朱玉峰
竖管降膜蒸发器的性能研究_朱玉峰

收稿日期:2004-04-23

作者简介:朱玉峰(1966- ),男,河北冀州人,副教授,硕士,研究方向为流体工程、传热与节能,已发表论文20余篇,完成省部级课题5项,专利2项。

文章编号:1005-2895(2005)02-0013-03

竖管降膜蒸发器的性能研究

朱玉峰,董金华

(河北科技大学机械电子工程学院,河北石家庄050054)

摘 要:为了给竖管降膜蒸发器的设计提供依据,对降膜蒸发器的总传热系数的计算进行了讨论。分析了采用螺旋型分布器时的压力降。通过实验对所确定的公式及算图进行了验证。关 键 词:降膜蒸发器;料液分布器;蒸发;降膜中图分类号:T Q 051.6 文献标识码:A

1 前 言

竖管降膜蒸发器消除了由静压引起的有效传热温差损失问题,具有浓缩比大、粘度范围宽、压降小、传热效果好、处理量大等优点,宜处理热敏性物料,可用在多效蒸发系统中。因此在化工、医药、食品、冶金、轻工及海水淡化等工业生产中得到了广泛应用。为防止结垢,并保证料液在每根换热管内均匀布膜,必须有性能良好、不易堵塞的料液分布器。总传热系数和压力降的计算是竖管降膜蒸发器设计的重要内容,它们计算的精确与否直接影响着蒸发器的性能,本文将予以分析与研究。

2 总传热系数

在竖管降膜蒸发器中料液从顶部进入料液分布器,把它均匀地分布到每根换热管中,并使其呈膜状沿管内壁向下流动。管内的液膜与管外的加热蒸汽间发生热量交换,受热蒸发而汽化;而管外的蒸汽则冷凝为液体。

2.1 加热蒸汽侧蒸汽冷凝的传热膜系数

换热管外蒸汽的冷凝分为膜状冷凝和珠状冷凝。实验测量表明,珠状冷凝的传热系数为同情况下膜状冷凝传热系数的5~10倍[1]

。虽然珠状冷凝传热系数高,但其可靠的理论还远未确立,故目前工程上都按膜状冷凝计算。

努赛尔[2]

从蒸汽冷凝主要热阻是冷凝液膜的导热热阻观点出发,提出了一系列假设条件,求出了适于竖壁(管)层流膜状冷凝的平均传热膜系数。实际上由于液膜的波动,实验值比努赛尔解所得理论值高20%。所以在层流(雷诺数Re <1800)时蒸汽冷凝的传热膜

系数T o 为

T o =1.13

gr d

2L λ3

L _L L (T s -T w )

14

= 1.88λL g

ν2

L

1

3

Re

-

13

(1)

式中:T o —加热蒸汽侧蒸汽冷凝的传热膜系数/W ·

m -2

·K -1

;

g —重力加速度/m ·s -2

;

r —蒸汽冷凝液汽化潜热/J ·kg -1

;d

L —蒸汽冷凝液密度/kg ·m -3;λ

L —蒸汽冷凝液导热系数/W ·m -2·K -1;_L —蒸汽冷凝液动力粘度/Pa ·s ;ν

L —蒸汽冷凝液运动粘度/m -2·s -1

;L —换热管长度/m ;

T s —饱和蒸汽冷凝液温度/K;T w —壁面温度/K;Re —雷诺数,由下式计算

Re =

4G L

πN d o _L

(2)

式中:G L —蒸汽冷凝液总流量/kg ·s -1;

N —换热管总数;d o —换热管外径/m 。

当Re >1800时,冷凝液液膜上部为层流,下部变为湍流,则整个换热管的平均传热膜系数按下式计算[3]

T o =0.0077λL g

ν2

L

1

3

Re 0.4

(3)

2.2 料液侧料液的传热膜系数

对于竖管降膜蒸发器料液侧的传热膜系数T L 的研究,Wilke 、Dukler 、M cadam s 等[4]均作了许多工作,

·

13·轻工机械 2005年 第2期

并得出了相应的关联式。对于无相变(预热段)的T L ,以Wilke 的实验式最为精确,但实际上料液在向下流动过程中是不断汽化而产生气泡的,亦即是有相的变

化的。因此,工程上常采用Dukler 算图来求取T L 。

普兰特准数Pr 按下式计算

Pr =

c Ly _Ly

λLy

(4)

式中:c Ly —料液的比热/J ·kg -1·K -1;

_Ly —料液的动力粘度/Pa ·s;λLy —料液的导热系数/W ·m -2·K -1。

令数群h =_2

Ly

d 2Ly g λ3

Ly

1

3

(5)

料液侧的雷诺数由下式计算

Re Ly =

4G Ly

πN d i _Ly

(6)

式中:G Ly —料液质量流量/kg ·s -1;

d i —换热管内径/m 。

只要按式(4)、(6)分别计算出Pr 、Re Ly ,即可由图

1查得T L /H ,从而计算出料液侧的传热膜系数T

L 。2.3 总传热系数的计算

一旦按式(1)、(3)

及图1求得T o 、T L 后,即可按下式计算蒸发器的总传热系数K

图1 竖管降膜蒸发器沸腾传热膜系数关联图1K =1T o +R o +W λg d o d m +R i d o d i +1T L d o

d i

(7)

式中:K —总传热系数/W ·m -2

·K -1

;

R o —换热管加热介质侧的污垢系数/m 2

·K ·W -1

;

W —换热管壁厚/m;

λg —材质的导热系数/W ·m -2

·K -1

;

d m —换热管的对数平均直径/m ;

R i —换热管料液侧的污垢系数/m 2

·K ·W -1

。3 压力降料液通过料液分布器,并沿换热管向下流动时的压力损失主要来自加速度和摩擦。下面来建立数学模型,以预测料液通过螺旋型分布器的压力降。

在远离入口处,压力损失由下式确定

Δp 1=

12d Ly u 2c Ly Re Ly d i

(8)

式中:Δp 1—远离换热管入口处的压力损失/Pa;

d Ly —料液的密度/kg ·m -3

;

u —料液在管内的平均流速/m ·s -1。

由于二次环流的存在,使得Δp 1有所增加,故引

入曲率影响因子c c ,由下式确定

c c =0.1064Re

0.5Ly

d D

0.25

(9)

式中:c c —曲率影响因子;

d —等效直径/m;

D —螺旋型分布器直径/m 。

料液入口处由摩擦损失和加速度而产生的压力降由下式计算

Δp 2=12d Ly u 2

1+k min L

X L

1

n

(10)

式中:Δp 2—料液入口处的压力损失/Pa ;

X L —料液获得充分发展流的线性长度/m;

k —矩形截面修正因子;

n —指数。则总压力降为Δp =Δp 1+Δp 2=12d Ly u 2c Ly Re Ly d i c c +1+k min L

X L

1

n

(11)

4 实验及分析

为了验证上述公式的正确性,在由12根内径为

48mm 、长度为4m 的黄铜换热管组成的降膜蒸发器

上以盐水为料液进行了有热负荷状态下的热模实验。降膜蒸发器布膜所用的是螺旋型料液分布器,分布器的主要结构参数如表1所示。

表1 螺旋型料液分布器的主要结构参数

序号外径D /m m 螺距B /m 有效高度Hs /mm 螺旋头数N

与换热管间隙P

/mm 144.82106 1.6244245623

42

4

45

2

3

4.1 总传热系数的实验结果分析

实验所测得的总传热系数由下式确定

·

14·Light Industry Machinery

K =

G V r Ly A ΔT

(12)

式中:G V —单位时间内因蒸发而产生的二次蒸汽质量

/kg ·s -1;

r Ly —料液的汽化潜热/J ·kg -1

;A —总传热面积/m 2;

ΔT —加热蒸汽与沸腾料液间的温差/K 。表2 总传热系数的理论值与实测数据的比较

雷诺数Re Ly

蒸发温度T s

/K

温差ΔT

/K

总传热系数K W /(m 2·K)

理论计算值K t 实测数据K e

(K t -K e )/K e

%1600373.3 4.540604290 5.42555373.6 4.043704640 5.84990373.3 4.5461050408.57540373.3 4.5464050708.52555373.7 5.844104660 5.44990373.5 6.0454049708.77540373.6 5.946705010 6.81600

373.3

4.5

4090

4310

5.

