线性代数论文 矩阵的分块及应用
分块矩阵的应用论文

分块矩阵的应用引言矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,那么有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生.矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比方,从行列式的性质出发,可以推导出分块矩阵的假设干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,那么可求得A B AD BC C D =-;分块矩阵也可以在求解线性方程组应用.本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.1 分块矩阵的定义及相关运算性质1.1分块矩阵的定义矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.定义1设A 是一个m n ⨯矩阵,假设用假设干横线条将它分成r 块,再用假设干纵线条将它分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,其中ij A 表示的是一个矩阵.1.2分块矩阵的相关运算性质 1.2.1加法设()ij m n A a ⨯=()ij m n B b ⨯=,用同样的方法对,A B 进行分块()ij r sA A ⨯=,()ij r sB B ⨯=,其中ij A ,ij B 的级数相同,那么 ()ij ij r s A B A B ⨯+=+. 1.2.2数乘设是任()(),ij ij m n r s A a A k ⨯⨯==为任意数,定义分块矩阵()ij r s A A ⨯=与k 的数乘为()ij r skA kA ⨯=1.2.3乘法设()(),ij ij s n n m A a B b ⨯⨯==分块为()(),ij ij r l l r A A B B ⨯⨯==,其中ij A 是i j s n ⨯矩阵,ij B 是i j n m ⨯矩阵,定义分块矩阵()ij r l A A ⨯=和()ij l r B B ⨯=的乘积为()1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、1.2.4转置设()ij s n A a ⨯=分块为()ij r s A A ⨯=,定义分块矩阵()ij r s A A ⨯=的转置为()ji s rA A ⨯''=1.2.5分块矩阵的初等变换分块矩阵A 的以下三种变换称为初等行变换: (1) 对调A 的两行(用i j r r ↔表示对调i 、j 两行);(2) 用一个可逆阵K 左乘A 的某一行的所有子矩阵(用i K r ⨯表示用K 左乘第i 行); (3) 将A 的某一行的所有子矩阵左乘一个矩阵K 再加到另一行的对应子矩阵上去(i j r K r +⨯表示将第j 行左乘K 再加到第i 行).将上述定义中的“行〞换成“列〞,“左乘〞换成“右乘〞, 即得分块矩阵的初等列变换的定义, 分块矩阵的初等行变换和初等列变换统称为初等变换.2 分块矩阵的应用2.1用分块矩阵解决行列式的问题利用矩阵分块的方法求行列式的值是行列式求值的常用方法之一, 但通常所用的?高等代数?教材中对能够用矩阵分块法求值的行列式要求较为严格, 多数为形式较特殊的行列式.下面给出了一个应用范围较为广泛的行列式的分块矩阵求值方法.引理2.1([3])假设A 为k 阶方阵,B 为r 阶方阵,C 为r k ⨯矩阵, 那么有A ABC B= 在上述引理中,要求子块当中有一个为零矩阵, 更一般的有如下的结论. 定理2.2([3])假设n 阶方阵P 可分为A B P CD ⎡⎤=⎢⎥⎣⎦其中A 为r 阶方阵, B 为()r n r ⨯-矩阵, C 为()n r r -⨯矩阵, D 为()n r -阶方阵, 那么有〔1〕当A 为可逆矩时1P A D CA B -=-; 〔2〕当D 为可逆矩阵时1P D A BD C -=-.在进行行列式的求值运算时, 假设能找到符合本定理条件要求的矩阵分块方法, 就可应用定理的结论进行行列式的计算, 现举例说明如下:例2.3 计算行列式 013c ...0 (00)...0.........0...nb b b ac P ac a c =其中10,123...c i n ≠=.解 设 0()A c =,()...B b b b =,()...TC a a a =130...00...0,0,1,2,,.........00 (i)n c c D c i n c ⎡⎤⎢⎥⎢⎥=≠=⋅⋅⋅⎢⎥⎢⎥⎣⎦ 那么D 为可逆矩阵,由定理1的结论〔2〕知1A BP D A BD C C D-==- , 将 1111210...00...0.........00...n c c D c ----⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦及,A B C D ,,代入得 1111212...((...))n n P c c c a ab c c c ---=-+++.例2.4 矩阵()ij ai j P a bi j =⎧==⎨≠⎩当时当时,求行列式P 的值.解:行列式P 的主对角线元素为a ,其余元素为b ,因此: 〔1〕当a b =时,由行列式的性质知P =0;〔2〕当a b ≠时,从第一行开始,将行列式的前行减去后行得...000 (00).........000......a b b a a b b a P a b b abbbb a ----=--,令...000...000.........,, 000 000...0a b b a a b b a A B a b b a o a b b a --⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦()()...,,C b b b b D a ==由定理2.2可知 1P A D CA B -=-,而 ()1n A a b -=- ,()011,,,>a b i jA i j --⎧-≤⎪=⎨⎪⎩计算结果得 ()()()()()()111+1n n P a b a n b a b a n b --=---=--.假设定理中的矩阵A 和D 均为可逆矩阵时,定理的两个结论均成立,可以利用公式11D A BD C A D CA B---=-进行转换求行列式的值,举例说明如下.推论2.5 假设,,,A B C D 均为n 阶方阵,且A 可逆,AC CA =,那么 ABT AD CB C D==-. 例2.6 计算行列式 1111122310250121T -=.解 对T 进行分块A B T C D ⎡⎤=⎢⎥⎣⎦, 其中 11111025,,,,12230121A B C D ⎡⎤⎡⎤⎡⎤⎡⎤====⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦ 显然A 可逆,且AC CA =,所以T AD CB =-,而 4667AD ⎡⎤=⎢⎥⎣⎦,1123CB ⎡⎤=⎢⎥-⎣⎦ 所以, 3510410T ==. 定理2.7 假设,A B 均为n 阶方阵,那么A BA B A B B A =+-.. 例2.8 计算行列式 1234234134124123T =.解 对矩阵T 进行分块A B T C D ⎡⎤=⎢⎥⎣⎦, 其中 1234,,2341A B ⎡⎤⎡⎤==⎢⎥⎢⎥⎣⎦⎣⎦由于 4664A B ⎡⎤+=⎢⎥⎣⎦ ,22,22A B --⎡⎤-=⎢⎥-⎣⎦ 所以 (20)(8)160T A B A B =+-=-⨯-=. 2.2 分块矩阵在解线性方程组中的应用例2.9设n 个未知数m 个方程的线性方程组为11112211211222221122...............n n n n m m mn n ma x a x a xb a x a x a x b a x a x a x b +++=⎧⎪+++=⎪⎨⎪⎪+++=⎩ 〔1〕 记()ij m n A a ⨯=,()12X=,,...,Tn x x x 〔其中T 表示矩阵的转置〕, ()12,,...,Tm B b b b = ,那么方程〔1〕的矩阵形式为 AX B =.把方程〔1〕的矩阵形式改写成如下分块矩阵的形式111211212222AA XB A A X B ⎡⎤⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,其中 111111........................r r rr a a A a a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111121........................r n rr rn a a A a a ++⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,()11112A A A =,111211........................r r r m mr a a A a a ++⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,111221........................r r r n mr mn a a A a a ++++⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,()22122A A A =,()112...Tr X x x x =,()212...Tr r n X x x x ++=,()112...T r B b b b =,()212...Tr r m B b b b ++=,方程组〔1〕有解时,我们解方程组〔1〕时总是把〔1〕化成简单的同解方程组,从而求出其解.定理2.10. 设方程组〔1〕有解且()()11,r A r n r A r =≤=,那么方程组()1112A A X B =与AX B =同解.例2.11.方程组1112132223243132333441424344212212330x x x x x x x x x x x x x x ++=⎧⎪--=⎪⎨+++=-⎪⎪+++=⎩ 〔2〕 求此方程组的解并证明此方程组和方程组111213222324212x x x x x x ++=⎧⎨--=⎩ 〔3〕 同解.