线性代数论文设计(矩阵在自己专业中地应用及举例)
线性代数小论文

(学院杏林学院班级国贸102 姓名李霞学号1004123046 )线性代数小论文-----用矩阵解决经济管理学中的问题一、提要:线性代数理论有着悠久的历史和丰富的内容。
随着科学的发展,特别是电子计算机使用的日益普遍,作为重要的数学工具之一,线性代数的应用已经深入到了自然科学、社会科学、工程技术、经济、管理等各个领域。
虽然我们在学习线性代数这门课,可不免有同学要问这门课究竟要应用于生活哪一方面?由于我们是属于经济管理类的专业,因此我们学线性代数是为日后学习运筹、管理以及经济类课程打基础。
本文将举出一个矩阵在经济管理中的应用例子来解释线性代数的应用。
二、提出问题:风险型决策方法例1、某企业打算生产某产品。
根据市场预测分析,产品销路有三种可能性:销路好、一般和差,这三种情况出现的概率分别为0、3,0、45,0、25. 生产该产品有三种方案:改进生产线、新建生产线、外包生产。
各种方案的收益值在表5-4给出。
项目(1)改进生产线(2)新建生产线(3)外包生产销路好180 240 100销路一般120 100 70销路差-40 -80 16表5-4 各生产方案在不同市场情况下的收益/万元1、专业课中如何解决的最大效用值收益准则:解决风险决策常用的一个目标是使期望收益最大化。
学过概率统计之后,不难求出三种方案对应的期望收益分别为:(1)180*0.3+120*0.45+(-40)*0.25=98(2)240*0.3+100*0.45+(-80)*0.25=97(3)100*0.3+70*0.45+16*0.25=65.5因为第一种方案对应的期望效用值最大,所以选择改进生产线的方案。
2、线代课中如何解决的矩阵M=(0.3 0.45 0.25)矩阵N=(180 240 100120 100 70-40 -80 16)则:最大效用收益组成的矩阵=M*N=(98 97 65.5)因为第一种方案对应的期望效用值最大,所以选择改进生产线的方案。
矩阵分析方法及应用论文

矩阵分析方法及应用论文矩阵分析方法是一种应用矩阵论和线性代数的数学工具,用于研究和解决与矩阵相关的问题。
矩阵可以用于描述线性变换、矢量空间和方程组等数学对象。
矩阵分析方法可以应用于多个领域,包括数学、物理、工程、计算机科学等。
在以下回答中,我将简要介绍矩阵分析方法的基本原理和一些应用,并提供一些相关论文的例子。
首先,让我们来了解一下矩阵分析的基本原理。
矩阵是一个由数值排列成的矩形数组,可以表示为一个m×n的矩阵,其中m表示行数,n表示列数。
矩阵的元素可以是实数或复数。
通过矩阵分析,我们可以研究矩阵的性质、运算规则和应用。
矩阵乘法是矩阵分析中最基本的操作之一。
当两个矩阵相乘时,第一个矩阵的列数必须等于第二个矩阵的行数。
矩阵乘法的结果是一个新的矩阵,其行数等于第一个矩阵的行数,列数等于第二个矩阵的列数。
矩阵乘法可以表示线性变换和矢量的线性组合等概念。
另一个重要的矩阵分析方法是特征值和特征向量的计算。
矩阵的特征值是矩阵与一个非零向量之间的一个简单乘法关系。
特征向量是与特征值对应的非零向量。
特征值和特征向量在物理、工程和计算机科学等领域中有广泛的应用,例如图像处理、机器学习和数据压缩等。
矩阵分析方法在多个领域有着广泛的应用。
下面是一些矩阵分析方法的应用领域及相应的论文例子:1. 图像处理:矩阵分析方法在图像处理中被广泛应用,例如图像压缩和恢复。
论文例子:《基于矩阵分解的图像压缩算法研究》、《基于矩阵分析方法的图像恢复技术研究》。
2. 数据处理:矩阵分析方法在数据挖掘和机器学习中起着重要作用,例如矩阵分解和矩阵推荐系统。
论文例子:《基于矩阵分解的矩阵推荐系统研究》、《基于矩阵分析的数据挖掘技术研究》。
3. 信号处理:矩阵分析方法在信号处理中具有广泛的应用,例如语音信号处理和音频编码。
论文例子:《基于矩阵分析方法的语音信号处理技术研究》、《基于矩阵分解的音频编码算法研究》。
4. 控制系统:矩阵分析方法在控制系统设计和分析中具有重要作用,例如状态空间表示和线性二次型控制器设计。