1

图2 压力降实测值与理论计算值的对比

将不同雷诺数下实验测量的总传热系数及按理论计算式(7)所得的总传热系数列于表2中。由表2可以看出:总传热系数的理论计算值K t 与实测数据K e 大体接近,最大相差不超过10%,从而说明用上述理论计算式及算图来计算竖管降膜蒸发器的总传热系数在工程上有足够的精度。所产生的误差是由于分布器的分液不均及模型建立过程中所做假设的近似性引起的。4.2 压力降实验结果与对比

为了消除换热管直径的影响而引入降液密度q 的概念,它表示换热管单位长度周边上

每s 流过的料液量,即

q =

G Ly πN d i

(13)

使用不同结构参数螺旋分布器压力降的实测结果与采用理论计算式(8~11)的计算结果的对比如图2所示。由图中可见:实测结果与理论值相当吻合。

5 结 论

总传热系数和压力降的计算是竖管降膜蒸发器设计的重要内容,必须引起足够重视,以确保蒸发器以良好的性能运行。文中所述计算公式及算图与实测值相符,可以指导竖管降膜蒸发器的设计。参考文献:

[1] 戴锅生.传热学[M ].北京:高等教育出版社,2003.169.

[2] 王补宣.工程传热传质学(下册)[M ].北京:科学出版社,2002.

154-159.

[3] 《化学工程手册》编辑委员会.传热[M ].北京:化学工业出版社,

1986.52.

[4] 《化学工程手册》编辑委员会.蒸发及结晶[M ].北京:化学工业出

版社,1985.42-44.

[5] 朱玉峰,彭宝成.大型竖管降膜蒸发器液体分布装置的研究[J ].

轻工机械,2003,(4):14-16.

Properties &Study on theVertical -type Falling

-film Evaporator ZHU Yu -feng ,DON G J in -hua

(Co lleg e of M echanical and Electro nic Engineering ,Hebei U niv er sity o f Science a nd Technolog y ,Shijia zhuang Hebei 050054,China )

Abstract :The calculatio n o f ov erall hea t transfer cofficientfo r falling-film evaporator is discussed in order to of-fer basises fo r the desig n o f vertical -pipe falling -film eva pora to r .The pressure drop is a nalysised w hen screw -ty pe distributors are used.Ex periments are done to prov e the fo rmulasand diagram w hich hav e be m ade previ-ously.

Key words :falling -film ev apo ra to r;liquid distributo r;eva poration;falling-film

中国轻工机械网ww w .clima .org .cn

电话:010-******** 64640353 电子信箱:w ebmaster @https://www.360docs.net/doc/169180079.html,

中国轻工机械网是由中国轻工机械协会主办的全国轻工机械行业的权威网站,成立于1996年,作为中国最早的行业网站之一,几年来一直在致力于中国互联网的普及和应用,致力于中国互联网事业的发展。

·

15·轻工机械 2005年 第2期

双效降膜蒸发器工作原理及其在制药行业的运用(精)

做客专家:南京金日制药装备有限公司高级工程师陈晓东 本期议题:双效浓缩器具有节能优势 浓缩工段对于制药企业来说是能耗的重头。在很多企业,其能耗要占到企业蒸气总消耗的60%以上。目前,有不少制药企业在浓缩工段仍使用单效浓缩器,这是很不经济的。据估算,双效浓缩器比单效浓缩器节省蒸气消耗45%以上,节约冷却用水47%以上,而且也可减少对环境的污染。 ■单效浓缩设备能耗大探因 单效外循环浓缩器装置主要是由加热器、蒸发器、冷凝器、冷却器和受液罐组成。需要浓缩的料液通过加热器的管程受蒸气加热达到沸点温度,经上升管由切线方向进入蒸发室迅速蒸发。其中未经汽化、比重较大的液滴受离心力的作用而被甩到器壁上,从而在重力的作用下,下落到蒸发器下部,由于蒸发器与加热器是通过下降管互相连接的装置,故未能蒸发的液体又通过下降管回到加热器中再被加热,如此循环加热蒸发,使得溶液中的溶媒不断汽化被带出,使溶液中的溶质浓度不断升高,最终达到所需要的浓度。而已经汽化的溶媒蒸气则从蒸发器上口通过捕沫器进入冷凝器被冷凝成液体再进入下方的接收器中,根据需要可以回收利用。 这里的能源消耗主要是两个方面:一是在加热器内用于加热稀溶液使溶液中溶媒蒸发所消耗的生蒸气;另一个就是使已经汽化的溶媒蒸气再冷凝成溶媒液体时,在冷凝器中所需要的冷却水。前者需要供给热量,而后者需要带走热量。被加热的溶液所产生的溶媒蒸气含有大量的热能,在这里不但没有得到利用,相反还要消耗大量的冷却水来冷却它。产量越大,即蒸发量越大,供给的热量越多,所需的蒸气就越多,而同时所消耗的冷却水也越多。这就是单效浓缩器能耗大的原因所在。 ■双效浓缩器节能原因探究

降膜蒸发器设计

齐齐哈尔大学 蒸发水量为2000的真空降膜蒸发器 题目蒸发水量为2000的真空降膜蒸发器 学院机电工程学院 专业班级过控133 学生姓名戴蒙龙 指导教师张宏斌 成绩 2016年 12月 20日

目录 摘要............................................................ I II Absract............................................................ I V 第1章蒸发器的概述. (1) 1.1蒸发器的简介 (1) 1.2蒸发器的分类 (1) 1.3蒸发器的类型及特点、 (2) 1.4蒸发器的维护 (5) 第2章蒸发器的确定 (6) 2.1 设计题目 (6) 2.2 设计条件: (6) 2.3 设计要求: (6) 2.4 设计方案的确定 (6) 第3章换热面积计算 (7) 3.1.进料量 (8) 3.2.加热面积初算 (8) 3.2.1估算各效浓度: (8) 3.2.2沸点的初算 (8) 3.2.3计算两效蒸发水量,及加热蒸汽的消耗量 (9) 3.3.重算两效传热面积 (11) 3.3.1.第一次重算 (11) 第4章蒸发器主要工艺尺寸的计算 (12) 4.1加热室 (13) 4.2分离室 (13) 4.3其他工件尺寸 (14) 第5章强度校核 (15) 5.1 筒体 (15) 5.2前端管箱 (16) 参考文献 (19)

致谢 (21)

蒸发就是采用加热的方法,使溶液中的发挥性溶剂在沸腾状态下部分气化并将其移除,从而提高溶液浓度的一种单元操作,蒸发操作是一个使溶液中的挥发性溶剂与不挥发性溶质分离的过程。蒸发设备称为蒸发器,蒸发操作的热源,一般为饱和蒸汽。蒸发在操作广泛应于化学、轻工、食品、制药等工业中。工业上被蒸发处理的溶液大多数为水溶液。本次设计的装置为蒸发水量为2000降膜蒸发器,浓缩物质为牛奶。降膜蒸发器除适用于热敏性溶液外,还可用于蒸发浓度较高的液体。 关键词:蒸发;换热;高效;使用广泛