解:令1210011111212331A ⎡⎤⎢⎥--⎢⎥=⎢⎥⎢⎥⎣⎦,11121210()0111A A ⎡⎤=⎢⎥--⎣⎦,其中 111201A ⎡⎤=⎢⎥⎣⎦,121011A ⎡⎤=⎢⎥--⎣⎦,1210B ⎡⎤⎢⎥⎢⎥=⎢⎥-⎢⎥⎣⎦,112B ⎡⎤=⎢⎥⎣⎦,121011210112101011120111201112112110111200000233100111200000⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥------⎢⎥⎢⎥⎢⎥→→⎢⎥⎢⎥⎢⎥---⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦, 所以此方程组的齐次线性方程组的解为1232111001c c --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,又3200-⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦是方程组的一个特解,所以此方程组的解为 12323112100010c c ---⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥++⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,由上可知()2r A =并且11()2r A =,所以由定理3可证方程组〔2〕和〔3〕同解. 2.3分块矩阵在相似问题中的应用定理2.12.如果方阵~A B ,方阵~C D ,那么00~00A B C D ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 证明 因为方阵~A B ,方阵~C D ,所以 110000000000E A XE X Y C E Y E --⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦11110000000000A XB X X AXC YD Y Y CY ----⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦ , 而 1110000E XY E ---⎧⎫⎡⎤⎡⎤⎪⎪⎨⎬⎢⎥⎢⎥⎪⎪⎣⎦⎣⎦⎩⎭1100E Y --⎡⎤⎢⎥⎣⎦1100X E --⎡⎤=⎢⎥⎣⎦0000XE E Y ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦, 所以 00~00A B C D ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦. 2.4用分块矩阵证明矩阵秩的问题定理2.13.设0A M C B ⎡⎤=⎢⎥⎣⎦,A 为m n ⨯矩阵,B 为k l ⨯矩阵, 那么有()()()r M r A r B ≥+,且0C =时,()()()0A r M r r A r B C B ⎡⎤==+⎢⎥⎣⎦ 证明 设A 在初等变换下的标准形为1000rE D ⎡⎤=⎢⎥⎣⎦,()r r A =, 又设B 在初等变换下的标准形为 2000sED ⎡⎤=⎢⎥⎣⎦,()s r B =, 那么,对M 前m 行前n 列作初等变换,对它的后k 行后l 列也作初等变换可把M 化为11120D C M D ⎡⎤=⎢⎥⎣⎦,现在利用1D 左上角的1经列初等变换消去1C 位置中的非零元;再用2D 左上角的1经行初等变换消去它上面1C 处的非零元素,于是把1M 再化作220000000000000r s E C M E ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 那么有 ()()()()()()122r M r M r M r s r C r s r A r B ===++≥+=+.利用这个定理及初等变换可证明一些秩的不等式.例2.14. 设A 为m n ⨯矩阵,B 为n l ⨯矩阵,假设0AB =,那么()()r A r B n +≤. 证明 因为()()00000000n n n n A AB A r A r B r r r r r n E B E B E B E B ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤+=≤====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥----⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦, 所以 ()()r A r B n +≤.例2.15. 设A 、B 都是n 阶矩阵,求证:()()()r AB A B r A r B ++≤+.证明:因为 0A AB A B B ++⎡⎤⎢⎥⎣⎦(2)(1)E -⨯+−−−−→0A AB A B +⎡⎤⎢⎥⎣⎦(1)()(2)B E ⨯--+−−−−−→00A B ⎡⎤⎢⎥⎣⎦, 所以 0E E E -⎡⎤⎢⎥⎣⎦0E B E E --⎡⎤⎢⎥⎣⎦00A B ⎡⎤=⎢⎥⎣⎦, 又0E E E -⎡⎤⎢⎥⎣⎦,0E B E E --⎡⎤⎢⎥⎣⎦都可逆, 所以 000A AB A B A r r B B ++⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦, 而 ()0A AB A B r r AB A B B ++⎡⎤≥++⎢⎥⎣⎦ 又 ()()00A r r A r B B ⎡⎤=+⎢⎥⎣⎦, 所以 ()()()r AB A B r A r B ++≤+. 2.5 用分块矩阵求逆矩阵的问题分块矩阵是高等代数中的一个重要的工具,在求解高阶矩阵问题中的应用尤为广泛.求矩阵的逆矩阵可以用伴随矩阵或初等变换的方法来解决,而此类方法对于级数较高的矩阵运算量较大,对某些矩阵可以适当分块后再进行运算,可起到事半功倍的作用.定理2.16. 对于n 阶矩阵A ,如果存在n 阶矩阵B ,使得 AB BA I == 那么矩阵称为可逆矩阵,而B 称为A 的逆矩阵.假设,A B 都可逆,那么 100A B -⎡⎤⎢⎥⎣⎦1100A B --⎡⎤=⎢⎥⎣⎦10A C B -⎡⎤⎢⎥⎣⎦11110A A CB B ----⎡⎤-=⎢⎥⎣⎦,10A C B -⎡⎤⎢⎥⎣⎦11110A B CAB ----⎡⎤=⎢⎥-⎣⎦, 1111110000kk n k n k E A B E A B A CA E C D E D -------⎡⎤⎡⎤-⎡⎤⎡⎤=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦其中1D 1D CA B -=-.以下举些例子具体说明分块矩阵在矩阵求逆中的具体应用.例2.17. 矩阵1200210000120025A ⎡⎤⎢⎥-⎢⎥=⎢⎥-⎢⎥-⎣⎦,求1A -. 解:可以将矩阵A 分成四块12A 00A A ⎡⎤=⎢⎥⎣⎦,其中1A 1221⎡⎤=⎢⎥-⎣⎦,2A 1225-⎡⎤=⎢⎥-⎣⎦,根据分块矩阵的性质,1A -111200A A --⎡⎤=⎢⎥⎣⎦,而1A ,2A 为二级矩阵,其逆矩阵易求出,分别为 11A -12552155⎡⎤⎢⎥=⎢⎥-⎣⎦,12A -5221--⎡⎤=⎢⎥--⎣⎦, 所以 1A -12005521005500520021⎡⎤⎢⎥⎢⎥-=⎢⎥⎢⎥--⎢⎥--⎣⎦ 2.6 分块矩阵在矩阵的特征值问题中的应用在高等代数中,矩阵的特征值问题是一项非常重要的内容,特征值对于线性变换的研究具有根本的重要性.而我们在求一些阶数较高和较复杂的矩阵特征值时,经常会用矩阵的分块去解决,这样可以使问题的解决更简明.定理2.18. 设A 为n 阶矩阵,λ是一个数,如方程AX X λ=,存在非零解向量,那么称λ为A 的一个特征值,相应的非零解向量X 称为与特征值λ对应的特征向量.定理2.19.设A 为n 阶矩阵,含有未知量λ的矩阵I A λ-称为A 的特征矩阵,其行列式I A λ-为λ的n 次多项式,称为A 的特征多项式0I A λ-=称为A 的特征方程,λ是矩阵A 的一个特征值,那么一定是0I A λ-=的根,因此又称为特征根.假设λ是0I A λ-=的i n 重根,那么λ称为A 的i n 重特征值.引理2.20.设A 为n 阶矩阵,那么A 为幂等矩阵的充要条件()()r A E r A n -+=,这里E 为n 阶单位矩阵,()r A 表示A 的秩.引理2.21.幂等矩阵()1112A A X B = 与000rE ⎡⎤⎢⎥⎣⎦ 或000r E ⎡⎤⎢⎥⎣⎦相似,其中()r r A =. 例2.22. 设12,,A A A 均为n 阶方阵,且12A A A =+,()()(),1,2i i r A r r A r i ===,求证:假设212,A A r r r ==+,那么12,,A A A 的特征值为1或0,且1的个数和它们的秩相等.证明:〔1〕当A 可逆时,即()r A n =,因为2A A =,所以A E =, 又 12r r r =+,12E A A =+, 由得()()()12r A r A r A n =+=,由引理2.20得到211A A =.同理222A A =,所以1A ,2A 是幂等矩阵,由引理2.21得10~00rEA ⎡⎤⎢⎥⎣⎦,200~0r A E ⎡⎤⎢⎥⎣⎦, 12,,A A A 和E ,000rE⎡⎤⎢⎥⎣⎦,000r E ⎡⎤⎢⎥⎣⎦有相同的特征根,所以12,,A A A 的特征值为1或0,且特征值1的个数和它们的秩相等.〔2〕当()0r A =时,即0A =,结论显然成立.〔3〕设0r n <<,即A 为非零由布可逆矩阵,又因为2A A =,故存在可逆矩阵P 使11112P AP P A P P A P ---=+,()r r A =,令 000rE⎡⎤⎢⎥⎣⎦1112111221222122A A B B A A B B ⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦这里 ()1ij P AP A -= ()121111ij r P A P B E A B -=⇒=+, 所以 ()()()()()1111111111=r r A B r A r B r A r B r +≤+≤+=, 从而 ()()()()()1111111112=r r A B r A r B r A r A r +≤+≤+=, 又因为 ()()()11121100r A r A A B -≥-≥, r , 从而 ()()111r A r A =,()211r A B =,这样1111Er A B =+,且()1111r A B r +=,由定理2.18的证明可知,存在可逆矩阵Q ,使11110Q=00r E Q A -⎡⎤⎢⎥⎣⎦ ,211100Q=0r Q B E -⎡⎤⎢⎥⎣⎦, 111112n-n-n-n-00000000000rr r r r E Q QQ Q P A P P A P E E E E ----⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦11111112111221222122n-n-n-n-00000000r r r r A A B B Q Q Q Q A A B B E E E E ----⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤=+⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦11111112111221222122Q A Q Q A Q B Q Q B A Q A B QB ----⎡⎤⎡⎤=+⎢⎥⎢⎥⎣⎦⎣⎦,设 1111122122Q A Q Q A A Q A --⎡⎤⎢⎥⎣⎦1121111222000r E C C G G A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦, 又因为11211111222000r E C r C r G G A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,所以21120,0G G ==, 设 211111112r 212122*********W Q B QQ B E W B QB Z Z B --⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦, 同上可得110Z =,110W = ,故111121120,0,0,0C G W Z ====,又1111112212222000000r E Q A Q Q A A Q A A --⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦, 从而220A =,同理 211111221220000000r Q B QQ B E B QB --⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,100n r Q T P E --⎡⎤=⎢⎥⎣⎦,故有1210000,000rrET AT E-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦12111200000000,00000000rrET AT T A T E--⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,综上所述,结论成立.小结本文通过例题对分块矩阵在证明和计算中两方面的应用进行了总结分析,在证明方面涉及了矩阵秩的相关问题和矩阵列行向量线性相关性问题,在证明线性相关问题上,利用分块矩阵的解可以很清晰动的描述线性方程组的解和相关内容,对一些具体的解与矩阵行列相关性之间的关系做出了总结;在分块矩阵计算方面我们主要解决了求逆矩阵与高级行列式的问题.通过本文的表达充分表达了分块矩阵在代数计算和证明方面的优越,也给出了分块矩阵在线性代数中所具有的重要地位,当然在分块矩阵的应用的表达中,本文并不是对所有的证明和计算都进行讨论,所以在应用的完整性上有待改进,并可以继续进行探讨和研究.参考文献[1] 蓝以中.高等代数简明教程[M].北京:北京大学出版社,2007:141-149.[2] 杜之韩,刘丽,吴曦.线性代数[M].成都:西南财经大学出版社,2003:61-68.[3] 郝玉琴.利用矩阵的分块法解线性方程组[J].唐山师专学报,1999(5):37-38.[4] 王萼芳.线性代数学习指导[M].北京:清华大学出版社,2021:104-108.[5] 祁秋菊.分块矩阵的相关应用[J].科技信息,2021:1-4.[6] 孔庆兰.分块矩阵的应用[J].枣庄学院报,2006〔5〕:24-25.[7] 王秀芳.分块矩阵的应用讨论[J].连云港师范高等专科学校学报,2021〔3〕:98-99.[8] 严坤妹.分块矩阵的应用[J].福建播送电视大学学报,2006〔59〕:71-73.[9] 张敏.分块矩阵的应用[J].吉林师范大学学报,2003〔1〕:118-120.[10] 周兴建.分块矩阵及其应用[J].科技资讯,2007〔35〕:126-126.[11] 陈晓兰,杨子胥.分块矩阵的一些应用[J].德州师专学报,1995〔4〕:1-14.[12] 钱钶.用分块矩阵证明矩阵秩的假设干定理[J].景德镇高专学报,1995〔4〕:11-14.[13] 徐常青,杜先能.高等代数方法与应用[M].合肥:安徽大学出版社,2002:66-67.[14] 林瑾瑜.分块矩阵的假设干性质及其在行列式计算中的应用[J].广东播送电视大学学报,2006,15(2):109-112.[15] 张敏.分块矩阵的应用[J].吉林师范大学学报〔自然科学版〕,2003,1(1):120.[16] 刘力.分块矩阵在证明矩阵秩的性质上的应用[J].沧州师范专科学校学报,2006,22(4):40-41.[17] 李玉梅.分块矩阵的几个重要应用[J].怀化师专学报,2000,19(4):77-78.。
矩阵分解及其应用

《线性代数与矩阵分析》课程小论文矩阵分解及其应用学生姓名:******专业:*******学号:*******指导教师:********2015年12月Little Paper about the Course of "Linear Algebra and MatrixAnalysis"Matrix Decomposition and its ApplicationCandidate:******Major:*********StudentID:******Supervisor:******12,2015中文摘要将特定类型的矩阵拆解为几个矩阵的乘机称为矩阵的分解。
本文主要介绍几种矩阵的分解方法,它们分别是矩阵的等价分解、三角分解、谱分解、奇异值分解和 Fitting 分解等。
矩阵的分解理论和方法是矩阵分析中重要的部分,在求解矩阵的特征值、解线性方程组以及实际工程中有着广泛的运用。
因此,本文将介绍矩阵等价分解、三角分解、奇异值分解的理论运用以及三角分解的工程运用。
关键词:等价分解,三角分解,奇异值分解,运用AbstractMany particular types of matrix are split into the product of a matrix of several matrices, which is called decomposition of matrix. In this paper, we introduce some methods of matrix decomposition, which are equivalent decomposition, triangular decomposition, spectral decomposition, singular value decomposition, Fitting decomposition and so on. The decomposition theory and method of matrix is an important part of matrix analysis, which is widely used in solving the characteristic value, solving linear equations and the practical engineering. In this paper, we will introduce the theory of matrix equivalence decomposition, triangular decomposition, singular value decomposition and the engineering application of triangular decomposition.Key words:Equivalent Decomposition, Triangular Decomposition, Singular Value Decomposition, Application目录中文摘要 (1)ABSTRACT (1)1 绪论 (1)2 矩阵分解的常用方法 (1)2.1矩阵的等价分解 (1)2.2矩阵的三角分解 (2)2.2.1 矩阵的三角分解 (2)2.2.2 矩阵的正三角分解 (2)2.3矩阵的谱分解 (5)2.3.1 单纯形矩阵的谱分解 (5)2.3.2 正规矩阵与酉对角化 (6)2.3.3 正规矩阵的谱分解 (6)2.4矩阵的奇异值分解 (7)2.4.1 矩阵的奇异值分解(SVD分解) (7)2.5矩阵的FITTING分解 (7)3矩阵分解的理论应用 (8)3.1矩阵等价分解的理论应用 (8)3.2矩阵三角分解的理论应用 (8)3.3矩阵奇异值分解的理论应用 (9)4 矩阵分解在递推系统辨识中的应用 (10)4.1递推系统辨识中的困难 (10)4.1.1 病态问题 (10)4.1.2 效率和计算量问题 (10)4.2QR分解的实现方法 (11)4.2.1 GIVENS变换 (13)4.3递推算法 (13)5 结论 (18)6 参考文献 (18)1 绪论矩阵的分解是将一个矩阵分解为较为简单的或具有某种特性的若干矩阵的乘积,这是矩阵理论及其应用中比较常见的方法。
分块矩阵的应用 毕业论文

本科毕业论文题目分块矩阵的应用院别数学与信息科学学院专业数学与应用数学指导教师评阅教师班级姓名学号2011 年 5 月16 日分块矩阵的应用目录摘要 (Ⅰ)Abstract (Ⅰ)1引言 (1)2分块矩阵及其性质 (1)2.1分块矩阵 (1)2.2分块矩阵的性质及其推论 (1)2.3分块矩阵常见的分块方法 (3)3分块矩阵在证明方面的应用 (4)3.1分块矩阵在矩阵的秩的相关证明中的应用 (4)3.2分块矩阵在线性相关性及矩阵的分解中的应用 (5)3.3分块矩阵在相似问题中的应用 (6)4分块矩阵在计算方面的应用 (7)4.1分块矩阵在行列式计算方面的应用 (7)4.2分块矩阵在求逆矩阵方面的应用 (9)4.3分块矩阵在求解矩阵方程方面的应用 (11)4.4分块矩阵在求解非齐次线性方程组中的应用 (12)结束语 (13)参考文献 (14)致谢 (15)内江师范学院本科毕业论文摘要:分块矩阵是线性代数中的一个重要工具,在理论研究和实践计算方面都有广泛的应用.特别是在处理阶数较高的矩阵时,分块之后,可以使矩阵的结构更加清晰明朗,从而使一些矩阵的相关表达和计算简单化,进一步用来解决很多与矩阵相关的问题.在分析和总结分块矩阵的概念和性质的基础上,提出了分块矩阵在计算和证明方面的应用,主要包括矩阵的秩、矩阵的相关性理论、相似问题、以及行列式的计算、逆矩阵的求解、以及矩阵方程等方面.关键词:分块矩阵;矩阵分块;证明;计算Abstract:The partitioned matrix is an important tool of linear algebra, in theoretical study and practical calculation are widely used in processing order number. Especially when high matrix, block after, can make the matrix structure more wide-awake, which makes some matrix expression and calculation related to solve many further simplification, with matrix related problems. In analyzing and summarizing the partitioned matrix of the concepts and properties was put forward on the basis of partitioned matrix in computing and proof applications, including matrix rank, matrix correlation theory, similar problems, and determinants of calculation, inverse matrix of solving, and matrix equation.Keyword:The partitioned matrix; Matrix block, Proof; calculation1 引言在数学名词中,矩阵是用来表示统计数据等方面的各种有关联的数据.