线性代数的应用研究——矩阵在实际生活中的应用

线性代数的应用研究——矩阵在实际生活中的应用一、可逆矩阵在保密通信中的应用随着计算机与网络技术的迅猛发展,通信技术中的保密工作显得尤为重要,怎样确保通信过程中信息的安全变得至关重要,因此大量各具特色的密码体系不断涌现。
矩阵作为线性代数的重要组成部分,其应用领域也从传统的物理领域迅速扩展到非物理领域,尤其是在保密通信中发挥着重要作用。
(一)可逆矩阵 1、矩阵矩阵的定义:m 行n 列的矩形数表称为m 行n 列矩阵,简称m ×n 矩阵,矩阵用大写黑体字母A ,B ,C ,…表示。
如:A=[a 11 a 12 … a 1na 21 a 22 … a 2n … … … …a m1 a m2 … a mn ] 这m ×n 个数称为矩阵A 的元素, a ij 称为矩阵A 的第i 行第j 列元素,一个m ×n 矩阵A 也可简记为A =(a ij ) m×n 或 A m×n 。
矩阵加法:设有两个m ×n 矩阵A =(a ij ) ,B =(b ij ),矩阵A 与B 的和记作A +B ,规定为A +B =(a ij +b ij )m×n。
矩阵乘法:设A =(a ij ) m×n ,B =(b ij ) m×n 。
矩阵A 与矩阵B 的乘积记作AB ,规定为AB =(c ij ) m×n 其中c ij =a i1b 1j +a i2b 2j +⋯+a is b sj =∑a ik b kj s k=1 (i=1,2,…,m ;j=1,2,…,n)。
2、矩阵的逆于n 阶矩阵A ,如果存在一个n 阶矩阵B ,使得AB=BA=1,则称矩阵A 为可逆矩阵,而矩阵B称为A的逆矩阵。
记作A-1,即A-1=B。
(二)保密通信1、背景自从人类有了文字书写之后,就考虑使用一些手段来保障通信的机密,防止被获取甚至被篡改。
早期的古典密码,如人类最早由记载的棋盘密码、恺撒密码、维吉尼亚密码等,相对比较简单。
矩阵的应用及案例

矩阵的应用及案例矩阵是数学中的一种重要工具,它在各个领域都有广泛的应用。
本文将从不同领域的案例出发,介绍矩阵的应用。
1. 图像处理在图像处理中,矩阵被广泛应用。
例如,我们可以将一张图片表示为一个矩阵,每个像素点对应矩阵中的一个元素。
通过对矩阵进行变换,可以实现图像的旋转、缩放、平移等操作。
此外,矩阵还可以用于图像的压缩和去噪等处理。
2. 机器学习在机器学习中,矩阵也是一个重要的工具。
例如,我们可以将一组数据表示为一个矩阵,每行对应一个样本,每列对应一个特征。
通过对矩阵进行运算,可以实现分类、聚类等任务。
此外,矩阵还可以用于神经网络的训练和优化。
3. 量子计算在量子计算中,矩阵也是一个重要的工具。
例如,我们可以将一个量子态表示为一个矩阵,通过对矩阵进行运算,可以实现量子门的操作。
此外,矩阵还可以用于量子算法的设计和优化。
4. 金融风险管理在金融风险管理中,矩阵也是一个重要的工具。
例如,我们可以将一组金融数据表示为一个矩阵,每行对应一个时间点,每列对应一个资产。
通过对矩阵进行运算,可以实现风险分析和投资组合优化。
5. 信号处理在信号处理中,矩阵也是一个重要的工具。
例如,我们可以将一个信号表示为一个矩阵,通过对矩阵进行变换,可以实现信号的滤波、降噪等处理。
此外,矩阵还可以用于音频和视频的压缩和编码。
6. 网络分析在网络分析中,矩阵也是一个重要的工具。
例如,我们可以将一个网络表示为一个矩阵,每行和每列对应一个节点,矩阵中的元素表示节点之间的连接关系。
通过对矩阵进行运算,可以实现网络的聚类、社区发现等任务。
7. 人脸识别在人脸识别中,矩阵也是一个重要的工具。
例如,我们可以将一组人脸图像表示为一个矩阵,每行对应一个图像,每列对应一个像素。
通过对矩阵进行运算,可以实现人脸识别和人脸比对等任务。
8. 自然语言处理在自然语言处理中,矩阵也是一个重要的工具。
例如,我们可以将一组文本表示为一个矩阵,每行对应一个文档,每列对应一个词汇。
线性代数在工程技术中的应用 案例解析