降膜式与满液式蒸发器的区别

降膜式与满液式蒸发器的区别 换热器结构不同。 满液式冷媒直接浸泡铜管束。气泡在管壁形成并溢出。 降膜式冷媒喷淋在铜管上,利用铜管翅片产生格里谷里希效用。提高换热系数。降膜式比满液换热效率高,冷媒使用量少。具体冷媒怎么喷淋到铜管上,才用喷嘴还是什么的。这个就不清楚了。 降膜式蒸发器蒸发器的优点是比满液式蒸发器冷媒填充量低,但是关于传热效率的问题不是很了解,有的说满液式蒸发器由于铜管全部侵泡在冷媒里面,故传热效率高,有的说降膜式蒸发器由于冷媒仅附着在铜管表面,很快被蒸发掉,然后继续接受新的冷媒换热蒸发,故换热效率高,真的搞不清楚,到底是满液式蒸发器传热效率高还是降膜式蒸发器传热效率高?还是两者差不多? 这个肯定是降膜传热效率高。 降膜蒸发是流动沸腾,由于管外表面的液膜层厚度小,没有静压产生的沸点升高,传热系数高。而满液式蒸发(也就是沉浸式蒸发)产生的气泡易于集聚在换热管的表面,导致换热效率下降,其换热效果不如降膜蒸发。总的来说降膜蒸发属于小温差情况下,但要防止结垢,影响传热效率。 冷水机组”,是对一种制冷机组的习惯命名法,这种“冷水机组”一般用于中央空调的冷源,或者空调工况的制冷,输出的是低温的冷水,通常叫做“冷冻水”,故而得名。一般把只能制冷的叫做冷水机组,而能同时制热的,我们叫做“热泵”机组。 而“满液式”是指机组所用的“壳管式蒸发器”采用了“满液式蒸发器”的形式,这是区别于“干式”、“降膜式”的一种壳管式蒸发器。它的“壳程”内走制冷剂循环,“管程”内走冷冻水循环,从剖面上看,就好像是筒体里有大半筒制冷剂,而走水的管束浸泡在制冷剂里。它和“干式蒸发器”刚好相反,干式的是“管程”走制冷剂,“壳程”走水,好比制冷剂管束浸泡在水里。 满液式蒸发器,以及满液式机组,比起干式蒸发器/干式机组来说传热效率更高,出水温度与蒸发温度的趋近温差小,沿程阻力小,适合循环量大的机组(比如离心机),制冷效果好。但是制冷剂充注量要求大,并且需要专用的回油系统,帮助压缩机回油。 如果在机组名字前再加上“水冷”,则是指机组的冷凝器形式,采用水冷却还是空气冷却,分为风冷、水冷。如果再加上压缩机的形式“活塞式、螺杆式、离心式”,那么就是完整的机组命名了。 比如“水冷螺杆满液式冷水机组”。在大部分场合,为了简略,会省却其中一两个部件的名称,只提和上下文相关的名称,比如“满液式冷水机组”(可能是只为了强调“满液式。 满液式就是冷媒在铜管与壳管之间,而冷冻水在铜管里面流动,干式就是他两相反。冷媒在铜管里蒸发,水在铜管与壳管之间流动,他们主要用于热泵空调上。在工业低温冷水机一般都是用普通那种干式的蒸发器。

水平管降膜蒸发器综合传热系数

水平管降膜蒸发器综合传热系数模型 摘要:基于在水平管降膜蒸发器传热性能研究现状的基础上,以及热法高倍数蒸发浓缩油田废水的具体任务与要求,建立水平管降膜蒸发器传热系数与污垢热阻的模型,通过有关方程建立污垢热阻与蒸发浓缩时浓度变化的关联式。依据各部分的关联式,经过详细推导,得到水平管降膜蒸发器综合传热系数关联式。根据物理模型和关联式,讨论浓缩倍数和流量变化对水平管降膜蒸发器综合传热系数的影响。结

果表明:在蒸发浓缩油田废水时,浓缩倍数的提高降低了水平管降膜蒸发器的综合传热系数。油田废水处理量的增加,在一定程度上强 化了水平管降膜蒸发器的传热效率。模拟计算得到水平管降膜蒸发器的综合传热系数在936~940W/(m2K)的范围内。 关键词:水平管降膜蒸发器;传热系数;污垢;浓缩倍数;油田废水 0前言 蒸发是指将含有非挥发性溶质和挥发性溶剂组成的溶液利用加热作用使溶液中一部分溶剂汽化与溶质分离、溶液被浓缩的过程[1],常用的蒸发操作的设备有升膜蒸发器、降膜蒸发器和旋转刮膜式蒸发器3 类。具有发展前景的是水平管降膜蒸发器,因此水平管降膜蒸发器传热性能研究的文献相对多些。吴鸿等[2]研究了三效降膜管式蒸发器,建立蒸汽侧冷凝传热参数的数学模型,分析蒸汽压力、温差等因素对传热性能的影响。本文针对油田废水蒸发浓缩的实例,建立水平管降膜蒸发器综合传热系数关联式,并考察一些因素对综合传热系数的影响程度。 1 管式降膜蒸发器的结构及工作原理 管式降膜蒸发器结构简单,由加热蒸发室、分配盘、汽液分离室、除雾器、循环管等部分构成。 管式降膜蒸发器加热蒸发室是由壳体、上管板、隔板、下管板和加热管等构成。壳体是根据工作压力按压力容器或常压容器设计,并考虑到在真空状态下受外压时的稳定性合理设置加强结构。壳体、加热管和管板的材质可根据介质性质或用户使用要求,选用碳钢或不锈钢材质。加热蒸发室的中心为内置循环管,其余部分为均匀分布的加热管。经内置循环管预热并输送至上管板上部分配盘的黑液,由分配盘均匀地分布在管板的管桥上,再沿加热管内壁呈膜状流下,同时进行传热蒸发。此外,由于从黑液中蒸发出的二次蒸汽快速向下流动,将黑液液膜吹得更薄、流速更快,使传热热阻大大降低,传热系数更高。由于是液膜蒸发,降低了传热热阻,也没有由于静液位压力引起的沸点升高,故用于加热的有效温差提高,所以,管式降膜蒸发器的传热系数和热效率均高于传统的蒸发器。管式降膜蒸发器既保留了降膜

四效降膜蒸发器设计参数及操作规程样本

1. 规格、参数、性能 1.1 蒸发器规格、型号 1.1.1 蒸发器名称、型号:RHJM-6000四效降膜蒸发器 1.1.2 蒸发水量规格:6000kg/h 1.2 蒸发器工艺参数 1.2.1 总物料流量:10000 kg/hr 1.2.2 总蒸发速率:6000 kg/hr 1.2.3 物料流程:四效→一效→二效→三效→出料 1.2.4 蒸汽流程:一效→二效→三效→四效→冷凝器 1.2.5 各效传热面积:一效(140m2)二效(100m2)三效(140m2)四效(100m2)1.3 蒸发器性能 1.3.1 物料:糖浆 1.3.2 物料进口:进四效 数量:10000kg/hr 温度:50-60℃ 浓度:30-32%(DS) 1.3.3 物料出口:从三效出料 数量:4000kg/hr 温度:65-70℃ 浓度:75-80%(DS) 蒸汽消耗量:1800kg/h (0.6MPa) 冷却水从35℃至43℃150m3/h 电能(安装功率)29kw 电流380/220v,50赫兹,3相 设备布置四效蒸发器、冷凝器 温度一效二效三效四效