矩阵作为数学工具之一有着重要的实用价值,它常见于许多学科中,如线性代数、线性规划、组合数学、统计分析等.在实际生活中,很多问题都是借用矩阵抽象出来进行表述并加以解决的,比如一些电脑的应用如VLSI 芯片设计上都有分块矩阵的思想.矩阵的概念和性质相对矩阵的运算较容易理解和掌握,但对于矩阵的运算和应用,则有很多问题值得我们去研究,尤其是当矩阵的阶数比较大时矩阵的运算和证明将是一个很繁琐的过程,因此这时我们需要一个新的矩阵处理工具,在这种情况下,分块矩阵的思想就产生了.在高等代数中,对高阶矩阵的处理是矩阵相关内容中重要的一部分,分块矩阵揭示了一个复杂或是特殊的矩阵的内部本质结构,本文即是通过查阅相关的文献资料和学习相关的知识后总结并探讨分块矩阵在各方面的应用,通过具体的实例的应用来突出分块矩阵在处理相关问题上的简便性和灵活性.2 分块矩阵及其性质2.1分块矩阵定义[1] 用纵线与横线将矩阵A 划分成若干较小的矩阵:111212122212t t s s st A A A A A A A A A ⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭, 其中每个小矩阵()1,2,,;1,2,,ij A i s j t ==叫做矩阵A 的一个子矩阵;分成子块的矩阵叫做分块矩阵.运算规则[2]()()()()()()()()()1(1);(2);(3),1,2,;1,2,,.ij ij ij ij stststT Tij ij ststtij ij ij ij ik kj sttpspk A B A B A A A B C C A B i s j p =±=+====,=∑在用规则(1)时,A 与B 的分块方法须完全相同;用规则(3)时A 的列的分法与B 的行的分法须相同.2.2分块矩阵的性质及其推论在行列式的计算中我们经常用到下列三条性质[3](1)若行列式中某行(列)有公因子,则可提到行列式号外面; (2)把行列式的某两行(列)互换位置,其值变号,(3)把行列式的某行(列)乘上某一个非零数,加到另一行(列)去,其值不变 利用矩阵的分块,我们可以把行列式的三条性质在分块矩阵中进行推广.性质1 设H 是由如下的分块矩阵组成123123123A A A H B B B C CC ⎛⎫⎪= ⎪ ⎪⎝⎭, 其中123123123,,,,,,,,A A A B B B C C C 都是s t ⨯矩阵,又M 是任一s 阶方阵.对于矩阵123123123A A A H MB MB MB C C C ⎛⎫ ⎪'= ⎪ ⎪⎝⎭, 则H M H '=⋅.性质2 设H 和H '写成如下形式123123123123123123,A A A B B B H B B B H A A A C CC C C C ⎛⎫⎛⎫⎪⎪'== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭, 其中123123123,,,,,,,,A A A B B B C C C 都是s t ⨯矩阵,则,,H s H H s ⎧⎪'=⎨-⎪⎩当为偶数时当为奇数时.性质3 设H 是由如下的分块矩阵组成123123123A A A H B B B C CC ⎛⎫⎪= ⎪ ⎪⎝⎭, 其中123123123,,,,,,,,A A A B B B C C C 都是s t ⨯矩阵,又M 是任一s 阶方阵.对于矩阵123112233123A A A H MC B MC B MC B CC C ⎛⎫⎪'=+++ ⎪ ⎪⎝⎭,则H H '=.推论1 设,A B 都是n 阶方阵,则有A B A B A B BA=+⋅-.证明 根据性质3并应用于列的情况,有A B A B B A BABA++=,根据性质1有A B B A E E A B A B A B BABA++=+⋅=+⋅-,则A B A B A B BA=+⋅-.推论2 设,A B 都是n 阶方阵,则有AB A B =⋅. 证明 作2n 阶行列式0AB AC E=, 由拉普拉斯展开定理得:C AB E AB =⋅=. 又根据性质3并应用于列的情况,有:000AB A AB AB A AA B EEBEB E-===⋅--,则AB A B =⋅.推论3 设,,,A B C D 都是n 阶方阵,其中0A ≠,并且AC CA =,则有A B AD BC C D=-.证明 根据性质3,由A ≠0知1A -存在,并由AC CA =,用()1CA --乘矩阵A B C D ⎛⎫⎪⎝⎭的第一行后加到第二行去得:10A B D CA B -⎛⎫⎪-⎝⎭, 从而1110A B A B A D CA B AD ACA B AD CB CD D CA B ---⎛⎫==⋅-=-=- ⎪-⎝⎭. 2.3分块矩阵常见的分块方法[2]矩阵的分块技巧较强,因此要根据不同的问题进行不同的分块,常见的分块方法有四种:(1)列向量分法 ()12,,,n A ααα=,()1,2,,i i n α=为A 的列向量.(2)行向量分法12n A βββ⎛⎫ ⎪ ⎪= ⎪ ⎪⎝⎭,()1,2,,i i n β=为A 的行向量.(3)分成两块()12,A A A =其中12,A A 分别为A 的若干列,或12B A B ⎛⎫= ⎪⎝⎭其中12,B B 分别为A 若干行.(4)分成四块1234C C A C C ⎛⎫= ⎪⎝⎭.对分块矩阵还可以进行广义的初等变换,广义的初等变换分为三种: (1)交换分块矩阵的两行(列);(2)用一可逆阵乘以分块矩阵的某一行(列); (3)用某一矩阵乘某一行(列)加到另一行(列). 根据广义初等变换的类型对应三种广义初等阵[4]:(1)00mn E E ⎛⎫ ⎪⎝⎭; (2)00,,,00A E A B E B ⎛⎫⎛⎫⎪⎪⎝⎭⎝⎭均为可逆矩阵; (3)0,0E E B A E E ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.3分块矩阵在证明方面的应用3.1分块矩阵在矩阵的相关的秩的相关证明中的应用定理1[2] ()(),R A R B 分别为矩阵,A B 的秩,则()()()R A B R A R B +≤+. 例1 设,A B 分别为,s n n m ⨯⨯阶矩阵,则()()()R A R B R AB n +≤+.证明 构造分块矩阵0nEB A ⎛⎫ ⎪⎝⎭,对0nE B A⎛⎫⎪⎝⎭进行广义初等变换,则000n n nE B E B E AA AB AB ⎛⎫⎛⎫⎛⎫→→ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭, 根据矩阵初等变换的性质有()()()000n n n E B E R R R E R AB n R AB AAB ⎛⎫⎛⎫==+-=+ ⎪ ⎪-⎝⎭⎝⎭, 而()()0nE B R R A R B A⎛⎫≥+ ⎪⎝⎭,所以()()()R A R B R AB n +≤+. 利用分块矩阵证明矩阵秩的问题,一般采用两种方法,一种是利用已知矩阵作为元素来拼成高阶数的矩阵来证明,另一种方法就是将已知矩阵拆成阶数较低的矩阵来证明.这两种方法在证明问题时都是很有效的,很大一部分相关矩阵秩的问题,都可以用分块矩阵来证明[5].3.2分块矩阵在线性相关性及矩阵的分解中的应用分块矩阵在线性性及矩阵的分解中有着广泛的应用,但要达到运用自如却非易事,其基础知识抽象,解题方法技巧性强,稍有不慎就会陷入困境.作为线性代数的一个重要内容和工具的矩阵,我们往往容易忽略它重要的一点---矩阵分块的作用.下面就通过一些例子介绍一下它在线性相关性及矩阵的分解证明中的应用.定理2[2] 矩阵A 列线性无关的充要重要条件是0AX =只有零解. 推论4 设0st A ≠,则(1)st A 的列线性相关(即()R A t <)的充要条件是存在0ts B ≠使0AB =; (2)st A 的行线性相关(即()R A s <)的充要条件是存在0ts C ≠使0CA =.证明(1)充分性 设A 的列线性相关,由定理2,存在0b ≠使0Ab =,作(),0,,0B b =,则0B ≠,故0AB =.必要性 设有0ts B ≠,()12,,,s B b b b =,i b 为B 的列向量,1,2,,i m =且0i b ≠,使0AB =,即()12,,,0s Ab Ab Ab ≠,因0i b ≠,由定理2可知,A 的列线性无关.类似可证(2).例2 矩阵A 列线性无关,AB C =,求证:C 列线性无关的充要条件是B 列线性无关.证明 充分性 要使0CX =,即()0A BX =,记BX Y =,则0AY =.因A 列无关,须0Y =,即0BX =,又B 列无关,须0X =,从而C 列无关.必要性 要使0BY =,两边左乘A ,则0ABY =,即0CY =,又C 列无关,即0Y =,则B 列无关.矩阵的列(行)向量相关与无关性的问题很多都会涉及到利用分块矩阵,因为矩阵的行(列)都可以看作是矩阵的子块,在处理矩阵的分解问题时也是一样,在线性代数中还有很多问题也可以分块矩阵来解决.例3 设()mk R A γ=,则(1)()(),,mj jk M N R M R N γ∃==,使得A MN =; (2)()(),,mk kk H S R H R S γ∃==,使得A HS =. 证明 ,,0,0mm kk P Q P Q ≠≠,使000mkI PAQ γ⎛⎫=⎪⎝⎭, 11000mkIA P Q γ--⎛⎫∴= ⎪⎝⎭. (1)将1P -与1Q -作如下的分块:()11,,jk mj N P M L Q G --⎛⎫== ⎪⎝⎭,则()0,00jk nj N IA M L MN G γ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭. (2)因000000000mk mk kk I I I γγγ⎛⎫⎛⎫⎛⎫=⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,令1100,0000mk kk mk kkI I H P S Q γγ--⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, 即得A HS =.3.3分块矩阵在相似问题中的应用众所周知,若,A B 为n 阶矩阵,如果存在一个n 阶非奇异矩阵存在,使得1P AP B -=成立,则称矩阵A 与B 相似.但如果,A B 的阶较高,在证明的过程中找到一个n 阶非奇异矩阵变得非常困难,而分块矩阵通过证明矩阵中小矩阵的相似达到证明大矩阵相似的目的,为相似矩阵的证明提供了一种新的思路[7].