线性代数在工程技术中的应用案例解析一、简介线性代数是数学中的一个重要分支,它的应用十分广泛,尤其在工程技术领域中发挥着重要的作用。
本文将通过几个具体的案例,探讨线性代数在工程技术中的应用,并进行详细的解析。
二、案例一:图像处理中的矩阵变换在图像处理领域,矩阵变换是一项常用的技术。
例如,通过线性代数中的矩阵乘法运算,可以实现图像的旋转、平移、缩放等操作。
假设我们有一张图片,我们可以将其表示为一个二维矩阵,每个像素点对应矩阵中的一个元素。
通过对这个二维矩阵进行线性代数运算,我们可以实现对图像的各种变换操作。
以旋转为例,我们可以通过构造旋转矩阵,将原始图像进行旋转,从而得到新的图像。
这样的应用不仅可以用于图像处理软件,还可以应用于计算机游戏、计算机图形学等领域。
三、案例二:机器学习中的线性回归在机器学习中,线性回归是一个重要的算法。
线性回归可以用于建立输入变量与输出变量之间的线性关系模型。
这个模型可以通过线性方程来表示,其中输入变量和输出变量都可以表示为向量形式。
线性回归的目标是找到最佳拟合的线性方程,从而实现对未知数据的预测。
在实际应用中,线性回归可以用于预测房价、股票价格、销售额等各种实际问题。
线性回归利用线性代数中的矩阵运算方法,通过求解最小二乘法问题,得到最佳的回归参数。
四、案例三:控制系统中的状态空间法在控制系统中,状态空间法是一种常用的分析与设计方法。
状态空间模型可以用线性代数中的矩阵形式来表示。
通过将系统的状态、输入、输出表示为向量形式,并通过状态方程和输出方程来描述系统的动态行为,可以利用线性代数方法分析系统的稳定性、可控性、可观测性等特性,并进行系统控制器的设计与优化。
这种方法广泛应用于电力系统、机械系统、飞行器控制等领域。
五、案例四:密码学中的线性代数在密码学中,线性代数常常用来构造密码算法。
例如,RSA加密算法中,使用了大数的乘法和模运算,这是线性代数中的矩阵乘法与模运算的扩展。
线性代数中矩阵的应用论文

线性代数中矩阵的应用论文线性代数中矩阵的应用论文线性代数中矩阵的应用论文【1】摘要:伴随着社会经济的快速发展,信息技术的进步,数学应用领域也得到了扩展,已从传统物理领域扩展至非物理领域,于当前现代化管理、高科技的发展以及生产力水平的提升中有着非常重要的作用。
下面笔者就线性代数中矩阵的应用进行研究,借助于关于矩阵应用的典型案例来分析,以加深人们对矩阵应用领域的认识。
关键词:代数应用线性矩阵线性代数作为数学分支之一,是一门重要的学科。
在线性代数的研究中,对矩阵所实施的研究最多,矩阵为一个数表,该数表能变换,形成为新数表,简而言之就是若抽象出某一种变化规律,可借助于代数理论知识来对所研究的这一数表实施变换,以此获得所需结论。
近年来,随着社会经济发展速度的加快,科学技术水平的提高,线形代数中矩阵的应用领域也变得更为广泛,本文就线性代数中矩阵的应用进行详细地阐述。
1 矩阵在量纲化分析法中的应用大部分物理量均有量纲,其主要分为两种,即基本量纲与导出量纲,其中基本量纲有社会长度L、时间T以及质量M,其他量均为导出量。
基于量纲一致这一原则,等号两端的各变量能构建一个相应的线性方程组,经矩阵变换来解决各量之间所存关系。
比如勾股定理证明,假设某RT△斜边长是c,两直角边长各为a和b,在此如果选△面积s,斜边c,两锐角a和β为需研究变量,则必定有以下关系,即,该公式中所存量纲有四个,其中有三个为基本量纲,则必然有一个量为无量纲,把上述量纲列成为矩阵,所获矩阵图形如,其中每一列表示一个变量量纲数据。
基于该矩阵,所获解线性方程为,综合上述方程可得解,即x11为2,x21为0,x31为0,因此,可得关系式,该公式中λ表示唯一需明确的无量纲量,从该公式可知RT△面积和斜边c平方之间成比例。
在此,于该三角形斜边做一高,把其划分为两个形似三角形,其面积各为s1与s2,此时,原RT△的边长a和b则是两个相似小三角形的斜边。
通过上述内容可知所获原理和结论相似,则有s1=λa2与s2=λb2,因s1+s2=s,对此,基于此,可证明勾股定理,即为。