加热温度℃104.5907660 蒸汽温度℃91776143 2. 工艺阐明 为了更好地理解请运用工艺流程图 为了得到对的成果,你应当理解现场安装,每条工艺线。 如果浮现故障或紧急状况,必要非常熟悉和组件物理位置和管道工程布置。 2.1 物料 将要浓缩物料输送到进料罐,通过进料泵将物料通过流量计打到四效上端管板上分布器以保证进入每一根加热管液量相似。 液膜在管子顶部向下流动过程中加速,由于重力及液体形成蒸汽作用下流速增长,蒸发器从外部加热、水蒸汽及某些浓缩物料离开蒸发器,大某些液体存储在下部料仓并由此离开,少量液体及水蒸汽通过连接管道运到分离器蒸汽与液体在此分离,留存在顶部水蒸汽进入冷凝器冷凝。从第四效蒸发器出来物料通过四效出料泵送到一效管板上分布器,液膜在向管子底部流动过程中加速,由于重力及液体形成蒸汽作用下流速增长,蒸发器从外部加热、水蒸汽及某些浓缩物料离开蒸发器,大某些液体存储在下部料仓并由此离开,少量液体及水蒸汽通过连接管道输送到分离器,蒸汽与液体在此分离,留存在顶部水蒸汽进入二效加热室或者通过热泵再次进入一效加热室,从第一效蒸发器出来物料通过一效物料转移泵输送到二效管板上分布器。依次类推,物料通过三效蒸发器出料,合格物料通过出料螺杆泵输送到成品罐,不合格物料打回流至蒸发前罐。 蒸发前储罐—→Ⅳ效—→Ⅰ效—→Ⅱ效—→Ⅲ效—→出料 2.2 加热设备蒸汽流程 Ⅰ效—→Ⅱ效—→Ⅲ效—→Ⅳ效—→冷凝器 2.3 冷凝液流程 Ⅰ效加热室冷凝水—→Ⅱ效加热室冷凝水—→Ⅲ效加热室冷凝水—→Ⅳ效加热室冷凝水—→分水罐—→冷凝水泵 2.4 空气流程(蒸发器排气)

水平管降膜式蒸发器管间流动模式的研究

水平管降膜式蒸发器管间流动模式的研究Ξ 费继友1),2) 李连生1)  1)(西安交通大学) 2)(大连交通大学) 摘 要 对应用于空气调节和制冷方面的水平管降膜式蒸发器原理进行简述,在分析设计水平管降膜式蒸发器时,需要考虑制冷剂在水平光管上流动模式。给出影响制冷剂在水平光管上流动模式的关键参数。 关键词 降膜蒸式发器 流动模式 膜雷诺系数 Investigation on intervascular flow patterns of horizontal tube falling f ilm evaporator Fei Jiyou1),2) Li Liansheng1)  1)(Xi’an Jiaotong University) 2)(Dalian Jiaotong University) ABSTRACT Introduces the falling film evaporator used in the air2conditioning and refrigeration fields.The flow patterns of the refrigerants flow outside the horizontal plain tubes should been considered when analyzes and designs the horizontal tube falling film evaporators.Presents the key factors that have effects on the flow patterns of the refrigerants outside the horizontal plain tubes. KE Y WOR DS falling film evaporator;flow modes;film Reynolds number 降膜式蒸发器技术诞生于1848年,在1888年申请了专利[1]。由于第二次能源危机的爆发,20世纪80年代初期这项技术引起了人们的关注。其用途主要集中于降膜蒸发在海洋热能转换系统(O TEC)和溴化锂机组的应用上,并且都使用水或者氨水作为工质。在空气调节和制冷方面,降膜蒸发技术相比满液式蒸发器具有高的传热系数、较低的制冷费用等优点。而应用于空气调节和制冷方面的水平管降膜式蒸发器只有少数学者涉及到这个领域。目前只有美国特灵空调公司组织专门的课题组进行这方面的研究。 笔者针对在空调工况下,设计水平管降膜式蒸发器时必须解决的制冷剂在蒸发管上流动模式进行了探讨。 1 水平管降膜式蒸发器的原理 图1所示为降膜式蒸发器的原理图。降膜式蒸发器由布液器、蒸发管、泵和排气通道组成。流过电子膨胀阀的含油制冷剂通过进液管道流到布液器内,经布液器均匀布液到蒸发管上,在蒸发管上形成一层薄膜和流经管内的冷媒水进行热交换,制冷剂在一定的蒸发温度下蒸发,未蒸发的制冷剂和油沉积在蒸发器的底部,由泵输送到压缩机的回油口,蒸发的制冷剂由蒸汽通道经出气管道回到压缩机的吸气端,完成一个制冷循环 。 图1 降膜式蒸发器原理图 第6卷 第4期 2006年8月 制冷与空调 REFRIGERA TION AND AIR-CONDITION IN G 1022104 Ξ收稿日期:2006207210 通讯作者:费继友,Email:fjy@https://www.360docs.net/doc/169180079.html,

蒸发器原理结构简介

蒸发器主要由加热室及分离室组成。按加热室的结构和操作时溶液的流动情况,可将工业中常用的间接加热蒸发器分为循环型(非膜式)和单程型(膜式)两大类。 一、循环型(非膜式)蒸发器 这类蒸发器的特点是溶液在蒸发器内作连续的循环运动,以提高传热效果、缓和溶液结垢情况。由于引起循环运动的原因不同,可分为自然循环和强制循环两种类型。前者是由于溶液在加热室不同位置上的受热程度不同,产生了密度差而引起的循环运动;后者是依靠外加动力迫使溶液沿一个方向作循环流动。 (一)中央循环管式(或标准式)蒸发器 中央循环管式蒸发器,加热室由垂直管束组成,管束中央有一根直径较粗的管子。细管内单位体积溶液受热面大于粗管的,即前者受热好,溶液汽化得多,因此细管内汽液混合物的密度比粗管内的小,这种密度差促使溶液作沿粗管下降而沿细管上升的连续规则的自然循环运动。粗管称为降液管或中央循环管,细管称为沸腾管或加热管。为了促使溶液有良好的循环,中央循环管截面积一般为加热管总截面积的40%一100%。管束高度为1—2m;加热管直径在25~75mm之间、长径之比为20~40。 中央循环管蒸发器是从水平加热室、蛇管加热室等蒸发器发展而来的,相对于这些老式蒸发器而言,中央循环管蒸发器具有溶液循环好、传热效率高等优点;同时由于结构紧凑、制造方便、操作可靠,故应用十分广泛,有“标准蒸发器”之称。但实际上由于结构的限制,循环速度一般在~/s以下;且由于溶液的不断循环,使加·热管内的溶液始终接近完成液的浓度,故有溶液粘度大、沸点高等缺点;此外,这种蒸发器的加热室不易清洗。 中央循环管式蒸发器适用于处理结垢不严重、腐蚀性较小的溶液。 (二)悬筐式蒸发器