例4 如果方阵~A C ,方阵~B D ,则00~00A C B D ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.证明 因方阵~A C ,方阵~B D ,则11110000000000000000E A X E A XX X Y B E Y B Y E Y ----⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11000CX AX D Y BY --⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭ 而1111111000000000000E E XE X X Y Y E Y E E -------⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 00~00A C B D ⎛⎫⎛⎫∴ ⎪⎪⎝⎭⎝⎭. 4分块矩阵在计算方面的应用4.1分块矩阵在行列式计算方面的应用在线性代数中,分块矩阵是一个重要的概念,它可以使矩阵的表示简单明了,使矩阵的运算得以简化,还可以利用分块矩阵来解决行列式的计算问题.事实上,利用分块矩阵来计算行列式时常会使行列式的计算变得简单,并能收到意想不到的效果.本节将给出利用分块矩阵计算行列式的几种方法.定理3[2] 设矩阵12*s A A H A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭或12*s A A H A ⎛⎫⎪ ⎪= ⎪ ⎪⎝⎭其中12,,,s A A A 均为方阵,则12s H A A A =.定理4[2] 设,A B 分别为m 与n 阶方阵.则: (1)当A 可逆时,有1A D A B CA D CB-=⋅-;(2)当B 可逆时,有1A D A DB C B CB-=-⋅.推论5 设,,,A B C D 分别是,,,m n n m m n ⨯⨯矩阵,则 (1)m E D B CD CB=-;(2)nA D A DC C E =-;(3)m m mE D E DC CE =-.证明 只需要在定理4的(1)中令m A E =,即可证得;在(2)令n B E =,即可证得;在(3)中令,m m A E B E ==,即可证得.例5 求2n 阶方阵()0a b a bH a b ab a ⎛⎫ ⎪ ⎪⎪=≠⎪ ⎪ ⎪ ⎪ ⎪⎝⎭的行列式. 解 令,a b A B a b ⎛⎫⎛⎫⎪ ⎪==⎪ ⎪⎪ ⎪⎝⎭⎝⎭,则A B H B A ⎛⎫= ⎪⎝⎭,又0a ≠则0,A A ≠可逆,由定理4(1)可知1H A A BA B -=-,而12112a a b A BA B a a b ---⎛⎫-⎪-=⎪ ⎪-⎝⎭,由此可得()()()1121222,nnnnA BAB a a bH a a a bab----=-=-=-.例6 计算下列行列式(1)()012111100100,0,1,2,,1i na a a a i n a ≠=;(2)1231231000010000100001n na a a ab b b b c.解 (1)设A D H C B=,其中()0A a =,12n a a B a ⎛⎫⎪⎪= ⎪ ⎪⎝⎭,()1,1,,1TC =,()1,1,,1D =,因为0,1,2,,i a i n ≠=,所以B 是可逆矩阵,则1011ni i A DB C a a -=⎛⎫-=- ⎪⎝⎭∑,从而由定理4中的(2)得112011nn i i A D H A DB C B a a a a CBa -=⎛⎫==-⋅=- ⎪⎝⎭∑. (2)设n E DH C B=,其中()()()1212,,,,,,,,Tn n B c C b b b D a a a ===.由于()()12121,,,,,,nTn n j i i CD b b b a a a a b ===∑,从推论5知1nn j i i E D H B CD c a b CB===-=-∑.行列式的计算是线性代数中的一个重要内容,利用分块矩阵,求解行列式时应具体问题具体对待,从而简化行列式的计算过程,达到快速解决问题的目的. 4.2分块矩阵在求逆矩阵方面的应用求分块矩阵的逆矩阵可以用伴随矩阵或初等变换的方法来解决,而此类方法对阶数较高的矩阵运算量比较大,对某些矩阵可以适当分块后再进行运算,可以起到事半功倍的作用.定理5[8]设A B H C D ⎛⎫= ⎪⎝⎭是一个四分块矩阵,其中B 为r 阶方阵,当B 与()1C DB A --都是可逆矩阵时,则H 是可逆矩阵,且()()()()11111111111111C DB A DB C DB A H B B A C DB A DB B A C DB A --------------⎛⎫--- ⎪= ⎪ ⎪+---⎝⎭,特别地 (1)当0,0A D ==,B 与C 都可逆时,有11100C HB---⎛⎫= ⎪⎝⎭;(2)当0,0A D =≠,B 与C 都可逆时,有111110C DB C HB -----⎛⎫-= ⎪⎝⎭; (3)当0,0A D ≠=,B 与C 都可逆时,有111110C HBB AC -----⎛⎫= ⎪-⎝⎭. 定理6[8] 设A B G CD ⎛⎫= ⎪⎝⎭是一个四分块矩阵,其中A •为r 阶矩阵,D 为k 阶矩阵,当A 与()1D CA B --都是可逆矩阵时,则G 是可逆矩阵,且()()()()11111111111111A AB D CA B CA A B D CA B G D CA B CA D CA B --------------⎛⎫+--- ⎪= ⎪ ⎪---⎝⎭,特别地 (1)当0,0B C ==,A •与D 都是可逆时,有11100A G D ---⎛⎫=⎪⎝⎭; (2)当0,0B C ≠=,A •与D 都是可逆时,有111110A A BD G D -----⎛⎫-= ⎪⎝⎭; (3)当0,0B C =≠,A •与D 都是可逆时,有111110A G D CAD -----⎛⎫= ⎪-⎝⎭. 例7 求矩阵3521214335400000200003400H ⎛⎫⎪⎪⎪= ⎪⎪ ⎪⎝⎭的逆矩阵.解 令4000035212,,020,001433503400A B C D ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭,则原矩阵A B H C D ⎛⎫= ⎪⎝⎭,由定理5中(3)知111110C HBB AC -----⎛⎫= ⎪-⎝⎭. 先求出矩阵,B C 的逆矩阵,从而得到111004521,0031231084B C --⎛⎫ ⎪⎪-⎛⎫ ⎪== ⎪ ⎪-⎝⎭⎪ ⎪- ⎪⎝⎭, 则111111000041000023100084135271435331284C H BB AC -----⎛⎫⎪ ⎪⎪⎪ ⎪⎛⎫ ⎪==- ⎪⎪-⎝⎭ ⎪ ⎪----- ⎪⎪- ⎪⎝⎭.注:在用分块矩阵求逆矩阵时,常常针对几种特殊的情形,对一般矩阵而言,此种方法并没有多大的实用价值!相比较而言,初等变换更具优势.这启示我们要具体问题具体分析,培养求简的数学精神和实事求是的科学态度. 4.3分块矩阵在求解矩阵方程方面的应用设矩阵方程形如AXB C =,其中,A B 分别为,m n 阶可逆矩阵,求X .我们容易知道解为:11X A CB --=,对此我们需要先求得11,A B --,再求得11A CB --.有时这样计算比较复杂,对此我们需要一个简便的方法[9].由于AXB C =,同时取行列式可得AXB C =,即0C AXB -=,对此我们可以用分块矩阵的方法构建一个行列式,可得100000CAX BX -=•,其对应的矩阵为10000C A X B X -⎛⎫ ⎪⎪ ⎪⎝⎭•,经过广义的初等变换可得 111100000m m n nA CB E X E X X E X E X ----⎛⎫⎛⎫⎪ ⎪=⎪ ⎪⎪ ⎪⎝⎭⎝⎭,即11X A CB --= 但此方法仍比较繁琐,对此我们需要对此进行简化,由初等变换我们知道矩阵10000C A X B X -⎛⎫ ⎪⎪ ⎪⎝⎭中的第二行和第二列以及1X -都对初等变换没有作用,可以说是多余的,去掉第二行和第二列,1X -的位置用0代替,这样我们得到了一个新的矩阵0CA B ⎛⎫⎪⎝⎭,在经过一系列初等变换得到110m nA CB E E --⎛⎫⎪⎝⎭,即:0m nX E E ⎛⎫⎪⎝⎭.由此我们就可以通过构造分块矩阵然后通过初等变换求得X .例8 求解满足条件的X .1112315110141432115X --⎛⎫⎛⎫-⎛⎫ ⎪ ⎪=- ⎪ ⎪ ⎪-⎝⎭ ⎪ ⎪-⎝⎭⎝⎭.解 构造分块矩阵得:2311114110153211500014000--⎛⎫⎪- ⎪ ⎪-⎪- ⎪ ⎪-⎝⎭620100516010********00014000-⎛⎫⎪- ⎪⎪−−−−−→-⎪- ⎪ ⎪-⎝⎭一系列初等变换−−−−−→一系列初等变换410100490103120011000001000--⎛⎫⎪⎪ ⎪⎪ ⎪ ⎪⎝⎭,故41049312X --⎛⎫⎪= ⎪ ⎪⎝⎭. 4.4分块矩阵在求解非齐次线性方程组中的应用定理7 [10] 如果A 是一个n 阶非奇异矩阵()(),,1,2,,ij A a i j n ==,将A 进行分块,11122122AA A A A ⎛⎫= ⎪⎝⎭其中11122122,,,A A A A 分别是,,,k k k m m k m m ⨯⨯⨯⨯矩阵,若22A 是非奇异方阵,那么一定存在一个上三角分块矩阵112220km I A A M I -⎛⎫-=⎪⎝⎭,使得21220C MA A A ⎛⎫= ⎪⎝⎭,其中111122221C A A A A -=-,且C 是非奇异阵. 对于该结论用来解决n 个方程的非齐次线性议程组是比较方便的.设非齐次线性方程组为11112211211222221122+++n n n n n n nn n na x a x a xb a x a x a x b a x a x a x b ++=⎧⎪++=⎪⎨⎪⎪++=⎩,该方程组可写成矩阵方程AX B =.其中A 为系数矩阵,11,n n x b X B x b ⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,若0A ≠,则该方程组有唯一定解.现将矩阵A 分块,11122122AA A A A ⎛⎫= ⎪⎝⎭,并注意使220A ≠,同时将X 及B 进行分块,令1122,X B X B X B ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,1B 行数等于1112,A A 行数,2B 行数等于2122,A A 行数,则矩阵的方程可改成111211212222A A X B A A X B ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,两边同时左乘上三角分块矩11222km I A A M I -⎛⎫-= ⎪⎝⎭,有11112222122220C X B A A A A X B -⎛⎫-⎛⎫⎛⎫=⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,其中111122221C A A A A -=-,且C 是非奇异阵.