三角函数的概念学案

合集下载

5.2.1 三角函数的概念(教学设计)

5.2.1 三角函数的概念(教学设计)

5.2.1 三角函数的概念课程目标1.借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义.2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.3.掌握公式一并会应用.数学学科素养1.数学抽象:理解任意角三角函数的定义;2.逻辑推理:利用诱导公式一求三角函数值;3.直观想象:任意角三角函数在各象限的符号;4.数学运算:诱导公式一的运用.重点:①借助单位圆理解任意角三角函数(正弦、余弦、正切)的定义;②掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.难点:理解任意角三角函数(正弦、余弦、正切)的定义.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、情景导入在初中我们学习了锐角三角函数,那么锐角三角函数是如何定义的?若将锐角放入直角坐标系中,你能用角的终边上的点的坐标来表示锐角三角函数吗?若以单位圆的圆心O为原点,你能用角的终边与单位圆的交点来表示锐角三角函数吗?那么,角的概念推广之后,三角函数的概念又该怎样定义呢?要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本177-180页,思考并完成以下问题1.任意角三角函数的定义?2.任意角三角函数在各象限的符号?3.诱导公式一?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究 1.单位圆在直角坐标系中,我们称以原点O 为圆心,以单位长度为半径的圆为单位圆. 2.任意角的三角函数的定义(1)条件在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么:图1-2-1 (2)结论①y 叫做α的正弦,记作sin_α,即sin α=y ; ②x 叫做α的余弦,记作cos_α,即cos α=x ; ③y x 叫做α的正切,记作tan_α,即tan α=yx (x ≠0). (3)总结正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.思考:若已知α的终边上任意一点P 的坐标是(x ,y ),则其三角函数定义为?在平面直角坐标系中,设α的终边上任意一点P 的坐标是(x ,y ),它与原点O 的距离是r (r =x 2+y 2>0). 三角函数定义定义域 名称 sinα yr R 正弦 cosα x r R余弦tanαy x⎩⎨⎧⎭⎬⎫α⎪⎪α≠k π+π2,k ∈Z正切正弦函数、余弦函数、正切函数统称三角函数. 3.正弦、余弦、正切函数在弧度制下的定义域三角函数 定义域 sin α R cos αRtan α⎩⎨⎧⎭⎬⎫x ∈R ⎪⎪x ≠k π+π2,k ∈Z4.正弦、余弦、正切函数值在各象限内的符号 (1)图示:图1-2-2(2)口诀:“一全正,二正弦,三正切,四余弦”.四、典例分析、举一反三题型一 三角函数的定义及应用例1:求53π的正弦、余弦和正切值.例2 在平面直角坐标系中,角α的终边在直线y =-2x 上,求sin α,cos α,tan α的值. 【解析】当α的终边在第二象限时,在α终边上取一点P (-1,2),则r =-12+22=5,所以sin α=25=255,cos α=-15=-55,tan α=2-1=-2.当α的终边在第四象限时, 在α终边上取一点P ′(1,-2), 则r =12+-22=5,所以sin α=-25=-255,cos α=15=55,tan α=-21=-2.基础练习题 1、求π4、3π2、7π6的三角函数值.五、课堂小结让学生总结本节课所学主要知识及解题技巧 本节课我们主要学习了哪些内容? 1.三角函数的定义.2.运用三角函数数学思想解决问题.六、板书设计七、作业课本179页练习及182页练习.本节课主要采用讲练结合与分组探究的教学方法,借助单位圆探究任意角三角函数(正弦、余弦、正切)的概念,且借助单位圆与直角坐标系探究三角函数在各个象限符号,并会灵活运用.。

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)

三角函数的定义及应用教学教案(优秀4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、心得体会、策划方案、合同协议、条据文书、竞聘演讲、心得体会、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, insights, planning plans, contract agreements, documentary evidence, competitive speeches, insights, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please stay tuned!三角函数的定义及应用教学教案(优秀4篇)EXcel中经常需要使用到三角函数进行计算,三角函数具体该如何使用呢?读书破万卷下笔如有神,以下内容是本店铺为您带来的4篇《三角函数的定义及应用教学教案》,希望朋友们参阅后能够文思泉涌。