蒸发器知识

升膜蒸发器的原理及完善 (一)原理 曾经在某厂有个奇怪的现象:有个立式的蒸发器和一个卧式蒸发器,前者的体积只有后者的一半左右,但同样的情况下立式蒸发器的蒸发效果却比卧式蒸发器明显好。升膜蒸发器正好是立式蒸发器。 蒸发器的蒸发效率与其传热效率成正比,所以要了解升膜蒸发器的原理必须从其内部传热机理着手。升膜蒸发器一般在加热管内蒸发。管内蒸发一般分为6个阶段:1、预热段;2、气泡产生段;3、乳化段;4、转化段;5、成膜段;6、蒸气段。 由于蒸气段已经蒸发完成,所以不考虑。从1段到5段,其传热效率正好也是由低到高,5段(成膜段)最高。升膜蒸发器因为有成膜段,所以其蒸发效率得到了很大提升。 为什么膜状流动时,其传热系数最高呢?是因为这时的层流边界层的厚度大大降低了,热阻大大降低了。 (二)完善 从上面的讨论,我们知道了膜状流动是升膜蒸发器的关键。如果要提高升膜蒸发器的蒸发效率,也应该从它着手。 我们先来研究下成膜的条件,怎么样才能让原料液成膜? 1、有一定量的气体存在。很明显,膜状流动是被气体吹出来的,气体量太小吹不出来,就象在4段以前的情况是不可能产生膜状流动的。 2、气液比在一定范围内,才有可能成膜。 3、气体和液体流动的方向是一致的。如果流动方向相反,是不可能吹出液膜来的。 4、气体流速超过一定范围,才有可能成膜。 5、液体流速超过一定范围,才有可能成膜。 综上所述,提高升膜蒸发器蒸发效率的方向: 1、尽早产生气体,使成膜段形成时间尽可能缩短。 2、控制料液进入蒸发器的量,使气液比尽快进入成膜范围。 3、液体因为自己重量的原因,有向下的倾向,所以从这点来说,降膜蒸发器更有利于成膜。

降膜蒸发器

蒸发回收铵盐技术 对于偏酸性高含盐高氨氮废水,氨氮均以铵盐形式存在,如采用吹脱、蒸馏等技术需调节pH将氨氮转化为游离氨,不仅需要消耗大量液碱,而且这仅仅是将铵盐转化为了钠盐,废水中阴离子浓度没有降低,因此未能从根本上解决出水达标问题;而采用低温多效蒸发技术,将铵盐结晶回收,另外冷凝出水又达到回用标准,从而经济有效地实现了高氨氮废水处理的零排放,十分贴合低碳环保的可持续发展理念。 特点: 1、利用负压多效蒸发技术,提高了生蒸汽的利用率,从而达到节约蒸汽的目的,通常二效或多效蒸发每吨废水蒸汽消耗量为0.28-0.33吨; 2、可直接回收高纯度的硫酸铵、氯化铵、硝酸铵或硫酸钠晶体,出水达回用标准,从而实现废水处理的零排放; 3、蒸发器采用专利分离技术,保证冷凝水铵盐含量≤0.2%; 4、设备采用特氟龙防腐技术,很好的解决了传统多效蒸发系统中高盐分废水对于设备的腐蚀问题。 低压蒸氨回收氨水技术 采用蒸汽汽提技术回收氨水,该技术是根据国内知名蒸馏专家、享受国务院特殊津贴专家、香港国际科学院院士许开天教授的蒸馏技术改进而开发的低能耗蒸氨技术。 核心技术: 1、采用E型组合塔板,气液接触时间长,传质效率较高,提高了液相氨气的释放; 2、闪蒸包技术,即闪蒸罐及汽液分离罐与塔体相结合,实现氨氮高效分离,大大节约了成本; 3、与传统汽提法相比,采用低压蒸汽,大大节约了蒸汽用量。 低温蒸发 采用国内外较为先进的热泵技术结合高效的水平管降膜蒸发技术,对工业废水进行深度处理,通过蒸发技术利用废水中各组分的相对挥发性差异来对废液进行浓缩分离,采用热泵技术回收蒸发器顶部排出的水蒸气,并提升其压力和温度再度返回到蒸发器,重新作为蒸发器的热源循环使用,这样既节省能源又有很好的处理效果。 该技术是华杉研发中心与东华大学周亚素教授课题组共同合作开发、改进和试验而成的低温蒸发技术,其可以实现技术效益、经济效益和社会效益的统一,为工业废水处理提供更新更好的选择。 1、技术效益 采用水平管降膜蒸发器,其换热效率明显高于传统的板式和竖管降膜蒸发器,其换热系数约为后两者的2-3倍。此外,本系统蒸发一吨水的能耗只有传统蒸发器的四分之一到五分

水平管蒸发器

多效蒸发海水淡化经历了由浸没管蒸发,竖管降膜蒸发,到横管降膜蒸发的发展过程。因为盐水一次流过系统,因此降低了预处理费用,但是竖管降膜蒸发需要效间海水泵将盐水由上一效输送到下一效,这又使得安装成本增加,目前最主流的多效蒸发海水淡化技术是低温多效横管降膜蒸发。 由于竖直管中,液膜可能会在降膜时破碎,导致换热管表面部分湿润,而湿润处的少量水则会很快蒸干,盐分留在换热管表面上形成干斑,同时,干斑导致热应力的形成,再反过来促使干斑的面积增大。最终'由于结垢和腐蚀等因素大大缩短了换热管的寿命。因此海水在布液时既不能小于最小喷淋密度,也不能过大影响了传热效果,且在防垢和清垢方面有较高的要求。 总的来说,横管降膜蒸发器的传热系数要比竖管降膜蒸发器高,但是它不适宜处理高浓度的流体,比如果汁,牛奶,糖汁等等,而且一般大型的多效蒸发设备为水平安装,竖管降膜蒸发器水平安装时能更多地利用垂直空间,横管降膜蒸发器更适合塔式安装 水平管降膜蒸发器实现高效换热 更新日期:2011-12-19 水平管降膜蒸发器技术最早出现在19 世纪,直到20 世纪90 年代,才开始用在制冷系统上。降膜式蒸发器是将制冷剂喷淋在蒸发管上,利用制冷剂管外蒸发达到与管内工质换热的目的,也就是冷媒介质在蒸发管内活动,与蒸发管外流过的制冷剂液体进行换热,使其蒸发,实现热量的传递。目前,水平管降膜蒸发器广泛应用于食品、化工、海水淡化等行业且在这些领域其应用技术已比较成熟,但是在制冷行业的应用还处于初期阶段。 水平管降膜蒸发器技术具有自身的特点,这主要包括:拥有较高的换热系数,这可以减小蒸发器的体积,节约空间,降低本钱;同时,管外制冷剂流体的压力降很小,可以忽略不计,从而可以减小温差损失;此外,可以大大减少制冷剂的充注量,通过对大量数据的统计,在相同的制冷量下,采用降膜蒸发器的充注量要比满液式蒸发器少大约25%。水平管降膜蒸发器的核心部分——液体分布器采用了分配管底部与布液管连接的结构形式,属国内首创,与国内普遍使用的竖管降膜蒸发器相比,极大提高了换热效率。 水平管降膜蒸发器与目前国内普遍使用的竖管降膜蒸发器不同,其被蒸发溶液是在换热管外表面成膜状分布,而在加热蒸气走管内,传热系数是竖管降膜蒸发器的两倍。水平管降膜蒸发器除具备竖管降膜蒸发器传热系较高、适合处理热敏性物料、传热温差损失小,易于实现多效蒸发等优点外,由于料液在换热管外成膜,还具备成膜情况、结构情况较易观察等特点。 据介绍,水平管降膜蒸发器正常运行的条件之一是液体沿换热管均匀分布。在蒸发过程中,在相同热负荷作用下,给液不足的管子可能会结垢、烧焦、甚至出现“干壁”或烧毁现象,而液膜过厚的管子因传热量不足不能充分传热,从而导致传热情况的恶化。为解决液体均匀分布难题,该公司课题组开发出了独特的液体分布装置。经测试,装置液体分布不均匀度低于5%,提高了液体分布的均匀性和蒸发强度。 水平管降膜蒸发器作为一种高效节能换热设备,影响其换热效果的因素很多,众多研究者对此进行了大量的研究工作,但由于气液界面存在的波动引起水平管降膜蒸发传热的复杂性,使研究的结果有所不同,而且大部分的研究都集中在海水淡化领域.水平管降膜蒸发器具有优良的性能,在制冷系统中具有很好的发展前景。可以看来水平管降膜蒸发器无论在流动、换热机理还是在工程技术开发上都需要进一步的研究。