从而得到矩阵方程组11112222112222CX B A A A X A X B -⎧=-⎨+=⎩,解方程组可知12X X X ⎛⎫= ⎪⎝⎭.例9 求解方程组1234512345123451234512345224123428323434222233x x x x x x x x x x x x x x x x x x x x x x x x x +-+-=-⎧⎪-+-+=⎪⎪+-+-=⎨⎪+++-=-⎪⎪--+-=-⎩.解 将方程写成矩阵方程并进行分块,从而得到:111211212222AA XB A A X B ⎛⎫⎛⎫⎛⎫= ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭,这里,1112,21A ⎛⎫= ⎪-⎝⎭ 12241342A --⎛⎫= ⎪-⎝⎭2131,4311A ⎛⎫ ⎪= ⎪ ⎪⎝⎭22121,422123A --⎛⎫⎪= ⎪⎪--⎝⎭. 首先求出22A 的逆矩阵12211325101112101011022A -⎛⎫- ⎪ ⎪⎪=- ⎪ ⎪ ⎪- ⎪⎝⎭,则11222510225132510A A -⎛⎫- ⎪-= ⎪ ⎪- ⎪⎝⎭,在方程AX B =两端同时乘以112220km IA A M I -⎛⎫-= ⎪⎝⎭,从而得到12345610001042684000555311213434222111233x x x x x ---⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪= ⎪ ⎪-- ⎪⎪ ⎪ ⎪- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭----⎝⎭⎝⎭,解矩阵方程可得12414x x ⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭,3454713x x x -⎛⎫⎛⎫⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 则所求方程组的解为123454144713x x x x x ⎛⎫⎛⎫⎪ ⎪- ⎪ ⎪⎪ ⎪=- ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭.结束语本文主要是对分块矩阵在计算和证明中的应用,通过概念的介绍以及实例的说明,让人对分块矩阵这一工具的实用价值有所认识和了解,它既是一种解题的方法又是一种技巧.但它的应用并不仅仅是所举的几个方面,它还有更宽广的应用还有待于我们去深入的研究与探索.参考文献[1]张禾瑞,郝炳新.高等代数(第四版)[M].北京:人民教育出版社,1995:199-208.[2]北京大学数学系几何与代数教研室代数小组.高等代数[M].北京:人民教育出版社,1978:91-99,177-181.[3]林谨瑜.分块矩阵的若干性质及其应用[J].广东广播电视大学学报,2006,(02):109-112.[4]王秀芳.分块矩阵的应用讨论[J].连云港师范高等专科学校学报,2008,(09):97-99.[5]杨子胥.用分块矩阵证明秩的一些性质[J].数学通报,1985,(03):74-76.[6]张锦来.分块矩阵及其应用[J].湖州师范学院学报,2008,(02):116-118.[7]祁秋菊.分块矩阵的相关应用[J].高校理科研究,2008,(03):26-27.[8]徐天保.分块矩阵的应用[J].安庆师范学院学报,2010,(05):106-109.[9]刘红超.分块矩阵在两类矩阵问题中的应用[J].株洲师范高等专科学校学报,2005,(10):37-41.[10]胡景明.分块矩阵在求高阶行列式中的应用[J].河北工程技术高等专科学校学报,2004,(04):50-53.。
矩阵的分块及应用

矩阵的分块及应用武夷学院毕业设计(论文) 矩阵的分块及应用院系:专业:姓名:学号: 指导教师:职称:完成日期:数学与计算机系计算机科学与技术陈航20073011014 魏耀华教授年月日武夷学院教务处制摘要矩阵分块,就是把一个大矩阵按照一定规则分成小矩阵,它是矩阵运算的一种常用技巧与方法。
分块矩阵的理论不但在工程技术和实际生产中有着广泛的应用,而且在线性代数中求矩阵乘积、行列式的值、逆矩阵、矩阵的秩和矩阵的特征根的过程中也起到重要作用。
分块矩阵的初等变换则是处理分块矩阵有关问题的重要工具,它在线性代数中有非常广泛的应用。
讨论了分块矩阵的概念、分块矩阵的运算、分块矩阵的性质以及分块矩阵的广义初等矩阵,归纳并提出了分块矩阵的一些应用,这些应用主要涉及到矩阵的秩,逆矩阵,行列式以及矩阵正定和半正定等方面。
通过引用了大量的实例说明了对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解。
关键词: 分块矩阵;初等变换;计算;逆矩阵;证明。
I Abstract Partitioned matrices mean dividing a big matrix into the small matrices according to the certain rule. It is a common technique and method in matrix operation. The theories of partitioned matrices have not only a wide range of applications in engineering and production, but also play an important role to the process for seeking matrix product and the value of determinant and inverse matrix and rank of matrix and the characteristic in linear algebra. Elementary transformation of partitioned matrices is an important tool to deal with the partition matrix. Also, it isvery important for linear algebra. The paper discussed the concept of the partition matrix and the operation of the partition matrix and the property of the partition matrix and the block-elementary matrix. Then it summarized some applications of the partition matrix. Those applications were relative to the rank of matrix and inverse matrix and determinant and positive definite matrix and positive semi-definite matrix etc. By quoting a number of examples we could get that its convenientto solve many problems about calculation and provement by using block matrices. Key words: partitioned matrices; elementary transformation; caculate; inverse matrix; prove。
分块矩阵及其应用

分块矩阵及其应用姓名:王红军 学号:200840510638 指导老师:李群摘要 分块矩阵是《高等代数》的一个重要内容。
为了研究一些问题的需要,适当地将矩阵进行分块,可以使矩阵的结构变得更加清楚,有关矩阵的很多问题也将迎刃而解。
关键词 分块矩阵 线性方程组 矩阵方程 逆矩阵 行列式计算 特征值 秩1.分块矩阵的概念及重要理论1.1分块矩阵的概念设A 是一个矩阵,我们将矩阵A 用若干条横线和若干条纵线按照某种需要将其划分为若干个小矩阵。
被这种分法分成若干个小矩阵的矩阵称为一个分块矩阵。
划分出的每个小矩阵称为A 的一个子块或子阵。
1.2分块矩阵的运算分块矩阵和一般矩阵一样,主要有四种运算:加法、数乘、乘法、转置。
但值得注意的是分块一定要满足一定的条件才可以实施加法和乘法运算。
1.3分块矩阵的初等变换分块矩阵有如下三种初等变换:(1)用一个可逆矩阵左(右)乘分块矩阵的某一行;(2)用一个非零的矩阵左(右)乘分块矩阵的某一行(列)加到另一行(列)上;(3)交换分块矩阵的两行或两列.1.4常见的分块方法(1)列分法A=(1a ,2a ,…,n a ) 其中i a (i=1,2,…,n )为A 的列向量;(2)行分法A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n a a a 21 其中i a (i=1,2,…,n )为A 的列向量; (3)分成两块A=()21A A 其中1A ,2A 分别为A 的若干列;或者⎝⎛⎪⎪⎭⎫=21A A A 其中1A ,2A 分别为A 的若干列;(4)分成四块 ⎪⎪⎭⎫ ⎝⎛=4231A A A A A2.1分块矩阵与线性方程组2.1.1设n m A ⨯≠0,s n B ⨯的列向量组为1B ,2B ,…,S B 则有以下结论成立: AB=0⇔1B ,2B ,…,S B 都是齐次线性方程组AX=0的解证明:由题意AB=0(A 1B ,A 2B ,…,A S B )=0⇔A 1B =0,A 2B =0,…,A S B =0⇔1B ,2B ,…,S B 都是AX=0的解由上知我们可以利用分块矩阵的理论去解决齐次线性方程组的理论中的问题2..1.2已知A=2.1.3 设非齐次线性方程组2.2求解矩阵方程2.2.1 形如AX=B (A 为可逆矩阵)的矩阵方程易知解为X=1-A B ,计算格式如下:(A,B)→(E 1-A C) 2.2.2 形如XA=B (A 为可逆矩阵)的矩阵方程易知解为X=B 1-A ,计算格式如下:⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡B A →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-1BA E 2.2.3 形如AXB=C (A 、B 分别为m 、n 阶可逆矩阵)的矩阵方程 易知解为X=1-A C 1-B ,计算格式如下:(A C )→(E 1-A C) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-C A B 1 →⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--11CB A E现在此基础上构造一个分块矩阵,将两步合为一步:⎪⎪⎭⎫ ⎝⎛O A B C →⎪⎪⎭⎫ ⎝⎛→⎪⎪⎭⎫ ⎝⎛--o E E CB A O E B C A m n m 11 例:求解下给矩阵方程。