矩阵的应用及案例

矩阵的应用及案例矩阵是数学中的一个重要概念,它在许多领域中都被广泛应用,比如经济学、物理学、生物学、信息技术等等。
矩阵也是计算机科学中最重要的概念之一,它被应用于数据库、信号处理、数值分析等大量的领域。
矩阵最基本的概念就是“数据的结构化表示”,也就是用矩阵的形式来描述数据的分布和关系。
一个m×n矩阵可以用来表示一个m 个变量和n个变量之间的关系。
矩阵的数学操作可以用来计算这些变量之间的线性关系,从而解决一些复杂的数学问题。
矩阵在实际应用中也有很多,它不仅用于数据分析,还可以应用于一些特定领域。
例如,矩阵可以用来求解图像扭曲、电路设计、网络监督等问题,并可以利用矩阵的数学操作求解更复杂的问题。
此外,矩阵也被广泛应用于机器学习和人工智能,例如神经网络、支持向量机、逻辑回归等。
矩阵在机器学习中被用来表示输入和输出之间的函数关系,并用来构建预测模型。
矩阵还可以用来描述图像处理中的卷积操作、语音识别中的状态机模型等。
总之,矩阵的应用非常广泛,它既可以用于数据分析,也可以用于机器学习和人工智能。
矩阵的操作不仅可以解决大量的数学问题,还可以用来解决一些复杂的问题。
下面我们来看一些具体的案例。
性回归模型:线性回归模型是一种最常用的机器学习算法,它通过矩阵来描述输入变量和目标变量之间的线性关系,并且可以通过梯度下降法训练出一个准确的预测模型。
胶梯度下降法:橡胶梯度下降法是一种新型的优化算法,它可以用矩阵乘法来求解深度学习神经网络中的参数更新问题。
像扭曲:图像扭曲是一种数学技术,用来求解复杂的图像变换,它可以通过矩阵的数学操作来实现。
阵分解:矩阵分解是一种常用的数据挖掘方法,它可以用来分析大规模的数据,比如裁剪、变换等,并用矩阵的形式来描述数据的分布和关系。
以上就是矩阵的应用及案例,可以看出矩阵在数学与计算机科学中都有着重要作用,它不仅可以用来解决大量的线性方程,还可以用来构建各种复杂的数学模型,甚至可以应用于机器学习和人工智能等领域,大大的提高了计算效率。
矩阵及秩的应用论文

矩阵及秩的应用论文矩阵及秩是线性代数中的重要概念,广泛应用于各个学科领域。
在本文中,我将介绍几篇应用矩阵及秩的论文,并讨论它们在不同领域中的应用。
第一篇论文是《基于矩阵分解的推荐系统》。
推荐系统是现代互联网应用中的重要组成部分,用于给用户推荐个性化的内容。
该论文通过应用矩阵分解的方法,将用户-物品评分矩阵分解为两个低秩矩阵,从而实现对用户兴趣和物品特征的建模。
矩阵的秩较低意味着模型具有较好的泛化能力,能够在数据稀疏的情况下有效地进行预测,提高推荐准确度。
第二篇论文是《利用秩约束的图像修复方法》。
图像修复在计算机视觉领域中具有重要意义,用于修复受损的图像。
该论文利用矩阵的秩约束,将问题转化为一个低秩矩阵恢复问题。
通过求解最小秩恢复问题,可以在保持图像结构信息的前提下,还原受损的图像内容。
实验结果表明,该方法在图像修复任务中具有较好的效果。
第三篇论文是《基于矩阵分析的脑电信号分类方法》。
脑电信号是在脑部神经元活动产生的电流作用下测得的电生理信号,用于研究脑部功能和神经相关性。
该论文应用矩阵分析方法,将脑电信号分解为若干个矩阵成分,并利用矩阵的秩特性提取脑电信号的特征。
基于这些特征,可以实现对脑电信号的分类和识别,辅助脑部疾病的诊断和治疗。
第四篇论文是《基于大规模矩阵分解的社交网络分析方法》。
社交网络是人们之间相互联系和交互的网络结构,具有复杂的拓扑结构和丰富的节点属性。
该论文利用矩阵分解方法,将社交网络转化为低秩矩阵的表示,从而揭示其隐藏的结构和关系。
通过矩阵的秩特性,可以实现社交网络的社区发现、节点分类和链接预测等任务,为社交网络分析提供了有力的工具。
以上这些论文只是矩阵及秩应用的冰山一角,实际上,矩阵及秩在数据挖掘、图像处理、模式识别等许多领域都有重要应用。
矩阵的秩在这些应用中起到了关键的作用,它能够帮助我们理解和描述数据的结构、关系和特征,从而实现对数据的分析和处理。