MVR蒸发器操作步骤

MVR降膜蒸发器操作步骤 一、物料控制 1、打开进料阀,物料进入进料罐,当液位达到A%时打开进料泵, 进料电动调节阀调节流量X m3/ h (设置流量上限不超过Y m 3/ h )物料通过预热器,稳定进入蒸发器。 2、当蒸发器内液位达到B % 时,停止进料,开启循环泵,打开 循环阀,建立循环(或回流)。 3、打开生蒸汽截止阀,将蒸汽引入蒸发器壳程,开始对系统内物 料升温,当分离器温度升至60度则开启蒸汽压缩机,电机初 始频率设置为5Hz ,根据分离室压力与加热室进口的压力差 (50KPa),以及蒸汽压缩机的电流(90%电机额定电流),缓 慢提频(3Hz /次),直至频率提升至设定值M。期间加热室进 口温度达到80—84度则打开蒸汽压缩机补水球阀自动控制补 水,流量为设定值N。分离室温度达到84—85度时,关闭生 蒸汽截止阀。 4、系统达到蒸发温度时,蒸发器内的液位开始下降,待下降至液 位C %则开启进料泵,缓慢打开进料调节阀,控制电动调节阀 调节进料,维持蒸发器内液位平衡在D% 的范围内,稳定系 统,此时系统达到平衡开始稳定蒸发。 5、(1)间歇式生产(多用于中药行业)。当进料完毕,即进料量 为O则关闭进料阀,关停进料泵,关闭进料调节阀,实现回 流蒸发,待系统内物料达到指标,慢慢降频蒸汽压缩机直至频

率为5Hz,关停循环泵,关闭循环阀,开启出料阀持续出料直 至出料量为O 。(蒸汽压缩机低频运转清洗10分钟后关停蒸 汽压缩机,关补水阀)。 (2)连续式生产。待系统内物料达到指标,开启出料泵,打 开出料调节阀,控制阀门开度调节出料流量为S1/h ,控制进料 调节阀开度,根据工艺要求、生产负荷和蒸发量,建立平衡, 稳定进料量V1/h ,和出料量,系统自动微小调整进口流量以 保证蒸发器内液位平衡及物料比重稳定。 二、冷凝水控制 1、排净不凝性气体,保证换热面积,满足工艺。 2、控制蒸发器壳程温度,压力,自动调频增温、增压、泻压。 3、当加热器冷凝水液位达到E % 后,开启出水泵出水至预热器 后进入冷凝水储罐,冷凝水与进料稳定换热。 4、根据进料量、蒸发量、出水量建立函数关系,形成连锁控制, 达到系统稳定。

板式蒸发器优点说明

上海艾克森蒸发浓缩装置投标投标技术说明(一)板式蒸发器与管壳式蒸发器对比的优点 (二)ACCESSEN板式蒸发器运行原理及特点介绍 (三)ACCESSEN板式蒸发浓缩系统运行原理及控制介绍 (四)ACCESSEN板式蒸发器操作和维护介绍 (五)ACCESSEN板式蒸发器部分业绩

(一)板式蒸发器与管壳式蒸发器对比的优点 艾克森公司板式蒸发器和冷凝器与传统的管壳式蒸发器和冷凝器相比,使用ACSvap(艾克森板式蒸发器)和ACScond(艾克森板式冷凝器)所带来的是难以想象的收益。它们不仅占地面积更小,因而节省了宝贵的空间,同时大大降低了投资成本,减少了维护,却不需要牺牲可靠性和安全性。在节能上,板式蒸发器及冷凝器能进行逆流传热蒸发大大拉近两端温差,而管壳式只能交叉传热,从而使加热蒸气用量减少。 1、热传导效率高 特殊的波纹状板型产生高强度的湍流,比起传统的管壳式蒸发器,它的传热系数得到了极大的提高。ACSV ap在高浓度和高粘度时特别有效,并且可以在温差仅3-5℃时工作,当ACSV ap用在TVR和MVR系统时,这是一个很大的优势。就本次投标TVR系统来说,用管壳式蒸发器就使用蒸汽热泵,二次蒸汽引射比会很小,只能在1:0.5. 因为管壳式蒸发器第一效蒸发最少温差得维持在15℃,这就意味进入管壳式蒸发器的蒸汽温度需要较高,只能通过抽吸少量低温的二次蒸汽。而用板式蒸发器,蒸汽引射比可以维持在1:1.25以上,大大节省了生蒸汽耗量。 2、结垢更少,维修方便 整个板片内的高强度湍流不仅仅减少了结垢,而且使得化学清洗更加有效。与管壳式相比,由于滞留量少,所以只需很少的清洗剂。ACSV ap的灵活设计意味着热传导表面容易检查,而且容易用机械方法清洗,只需拆掉紧固螺栓并松开压紧板。 3、易于扩容 ACSV ap一个受欢迎的特性是,要增加或减少容量,只需在现有的框架上增加或拆掉板片组即可。与管壳式蒸发器(在安装时,其生产能力就已固定不变了)相比,这是一个主要的优势。 4、提高产品质量 非常低的滞留量意味着任何给定的时间,几乎没有产品留在ACSV ap蒸发器内。产品在蒸发内停留的时间短,对于热敏产品而言是一个很大的优势。它还允许快速启动和关机,只有很少一点浪费。 5、节省用户投入费用 ACSV ap和ACSCond的独特设计具有比传统管壳式设备更高的热效率,这意味着所需的换热面积大大减少。因此使用ACSV ap和ACSCond非常经济,特别是需要使用如SMO、钛、镍和镍基合金、哈氏合金等特殊金属时。 6、节省空间、节省安装费用 从下面的示意图看,是一套三效蒸发系统装置,可以很明显地看出,ACSV ap和ACSCond与传统的管壳式比较,它可以大大节省安装费用和安装空间。

降膜,升膜蒸发器的区别

降膜和升膜不同,膜传热系数不取决于管内汽速,因此适于用在蒸发量较小的场合。例如有些二级蒸发的设备,常在第一级蒸发时采用升膜,而在第二级蒸发时采用降膜。由于降膜流动是依靠重力而成膜的,为了使每一根管内的液体都能均匀分布,因此在降膜蒸发器上部应有降膜分配器,通称降膜头。降膜头的安装必须呈水平,以免出现液体流动不均的现象。机理