分块矩阵及其应用

分块矩阵及其应用
分块矩阵是由若干个子矩阵组成的大矩阵,通常将行和列分成若干块,每块均为矩阵,因而得名。
分块矩阵在数学和工程领域有广泛应用。
一些应用包括:
1.矩阵求逆:对于大规模矩阵求逆,可以先将矩阵分成较小的块,在每个块的范围内求逆并重新组合。
2.矩阵乘法:矩阵乘法的时间复杂度与矩阵的大小有关,但矩阵块的大小也会影响乘法的效率。
分块矩阵可以提高矩阵乘法的效率。
3.矩阵分解:对于某些特定类型的矩阵,如对称正定矩阵和稀疏矩阵,分块矩阵分解可以有效地降低计算复杂度。
4.图像处理:分块矩阵可以用于图像处理中的分块压缩和离散余弦变换等算法,以提高图像处理的效率和质量。
5.结构力学:分块矩阵广泛应用于结构力学和有限元方法中,可以描述复杂的结构系统和分析结构系统的动态行为。
高等代数小论文--分块矩阵及其应用

高等代数期中论文课程高等代数专业班级数学0802 姓名徐锴学号 ******** 指导教师牛敏分块矩阵及其应用主要内容1.分块矩阵1.1. 分块矩阵的定义用纵线与横线将矩阵A 划分成若干较小的矩阵:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡st s s t t A A A A A A A A A 212222111211 其中每个小矩阵 .),1;,1(t j s i A ij==叫做A 的一个子块;分成子块的矩阵叫做分快矩阵[2].1.2 运算规则()1 stij ij st ij st ij B A B A )()()(+=± ()2 tsT ji st Tij A A )()(= ()3 sp ij tp ij st ij C B A )()()(=,ij C =∑-==tk kjik t j s i B A 1),...1,,...1( ()4 stij st ij A k A k )()(=(k 是数量) 在用规则1)时,A 与B 的分块方法须完全相同;用性质3)时,A 的列的分法与B 的行的分法须相同.1.3分块矩阵的性质及其推论在行列式计算中 ,我们经常用到下面三条性质[3]:()1 若行列式中某行有公因子 ,则可提到行列式号外面;()2 把行列式中的某行乘上某一个非零数 ,加到另一行中去 ,其值不变; ()3 把行列式中的某两行互换位置 ,其值变号;利用矩阵的分块 ,我们可以把行列式的三条性质在分块矩阵中进行广.性质 1 设方阵A 是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 级方阵 .对于矩阵B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C MB MB MB A A A则B =MA证明 设s E 为s 级单位矩阵 ,则B =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321000000C C C B B B A A A E M E s s =A E ME s s⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000 于是B =0000ssE ME A =s E M s E A =MA性质 2 设矩阵是由如下分块矩阵组成A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是t s ⨯矩阵 ,又M 是任一s 阶方阵 .对于矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++=321321321C C C MC B MC B MC B A A A D 则A =D证明 由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡s s sE E E 000000⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A = ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+++321321321C C C MC B MC B MC B A A A 其中 s E 是s 级单位矩阵 ,对上式两边同时取行列式得A =D性质 3 设方阵A 和'A 写成如下形式A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C B B B A A A ,'A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡321321321C C C A A A B B B 其中 1A ,2A ,3A ,1B ,2B ,3B ,1C ,2C ,3C 都是 s ×t 矩阵,则|'A |=⎩⎨⎧-为奇数时,当为偶数时当s A s A |||,|证明 A 可由'A 中的1B ,2B ,3B 与1A ,2A ,3A 相应的两行对换而得到 ,而对换行列式的两行 , 行列式反号 ,故当s 为偶数时|'A |=A 当s 为奇时|'A |=-A可以证明 ,对于一般分块矩阵也具有类似性质.同时 ,这些性质不仅对行成立 ,对列也同样成立.下面举例说明这些性质在行列式计算和证明中的应用.推论 1 设A ,都是n 阶方阵,则有AB =A B ()2.6 证明 作2n 阶行列式C =EA AB由拉普拉斯展开定理得C =AB E =AB又由性质2并应用于列的情况,有E A AB0=E EB A AB AB --0=EB A -0=B A nn n --+++++++2)1(21)1( =B A 推论 2 设,A B 都是n 阶方阵,则有AB BA =B A B A -+ 证明 根据定性质2并应用于列的情况,有AB BA =A AB B B A ++=B A B B A ++0=B A B A -+ 例1 计算n 2阶行列式D =ab a b a b b a b a ba 000000000000000000000000解 令A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡a 00000a 0000a 0000aB =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡0000000000000 b b b 则 D =ABBA=B A B A -+=a b a b b a b a 00000000 ab a b b aba 00000000 ---- =n b a )(+n b a )(-=nb a )(22-推论 3 设,B ,C ,D 都是n 阶方阵 ,其中A ≠0,并且AC =CA ,则有DC BA=CB AD - ()2.8 证明 根据性质2,因为1-A 存在,并注意到AC =CA ,用1C A --乘矩阵⎥⎦⎤⎢⎣⎡D C B A 的第一行后加到第二行中去得⎥⎦⎤⎢⎣⎡----B CA D B CA A 110 从而D C B A=110A C A B D C A B---- =A B CA D 1--=B ACA AD 1--B CAA AD 1--=CB AD- 把行列式的性质在分块矩阵中进行推广之后,我们又由这三个新的性质得到了三个结论.设A ,B ,C ,D 都是n 级方阵则有AB =A B ABBA =B A B A -+ 结论()2.6告诉我们,两个方阵的乘积的行列式等于这两个方阵的行列式的乘积.结论()2.7则说明,当一个行列式可以分成四个级数相等的方阵A ,B ,B ,A 时(即AB BA ), 2.1分块矩阵在矩阵的秩的相关证明中的应用定理 1 秩()AB≤秩()A ,且秩()AB ≤秩()B ,则秩()AB ≤min{秩A ,秩B }[4]证明 令s m C ⨯=n m A ⨯⋅s n B ⨯,A =()12,n aa a ,C =()12,s γγγ 则(s γγγ 21,)=()12,naa a ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ns n n s s b b b b b bb b b212222111211 ∴nns s s s nn n n a b a b a b a b a b a b a b a b a b +++=+++=+++=22112222112212211111γγγ∴s γγγ 21,()1可由n a a a 21,()2线性表示 ∴秩()I ≤秩()I I ,即秩()C =秩()AB ≤秩()A令=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n 21,B=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n βββ 21 所以⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn n n 21=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡mn m m n n a a a a a aa a a212222111211⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nβββ 21即nmn m m s nn n n a a a a a a a a a βββηβββηβφβη+++=+++=+++=22112222112212211111∴m ηηη 21,()3可由nβββ 21,()4线性表示 ∴秩()III ≤秩()IV ,即秩()C=秩()AB ≤秩()B即秩()AB ≤()()m i n {A B }秩,秩 定理 2 设、都是n 级矩阵,若0A B =则秩()A +秩()B ≤n[5].证明 对分块如下:()12nB B B B = 由于0A B =即()120nA B A B A B = 即()01,2,,i A B i n == 说明的各列B 都是0A X =的解.从而秩()12nB B B ≤基础解系=n -秩()A 即秩()A+秩()B ≤n3.1 分块矩阵在求逆矩阵方面的应用命题1[10]设P =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中B 为r 阶方阵, C 为k 阶方阵,当B 与)(1A DB C --都是可逆矩阵时,则P 是可逆矩阵,并且1-P=⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DB C DB A DB C 特例 ()1 当A =0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡--0011B C . ()2 当A =0,D ≠0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----01111B C DB C ()3 当A ≠0,D =0,B 与C 都可逆时,有1-P=⎥⎦⎤⎢⎣⎡-----1111AC B BC 证明 设P 可逆,且1-P =⎥⎦⎤⎢⎣⎡W Z Y X,其中Y 为k 阶方阵,Z 为r 阶的方阵.