随着技术的不断发展和研究的深入,矩阵及秩的应用还将不断扩展和拓展,为各个学科领域的研究和应用带来新的突破和进展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵在自己专业中的应用及举例摘要:I、矩阵是线性代数的基本概念,它在线性代数与数学的许多分支中都有重要的应用,许多实际问题可以用矩阵表达并用相关的理论得到解决。
II、文中介绍了矩阵的概念、基本运算、可逆矩阵、矩阵的秩等容。
III、矩阵在地理信息系统中也有许多的应用,比如文中重点体现的在计算机图形学中应用。
关键词:矩阵可逆矩阵图形学图形变换正文:第一部分引言在线性代数中,我们主要学习了关于行列式、矩阵、方程、向量等相关性比较强的容,而这些容在我们专业的其他一些学科中应用也是比较广泛的,是其它一些学科的很好的辅助学科之一。
因此,能够将我们所学的东西融会贯通是一件非常有意义的事,而且对我们的学习只会有更好的促进作用。
在计算机图形学中矩阵有一些最基本的应有,但是概念已经与线性代数中的有一些不同的意义。
在计算机图形学中,矩阵可以是一个新的额坐标系,也可以是对一些测量点的坐标变换,例如:平移、错切等等。
在后面的文章中,我通过查询一些相关的资料,对其中一些容作了比较详细的介绍,希望对以后的学习能够有一定的指导作用。
在线性代数中,矩阵也占据着一定的重要地位,与行列式、方程、向量、二次型等容有着密切的联系,在解决一些问题的思想上是相同的。
尤其他们在作为处理一些实际问题的工具上的时候。
图形变换是计算机图形学领域的主要容之一,为方便用户在图形交互式处理过程中度图形进行各种观察,需要对图形实施一系列的变换,计算机图形学主要有以下几种变换:几何变换、坐标变换和观察变换等。
这些变换有着不同的作用,却又紧密联系在一起。
第二部分 研究问题及成果1. 矩阵的概念定义:由n m ⨯个数排列成的m 行n 列的矩阵数表⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ann an an n a a a n a a a ΛM ΛM M KΛ212222111211 称为一个n m ⨯矩阵,其中an 表示位于数表中第i 行第j 列的数,i=1,2,3,…n ,又称为矩阵的元素。
A,B 元素都是实数的矩阵称为实矩阵。
元素属于复数的矩阵称为复矩阵。
下面介绍几种常用的特殊矩阵。
(1)行距阵和列矩阵仅有一行的矩阵称为行距阵(也称为行向量),如 A=(a11 a12 .... a1n), 也记为a=(a11,a12,.....a1n).仅有一列的矩阵称为列矩阵(也称为列向量),如a= ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡12111an a a M 。
(2) 零矩阵A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡0000000000000000 记为o 或者0.(3) 方阵。
行数与列数相等的矩阵称为方阵.例如:A= ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ann an an n a a a n a a a ΛM M M M K Λ212222111211 为n n ⨯矩阵,称为n 阶方阵或者n 阶矩阵,简记为A=(an )n ,过元素a11,a22,a33,a44,.....ann,的直线为主对角线,主对角线上的元素为主对角元。
按方阵的元素排列所构造的行列式称为方阵的行列式。
(4) 对角矩阵。
主对角意外的元素全部为零的方阵称为对焦矩阵,常记为:A=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ann a a 0002200011M M M M ΛΛ (5) 单位矩阵。
主对角线上的元素全部为1的对角矩阵称为单位矩阵,简记为E 或者I :A= ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡100010001M M M M M ΛΛ(6) 数量矩阵 。