解释一:是指为实现某一特定功能,一定的系统结构中各要素的内在工作方式以及诸要 素在一定环境条件下相互联系、相互作用的运行规则和原理。 解释二:机理是指事物变化的理由与道理。在化学动力学中,所谓“机理”是指从原子的结合关系中来描绘化学过程。在化学气相沉积中,机理的含义更加广泛。如果其过程是动力学控制的,机理是指原子水平的表面过程。 我们这里有一个塔下面就是一个降膜蒸发器 它由加热室和分离罐组成 物料从加热室顶部进入,沿加热管内壁呈膜状下降 在下降的过程中被不断的蒸发增浓 汽液混合物从加热室底部流出进入分离罐 蒸汽从分离罐顶部排出 完成液从分离罐底部排出 升膜蒸发器:是一种将加热室与蒸发室(分离室)分离的蒸发器。加热室实际上就是一个加热管很长的立式固定管板换热器,料 液由底部进入加热管,受热沸腾后迅速汽化;蒸汽在管内迅速上升,料液受到高速上升蒸汽的带动,沿管壁形成膜状上升,并继 续蒸发。汽液在顶部分离,二次蒸汽从顶部溢出,完成液则由底部排出。加热管一般采用25~5mm的无缝管,管长与管径比在常 压下约为100~150,在减压下约为130~180。这种蒸发器适用于蒸发量较大,有热敏性和易产生泡沫的溶液,不适于粘度很大, 容易结晶或结垢的物料。 降膜蒸发器:与升膜蒸发器结构基本相同,主要区别在于原料液是从加热室的顶部加入,在重力的作用下沿管内壁形成膜状下降,并进行蒸发,浓缩液从加热室的底部进入到分离器内并从底部排出,二次蒸汽由顶部溢出。由于二次蒸汽的流向与料液的流向一致,所以能促进料液的向下运动并形成薄膜。在每根加热管的顶部必须装有降膜分布器,以保证每根管子的内壁都能为料液所湿润,并不断有液体缓慢流过,否则,一部分管壁形成干壁现象,不能达到最大的生产能力,甚至不能保证产品质量。降膜蒸发器 适用于热敏性物料,不适于易结晶,结垢或粘度很大的物料。 对于膜蒸发器和升膜蒸发器的工作原理、区别及各自的优缺点,请参照下面的详细介绍。 如果液体黏度比较大,建议还是使用旋转刮板式蒸发器好,此种蒸发器适用于高粘度、易结晶、结垢的浓溶液,我以前的厂用的 就是它,效果不错,如果在它上面加装抽真空装置,效果会更好。 我原来用过三效降膜蒸发器和四效降膜蒸发器,主要用于浓缩葡萄糖浆和玉米浆,记得粘度范围要求好像是<400CP,具体我们使 用的是多少不记得了。 升膜和降膜的区别还在于:升膜的动力消耗较大!但蒸发效果要好!对于国外一般选择升膜蒸发器,原因是他们的主要是风力、水、发电,不像国内是火力发电,所以电的成本低!国内建议选择降膜蒸发器!淀粉的玉米浆、酒精的浓缩液、牛奶的蒸发,都 可以用降膜蒸发器!至于粘度,没有作统计! 补充一点:升膜和降膜的流速控制不同。升膜的流速要大好多。 升膜的气速常压下要20~30m/s,减压下80~200m/s,加热管长径比100/300。一般一个流程即达到要求。 降膜一般用于粘度不太大的溶液,一次达不到要求可以循环蒸发。 粘度较大或者有结晶的一般使用强制循环蒸发,粘度很大的可以考虑刮膜蒸发 如果是聚合物脱单还是要谨慎一些,低于聚合物熔融态粘度的都没问题。 升膜蒸发器和降膜蒸发器都属于单程蒸发器。这类蒸发器主要特点是:溶液在蒸发器中只通过加热室一次,不做循环流动即从浓 溶液排出。升膜蒸发器,其加热室由许多垂直长管组成,料液经预热后由蒸发器底部引入,进入加热管内受热沸腾后迅速汽化, 生成的蒸汽在加热管内高速上升。溶液则被上升的蒸汽所带动,沿管壁成膜状上升,并在此过程中连续蒸发,汽液混合物在分离 器内分离,完成液由分离器底部排出,二次蒸汽则在顶部导出。 降膜蒸发器,料液是从蒸发器顶部加入,在重力作用下沿管壁成膜状下降,并在此过程中不断被蒸发而蒸浓,在其底部得到完成液。 升膜蒸发器适用于蒸发量较大(即稀溶液)、

三效降膜蒸发器说明书讲解

目录 一、产品简 介. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 二、设备特 点. . . . . . . . . . . . . . . . . . . . . . . . . . . 1 三、技术参 数. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 四、工作原 理. . . . . . . . . . . . . . . . . . . . . . . . . . . 2 五、操作规 程. . . . . . . . . . . . . . . . . . . . . . . . . . . 3

六、维护与保 养. . . . . . . . . . . . . . . . . . . . . . . . . 5 七、工艺流程 图. . . . . . . . . . . . . . . . . . . . . . . . . 6 一、产品简介 本设备广泛适用于葡萄糖、淀粉糖、低聚糖、饴糖、山梨醇、鲜奶、果汁、维C、麦芽糊精、化工、制药等水溶液的浓缩。并可广泛用于味精、酒精、鱼粉等行业的废液处理。 该设备在真空低温条件下进行连续操作,具有蒸发能力高、节能降耗、运行费用低、能最大地保持被处理物料原有的色、香、味和成份。在食品、医药、粮食深加工、饮料、轻工、环保、化工等许多行业均得到广泛的应用。 BNJM03型蒸发器(即三效降膜蒸发器)可以根据不同被处理物料的特点,设计成不同的工艺流程,也可根据不同用户要求配备自动化控制系统。 二、设备特点 A、接触物料材质:不锈钢SUS304。 B、设备由一、二、三效加热器,一、二、三效蒸发分离器、列管式冷凝器、热压泵、真空泵、物料泵、平衡罐、电控箱、工作台及所有管路、阀门组成。

降膜蒸发器分布器的种类及其异同点

降膜蒸发器分布器的种类及其异同点 降膜蒸发器分布器的种类及其异同点 降膜蒸发器作为一种高效蒸发设备以其特有的优点逐渐被应用于化工、轻工.食品加工等行业。 一、降膜蒸发器溢流式分布器 管子的上端沿管璧切线方向钻孔(图1)或开槽(图2)形成液体通道v液体靠管板上的液位静压而流下一般说,通道数越多,通道越小就越有利于液体沿管壁均勾分布,但通道过小,则易被脏物堵塞通道,一旦通道被堵会引起液体更严重的不均匀分布,同时,通道越小,加工误差所引起的偏差也越大.所以一般取小孔的直径或槽宽为2~~ 3mm,通道数3~4个。 二、降膜蒸发器插头型分布器 插头型分布器是在管子顶端放一插头,利用插头与管子内壁间的间隙来促使液体形成液膜。.插头形式有螺旋沟槽式]∵锥体式[呵、细管式l和空心球式(图3一6)。液体通过螺旋沟槽时,液体流向变成螺旋形(在过渡段),管子,这样球与管手间形成的环隙较小;反之,当流量较大时.分布室内的液面高度较大,其位置靠近定距板,这样球与管子间形成较大的环隙,所以空心球式分布器适用于流量有变化的情况.。 三、降膜蒸发器多层淋降板式分布器 四、多层淋降板式分布器:是在管板的上方安装几块带孔的分布板(…般为三块),分布板的上方设置一挡板。液体从设备的顶部进入蒸发器的分布室,先流到挡板上再流到分布板上,经过几块分布板的再分布使液体均匀地分布到管板的板桥间,然后溢流进加热管成膜。其中分布板上孔的大小和孔的布置是该分布器设计的关键因素。 综合以上几种液体分布器的特点,插头型分布器可以在单根管子内壁形成均匀的液膜,但流动阻力大,易堵管,安装检修不便,所以适用于处理清洁物料。溢流型分布器的加工精度和安装精度一-般要求较高。这两种液体分布器的共同特点是只能保证液体在单根管子内璧均匀布膜,不能保证液体在所有管子上分配均匀,尤其当管数很多时会困为大直径管板上的液位差大而破坏液体分布的均匀性,因此,只适用于管数较少的情况。多层淋降板式分布器结构简单,加工、安装和检修都较方便,由于在管板上是多点布料,所以管板直径的大小对于分布效果的影响不明显、但是沿单根管子的内壁布膜不