则应有 于是得到下面的等式(4.1)0(4.2)0(4.3)(4.4)k r X AY C E X BY D Z AW C Z BW DE +=⎧⎪+=⎪⎨+=⎪⎪+=⎩因为可逆,用1-B 右乘(3.2)式可得代入(3.1)式得Y -11)(---A DB C 则X =11)(----A DB C D 1-B . 用右乘(3.4)式可得=()r E W D -1-B =1-B -1W D B - 代入(3.3)式得W =1B A -11)(---A DB C则 可得Z =1-B +1B A -11)(---A DB C D 1-B .所以1-P=⎥⎦⎤⎢⎣⎡W Z Y X ⎥⎦⎤⎢⎣⎡---+----------------1111111111111)()()()(A DB C A B DB A DB C A B B A DB C DB A DB C . 命题2 设Q =⎥⎦⎤⎢⎣⎡D C B A 是一个四分块方阵,其中A 为r 阶方阵,D 为k 阶方阵,当A 与(B CA D 1--)都是可逆矩阵时,则Q 是可逆矩阵,并且1-Q =1-⎥⎦⎤⎢⎣⎡D C B A =⎥⎦⎤⎢⎣⎡------+-------------1111111111111)()()()(B CA D CA B CA D B CA D B A CA B CA D B A A特例 (1) 当B =0,C =0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡--1100D A (2) 当B ≠0,C=0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D BD A A 1X Y D B-=(3) 当B =0,C ≠0,A 与D 都可逆时,有1-Q=⎥⎦⎤⎢⎣⎡-----11110D CA D A 此结论参考命题1.例1 设M =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------6000004000001001095201473,求1-M . 解 令=⎥⎦⎤⎢⎣⎡--5273,=⎥⎦⎤⎢⎣⎡--109014,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡000000,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--600040001.则很容易求得1-A =⎥⎦⎤⎢⎣⎡--3275,1-D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--6/10004/10001 且11---BD A =-⎥⎦⎤⎢⎣⎡--3275⎥⎦⎤⎢⎣⎡--109014⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--600040001=⎥⎦⎤⎢⎣⎡---2/12/1196/74/543 由命题2可得,1-M =⎥⎦⎤⎢⎣⎡-----1111D O BD A A =⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-------6/1000004/1000001002/12/119326/74/54375 3.2 分块矩阵在行列式计算式方面的应用在线性代数中 ,分块矩阵是一个十分重要的概念 ,它可以使矩阵的表示简单明了 ,使矩阵的运算得以简化. 而且还可以利用分块矩阵解决某些行列式的计算问题. 而事实上 ,利用分块矩阵方法计算行列式 ,时常会使行列式的计算变得简单 ,并能收到意想不到的效果[11]. 本节给出利用分块矩阵计算行列式的几种方法.引理 设矩阵H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A OOA O A A21或H =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡s A AO A O OA21其中sA A A ,,,21 均为方阵,则 H =s A A A 21.3.2.1矩阵A 或B 可逆时行列式|H|的计算 命题 1 B A 、分别为m 与n 阶方阵. 证明 : (1)当可逆时 ,有BCD A =A D CA B 1-- (3.5) (2)当可逆时 ,有BCD A =C DB A 1--B (3.6) 证明 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡---D CA B D A B C D A E CA E 1100 由引理知,两边取行列式即得(3.5).()2 根据分块矩阵的乘法 ,有⎥⎦⎤⎢⎣⎡--E DB E 01⎥⎦⎤⎢⎣⎡B C D A =⎥⎦⎤⎢⎣⎡--B C C DB A 01两边取行列式即得(3.6).此命题可以用来解决一些级数较高的矩阵求逆问题,但在利用命题1时,要特别注意条件有矩阵或可逆,否则此命题不适用,下面给出此命题的应用.推论1 设,,,ABCD 分别是,,m n nm ⨯和mn ⨯矩阵. 证明 B C DE m=CD B - ( 3.7) nE CD A =DC A - (3.8) 证明 只需要在命题1的(3.5)中令=m E , 即得(3.7);在(3.6)中令=n E ,即得(3.8). 推论2 ,C D 分别是n m ⨯和mn ⨯矩阵.证明 nm E CD E =CD E n -=DC E m - (3.9) 证明 在推论1的(3.7)中,令=n E ,在(3.8)中,令=m E ,即得(3.9)例3 计算下面2n 阶行列式n H 2=bcb c d a da()0a ≠解 令=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡a a ,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡b b,=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡c c ,D =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡dd为n 阶方阵.由于0a ≠,故为可逆方阵.又易知-D CA1-=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡------d ca b d ca b d ca b 111从而由命题1中()1得n H 2=AD C B=DCA B A 1-- =nn d ca b a )(1--=n cd ab )(-.例4 计算行列式()1);,,2,1,0(,00100100111121n i a a a a a i n=≠ ()2cb b b b a a a a nn3213211000100010001解 ()1 设=BC DA ,其中 =()0a ,=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡n a a a21,=T )1,,1,1( ,D =)1,,1,1( . 因为n i a i ,,2,1,0 =≠所以是可逆矩阵.又易知 A -C DB 1-=⎥⎦⎤⎢⎣⎡-∑=ni i a a 10/1从而由命题1中的结论()4.2得BC D A=1A DB CB -- =⎥⎦⎤⎢⎣⎡-∑=ni i n a a a a a 1021/1 (2)设Q =BC DE n,其中 B =(c ),C =),,,(21nb b b ,D =Tn a a a ),,(21 由于C D =),,,(21nb b b Tn a a a ),,(21 =∑=ni ii ba 1从而由推论1知,=BC DEn=B CD -=c -∑=ni ii ba 1.3.2.2矩阵,A B C D==时行列式|H|的计算 命题 2 ,A C 是两个n 阶方阵.则AC CA=|A+C||A-C| 证明 根据行列式的性质和定理,有AC CA =A A C C C A ++=C A C C A -+0 =A CA C +-. 例1 计算行列式.D =000xyzx zy y z x z y x解 这道题看似简单 ,但如果方法选择不好,做起来并不轻松. 这里设=⎥⎦⎤⎢⎣⎡00x x ,=⎥⎦⎤⎢⎣⎡y z z y 由命题2知D =ACCA=C A C A -+ =yzx z x y++yzx z x y ----=])(][)([2222z x y z x y --+- =))()()((z y x z y x z y x z y x ++--+-+-++行列式的计算是线性代数中的一个重要内容,本节就行列式的计算问题具体就形如H =BC DA (,,,ABCD 分别是,,m n nm ⨯和mn ⨯矩阵)的类型的行列式计算进行了分析,其中将一个行列式分块成,,,ABCD 后,又细分为几种情况进行了讨论,依据不同的情况给出了不同的计算方法,在计算行列式时可根据这几种不同的情况具体问题具体对待,从而简化行列式的计算过程.在这一部分可见,利用分块矩阵计算行列式主要是靠分块矩阵来改变原来矩阵的级数从而达到简化计算过程,快速解决问题的目的.。
浅谈矩阵分块的技巧与应用

以得 到 B A Y = 0 , 那么 C Y = 0 , 因为矩 阵 C的列线性无关 , 所以一
定有 Y = 0 , 所 以矩 阵 A的 列 是 线 性 无 关 的 。
假设 ≠0 , 我们 能有 以下几个结论 : 证 明 : 存 在 P n n , Q k k , l P l ≠ 。 , I Q I ≠ 。 , 使 P A Q = [ : ] , 可 知 推论 : ( 1 ) 矩 阵 A的列线 性相关 ( 很 明显 A 的秩 小于 k ) 的充要 条件是存 在 B n k ≠0 , 使得 A B = 0 。 [ Q ~ 。 ( 2 ) 矩阵A 的行线性 相关 ( 很 明显 A的秩小于 k ) 的充要 能够使得 C A = 0 。 ( 1 ) 设 p - 1 _ = ( M L ) , Q 一 - - = , { 删A 则 = P [ I l n r l a Q l - = ( M 条件 是存 在 C≠0, 证明: ( 1 ) 先证充分性 。假设 存在 B ¨ k ≠0 , B = ( b h : … b m 】 , b . 是矩 阵 B的列 向量 , 1 ≤i ≤m,并 且 b ≠0 ,可 以使 得 L [ ] = M N o
2 0 1 5年 第 2期
总第 3 4 2 期
自然 科学
浅谈矩阵分块的技巧与应用
曾 丹
( 西华 师 范大 学 , 四川 南充 6 3 7 0 0 0 )
摘 要: 矩 阵是 高等代数 中的一项 重要 内容 , 适 当选择 分块技 巧 , 应 用矩 阵的分块 思想 简化 计算过程 , 实现 矩 阵分 ¨ 一 一 解、 求秩 、 线性 相 关性 关 系 的应 用 。
关键词 : 矩阵 ; 应用 ; 技巧; 分 块