主对角线上全相等的对角矩阵。
例如:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡c c c ΛM ΛM M ΛΛ000000 (其中c 为常数) 为一阶数量矩阵。
(7) 三角矩阵。
主对角线上方或下方的元素全部为零的方阵称为上(下)三角矩阵。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ann n a a n a a a ΛM M M M ΛΛ00222011211 为n 阶上三角矩阵。
(8) 对称矩阵与反对称矩阵,在方阵A=(aij )n ,中,如果aij=aji (ij=1,2,3.。
),则称A 为对称矩阵,如果A 还为实矩阵,那么A 为实对称矩阵。
如果aij=-aji ,则称A 为反对称矩阵。
定义:两个同类型的矩阵,如果对应的元素相等,则称矩阵A 等于矩阵B 。
2 .矩阵的运算 2.1 矩阵的加法 ⑴A+B=B|+A(加法交换律)⑵(A+B)+C=A+(B+C)(加法结合律) ⑶A+0=0+A=A ⑷A+(-A)=0.2.2 数乘矩阵定义1:数乘一矩阵等于这个数乘以矩阵中的每一个元素。
⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=kann kan kan n ka ka ka n ka ka ka kaij ΛM M M M ΛΛ212222111211)( 定义2:设A B 为同类型的矩阵,k ,l 为常数,则 ⑴1A=A⑵k (lA )=(kl )A ⑶k (A+B)=KA+KB ⑷(K+L)A=KA+LA. 2.3 矩阵的乘法(1)矩阵的乘法不满足交换律。
(2)两个非零矩阵的乘积可能为零矩阵。
(3)矩阵的乘法不满足消去律。
命题:(1)设A 为p m ⨯矩阵,则O oP K mk A ⨯⨯=,O O N M N P A ⨯⨯=(2)设A 为n m ⨯矩阵,则A A A A E EN m==,其中E 为单位阵(3)设A 为m*p 矩阵,B 为p*q 矩阵,k 为数,则 A(BC)=(AB)C (kA)B=A(kB)=k(AB)(4)J 矩阵满足数乘的分配律,矩阵乘积的行列式等于矩阵对应行列式的乘积。
2.4 矩阵的转置 定义2.7 称m n ⨯矩阵⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ann an an n a a a n a a a ΛM ΛM M ΛΛ212222111211 的转置为 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡ann n a n a an a a an a a ΛM ΛM M ΛΛ212221212111 命题:设A,B,C,1A ,2A Λn A 是矩阵,且让它们相应的行数和列数使相应的运算有意义,k 是数,则 (1)A 的转置的装置等于A(2)B 与C 的和的转置等于它们转置的和 (3)T T kA kA =)( (4)T T T A B AB =)((5)若A 为n 阶矩阵,则M T T M A A )()(=(6)A 为对称矩阵的充要条件是A A T =,A 为反对称矩阵的充要条件为A A T -=2.5 可逆矩阵定义 设A 为n 阶矩阵,若存在n 阶矩阵B ,使得 E BA AB ==,则称矩阵A 可逆,B 是A 的可逆矩阵,记作1-=A B 定理 如果n 阶矩阵A 可逆,则它的逆矩阵唯一。
定义 设n ij a A )(=为n 阶矩阵,ij A 为A 中的元素ij a 的代数余子式,ij=1.2.3.......n ,则称矩阵 ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡nn n n n n A A A A AA A A A ΛM ΛM M ΛΛ212222111211 为A 的伴随矩阵,记为*A .由伴随矩阵的定义,不难验证A E A A AA ==**定理 n 阶矩阵A 可逆的充要条件为0≠A ,如果A 可逆,则 *11A AA =-. 若n 阶矩阵A 的行列式不为零,即0≠A ,即称A 为非奇异矩阵,否则称A 为奇异矩阵,由上述公式可以求出A 的伴随矩阵。