几种蒸发器的结构及工作原理

几种蒸发器的结构及工作原理蒸发器主要由加热室及分离室组成。按加热室的结构和操作时溶液的流动情况,可将工业中常用的间接加热蒸发器分为循环型(非膜式)和单程型(膜式)两大类。 一、循环型(非膜式)蒸发器 这类蒸发器的特点是溶液在蒸发器内作连续的循环运动,以提高传热效果、缓和溶液结垢情况。由于引起循环运动的原因不同,可分为自然循环和强制循环两种类型。前者是由于溶液在加热室不同位置上的受热程度不同,产生了密度差而引起的循环运动;后者是依靠外加动力迫使溶液沿一个方向作循环流动。 (一)中央循环管式(或标准式)蒸发器 中央循环管式蒸发器,加热室由垂直管束组成,管束中央有一根直径较粗的管子。细管内单位体积溶液受热面大于粗管的,即前者受热好,溶液汽化得多,因此细管内汽液混合物的密度比粗管内的小,这种密度差促使溶液作沿粗管下降而沿细管上升的连续规则的自然 循环运动。粗管称为降液管或中央循环管,细管称为沸腾管或加热管。为了促使溶液有良好的循环,中央循环管截面积一般为加热管总截面积的40%一100%。管束高度为1—2m;加热管直径在25~75mm之间、长径之比为20~40。

中央循环管蒸发器是从水平加热室、蛇管加热室等蒸发器发展而来的,相对于这些老式蒸发器而言,中央循环管蒸发器具有溶液循环好、传热效率高等优点;同时由于结构紧凑、制造方便、操作可靠,故应用十分广泛,有“标准蒸发器”之称。但实际上由于结构的限制,循环速度一般在0.4~0.5m/s以下;且由于溶液的不断循环,使加·热管内的溶液始终接近完成液的浓度,故有溶液粘度大、沸点高等缺点;此外,这种蒸发器的加热室不易清洗。 中央循环管式蒸发器适用于处理结垢不严重、腐蚀性较小的溶液。

降膜蒸发器的设计

齐齐哈尔大学 蒸发水量为2000的真空 降膜蒸发器 题目蒸发水量为2000的真空降膜蒸发器 学院机电工程学院 专业班级过控133 学生姓名戴蒙龙 指导教师张宏斌 成绩 2016年 12月 20日 目录 摘要............................................. 错误!未指定书签。Absract............................................ 错误!未指定书签。 第1章蒸发器的概述................................ 错误!未指定书签。 1.1蒸发器的简介................................. 错误!未指定书签。 1.2蒸发器的分类................................. 错误!未指定书签。 1.3蒸发器的类型及特点、......................... 错误!未指定书签。 1.4蒸发器的维护................................. 错误!未指定书签。 第2章蒸发器的确定................................. 错误!未指定书签。 2.1 设计题目.................................... 错误!未指定书签。 2.2 设计条件:.................................. 错误!未指定书签。 2.3 设计要求:.................................. 错误!未指定书签。 2.4 设计方案的确定.............................. 错误!未指定书签。 第3章换热面积计算................................ 错误!未指定书签。 3.1.进料量...................................... 错误!未指定书签。

MVR蒸发器实用工艺操作规程

MVR蒸发器工艺操作规程 第一部分原理 MVR蒸发器不同于普通单效降膜或多效降膜蒸发器,MVR为单体蒸发器,集多效降膜蒸发器于一身,根据所需产品浓度不同采取分段式蒸发,即产品在第一次经过效体后不能达到所需浓度时,产品在离开效体后通过效体下部的真空泵将产品通过效体外部管路抽到效体上部再次通过效体,然后通过这种反复通过效体以达到所需浓度。 效体部为排列的细管,管部为产品,外部为蒸汽,在产品由上而下的流动过程中由于管面积增大而是产品呈膜状流动,以增加受热面积,通过真空泵在效体形成负压,降低产品中水的沸点,从而达到浓缩,产品蒸发温度为60℃左右。 产品经效体加热蒸发后产生的冷凝水、部分蒸汽和给效体加热后残余的蒸汽一起通过分离器进行分离,冷凝水由分离器下部流出用于预热进入效体的产品,蒸汽通过风扇增压器进行增压(蒸汽压力越大温度越高),而后经增压的蒸汽通过管路汇合一次蒸汽再次通过效体。 设备启动时需一部分蒸汽进行预热,正常运转后所需蒸汽会大幅度减少,在风扇增压器对二次蒸汽加压的过程中由电能转化为蒸汽的热能,所以设备运转过程中所需蒸汽减少,而所需电量大幅增加。 产品在效体流动的整个过程中温度始终在60℃左右,加热蒸汽与产品之间的温度差也保持在5—8℃左右,产品与加热介质之间的温度差越小越有利于保护产品质量、有效防止糊管。 产品的浓缩度在50%左右时仅MVR蒸发器就能完成 第二部分工艺流程说明 1、物料走向 ①进料:上游工艺产生的硫酸钠原液送至本系统原料缓冲罐T01中, 由进料泵P01打入蒸发系统。5t/h 25℃5%的硫酸钠溶液从原料缓冲罐T01出来,由进料泵P01打入板式换热器,硫酸钠溶液在蒸馏水板换HE01和鲜蒸汽板换HE02分别与系统产生的3.5t/h 102℃

单效降膜式蒸发器的设计

食品工程原理 课程设计说明书单效降膜式蒸发器的设计 姓名: 学号: 班级: 指导老师: 年月日

目录 1.前言 概述 蒸发器选型 2.单效蒸发工艺计算 物料衡算 热量衡算 传热面积计算 计算结果列表 3.蒸发器主体工艺设计 加热管的选择和管数的初步估计 3.1.1 加热管的选择和管数的初步估计 3.1.2 循环管的选择 3.1.3 加热室直径的确定 3.1.4 分离室直径与高度的确定 接管尺寸的确定 进料方式及加热管排布方式的确定 3.3.1进料方式的确定 3.3.2加热管排布方式的确定 仪表、视镜与人孔的确定 蒸发器主要部件规格列表 4.蒸发装置的辅助设备 气液分离器 蒸汽冷凝器 5.结语 致谢 附表 参考文献

任务书

一、设计意义 二、蒸发工艺设计计算 (1)蒸浓液浓度计算 多效蒸发的工艺计算的主要依据是物料衡算和、热量衡算及传热速率方程。计算的主要项目有:加热蒸气(生蒸气)的消耗量、各效溶剂蒸发量以及各效的传热面积。计算的已知参数有:料液的流量、温度和浓度,最终完成液的浓度,加热蒸气的压强和冷凝器中的压强等。 蒸发器的设计计算步骤多效蒸发的计算一般采用试算法。 ①根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸气压强及冷凝器的压强),蒸发器的形式、流程和效数。 ②根据生产经验数据,初步估计各效蒸发量和各效完成液的浓度。 ③根据经验假设蒸气通过各效的压强降相等,估算个效溶液沸点和有效总温差。 ④根据蒸发器的焓衡算,求各效的蒸发量和传热量。 ⑤根据传热速率方程计算各效的传热面积。若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤③至⑤,直到所求得各效传热面积相等(或满足预先给出的精度要求)为止。 43028*10*10*0.542735/300*24*0.13 X 13% W F*142735*131624/X 50% F kg h kg h ===-=-=蒸发水量:()()(2)溶液沸点和有效温度差的确定 由二次蒸汽压强从手册中查得相应的二次蒸汽温度和汽化潜热列与下表中: 蒸汽 压力(KPa ) 温度(℃) 汽化热(kJ/kg) 加热蒸汽 500 二次蒸汽 20 60 2355

相关文档
最新文档