推论 对n 阶矩阵A ,若有n 阶矩阵B 使得 E AB =或者E BA =, 则称矩阵A 可逆,且B A =-1. 克拉默法则 设⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=nn n n n n a a a a aa a a a A ΛM ΛM M ΛΛ212222111211,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n b b b M 21β,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=321x x x x M , 如果矩阵A 可逆,则线性方程组Ax=β存在唯一解β1-=A x 。
2.6 可逆矩阵的性质命题 设A ,B,),2,1(m i A i Λ=为n 阶可逆矩阵,k 为非零常数,则n A A A AB kA A Λ211,,,-也是可逆矩阵,且(1)A A =--11)(; (2);1)(11--=A kkA(3);)(,)(11121121111-------==A A A A A A A B AB m n ΛΛ(4);)()(11--=T T A A (5);11AA =- (6);)()(11m m A A --=m 为正整数。
3 .矩阵的初等变换与矩阵的秩3.1 矩阵的初等变换定义 对矩阵的行(列)实行下列三种操作(或变换)之一,称为对矩阵实行了一次初等行(列)变换: (1)交换矩阵的两行(列);(2)矩阵的某一行(列)的元素乘以一个不等于零的数; (3)将矩阵某一行(列)的元素加上另一行(列)对应元素相同的倍数。
定义 满足一下条件的矩阵称为行阶梯型矩阵,简称为阶梯型矩阵; (1)非零行(元素不全为零的行)的标号小于零行(元素为零的行)的标号;(2)设矩阵有r 个非零行,第i 个非零行的第一个非零元素所在的列号为i t ,,,2,1r i Λ=则.21n t t t 〈〈〈Λ定理 任何矩阵都可以经过单纯的初等行变换化为阶梯形矩阵。
定义 一个阶梯型矩阵如果满足: (1)每一个非零行的第一个元素都为1;(2)每一个非零行的第一个元素所在的列的其他元素都为零, 则称它为简化的阶梯型矩阵(也称为规的阶梯型矩阵),定义 如果一个非零矩阵的左上角为单位矩阵,其他位置的元素都为零,则称这个矩阵为标准型矩阵。
3.2 矩阵的秩定义 在矩阵n m ij a A ⨯=)(中任取k 行和k 列{}),,m in 1(n m k ≤≤位于这k 行和k 列的交叉点的2k 个元素,按照它们在矩阵A 中的相对位置组成的k 阶行列式称为矩阵A 的一个k 阶子式。
定义 若矩阵n m ij a A ⨯=)(中有一个r 阶子式不为零,而A 中所有的r+1阶子式(如果存在的话)都为零,则称r 为矩阵A 的秩,记为)(A r 或).(A rank 规定零矩阵的秩为零。
命题 (1)一个矩阵的秩是唯一的。
(2)设,)(n m ij a A ⨯=则{}.,m in )(0n m A r ≤≤0)(=A r 的充要条件是A=0. (3)若矩阵A 中有一个r 阶子式不为零,则;)(r A r ≥若矩阵A 中所有的r 阶子式全为零,则.)(r A r ≤(4)在矩阵A 中,任选s 行t 列,位于这s 行t 列交叉上的元素按它们在A 中的相对位置所构成的矩阵称为A 的一个子矩阵。
若1A 是A 的一个子矩阵,则).()(1A r A r ≤ (5)).()(A r A r T =(6)阶梯型矩阵的秩等于它非零行的个数。
设,)(n m ij a A ⨯=如果),)(()(n A r m A r ==则称A 为行(列)满秩矩阵,简称满秩矩阵。