教学设计2:5.2.1 三角函数的概念

教学设计2:5.2.1  三角函数的概念

5.2.1三角函数的概念【教学目标】1.能用三角函数的定义进行计算.2.熟记正弦、余弦、正切在各象限的符号,并能进行简单的应用.3.会利用诱导公式一进行有关计算.【要点梳理】1.任意角的三角函数的定义如图,设α是一个任意角,α∈R,它的终边OP与单位圆交于点P(x,y)温馨提示:(1)在任意角的三角函数的定义中,应该明确α是一个任意角.(2)三角函数值是比值,是一个实数,这个实数的大小和P(x,y)所在终边上的位置无关,而由角α的终边位置决定.(3)要明确sin x是一个整体,不是sin与x的乘积,它是“正弦函数”的一个记号,就如f(x)表示自变量为x的函数一样,离开自变量的“sin”“cos”“tan”等是没有意义的.2.三角函数值的符号如图所示:正弦:一二象限正,三四象限负;余弦:一四象限正,二三象限负;正切:一三象限正,二四象限负.简记口诀:一全正、二正弦、三正切、四余弦.3.诱导公式一即终边相同的角的同一三角函数值相等.【思考诊断】1.若角α与β的终边相同,根据三角函数的定义,你认为sinα与sinβ,cosα与cosβ,tanα与tanβ之间有什么关系?[答案]sinα=sinβ,cosα=cosβ,tanα=tanβ2.判断正误(正确的打“√”,错误的打“×”)(1)若α=β+720°,则cosα=cosβ.()(2)若sinα=sinβ,则α=β.()(3)已知α是三角形的内角,则必有sinα>0.()(4)任意角α的正弦值sinα、余弦值cosα、正切值tanα都有意义.()[答案](1)√(2)×(3)√(4)×【课堂探究】题型一任意角的三角函数的定义及其应用【典例1】(1)若角α的终边经过点P(5,-12),则sinα=________,cosα=________,tanα=________.(2)已知角α的终边落在直线3x+y=0上,求sinα,cosα,tanα的值.[思路导引]利用三角函数的定义求解.[解析] (1)∵x =5,y =-12,∴r =52+(-12)2=13,则sin α=y r =-1213,cos α=x r =513,tan α=y x =-125. (2)直线3x +y =0,即y =-3x ,经过第二、四象限,在第二象限取直线上的点(-1,3),则r =(-1)2+(3)2=2,所以sin α=32,cos α=-12,tan α=-3;在第四象限取直线上的点(1,-3),则r =12+(-3)2=2,所以sin α=-32,cos α=12,tan α=- 3. [答案] (1)-1213 513 -125(2)见解析 [名师提醒]求任意角的三角函数值的2种方法方法一:根据定义,寻求角的终边与单位圆的交点P 的坐标,然后利用定义得出该角的正弦、余弦、正切值.方法二:第一步,取点:在角α的终边上任取一点P (x ,y ),(P 与原点不重合); 第二步,计算r :r =|OP |=x 2+y 2;第三步,求值:由sin α=y r ,cos α=x r ,tan α=y x(x ≠0)求值. 在运用上述方法解题时,要注意分类讨论思想的运用.[针对训练]1.已知角α的终边经过点P (1,-1),则sin α的值为( )A.12B.32C.22 D .-22[解析] ∵α的终边经过点P (1,-1),∴sin α=-112+(-1)2=-22. [答案] D2.已知角α的终边与单位圆的交点为⎝⎛⎭⎫-12,y (y <0),则sin αtan α=________. [解析] ∵α的终边与单位圆的交点为⎝⎛⎭⎫-12,y , ∴⎝⎛⎭⎫-122+y 2=1,即y 2=34,又∵y <0,∴y =-32. ∴sin α=-32,tan α=3,sin αtan α=-32×3=-32. [答案] -32题型二 三角函数在各象限的符号问题【典例2】 判断下列各式的符号:(1)sin105°·cos230°;(2)cos3·tan ⎝⎛⎭⎫-2π3. [思路导引] 利用三角函数在各象限的符号判断.[解] (1)因为105°,230°分别为第二、三象限角,所以sin105°>0,cos230°<0.于是sin105°·cos230°<0.(2)因为π2<3<π,所以3是第二象限角,所以cos3<0, 又因为-2π3是第三象限角,所以tan ⎝⎛⎭⎫-2π3>0,所以cos3·tan ⎝⎛⎭⎫-2π3<0. [名师提醒]判断三角函数值正负的2个步骤(1)定象限:确定角α所在的象限.(2)定符号:利用三角函数值的符号规律,即“一全正,二正弦,三正切,四余弦”来判断. 注意:若sin α>0,则α的终边不一定落在第一象限或第二象限内,有可能终边落在y 轴的非负半轴上.[针对训练]3.设θ是第三象限角,且满足⎪⎪⎪⎪sin θ2=-sin θ2,则角θ2为第________象限角. [解析] 因为θ是第三象限角,所以π+2k π<θ<32π+2k π,k ∈Z , 所以π2+k π<θ2<34π+k π,k ∈Z ,所以角θ2为第二、四象限角. 又因为⎪⎪⎪⎪sin θ2=-sin θ2,所以sin θ2<0,所以θ2为第四象限角. [答案] 四题型三 诱导公式一的应用【典例3】 求下列各式的值:(1)cos 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin810°+tan1125°+cos420°.[思路导引] 利用诱导公式将角化到0°~360°范围内,再求解.[解] (1)原式=cos ⎝⎛⎭⎫8π+π3+tan ⎝⎛⎭⎫-4π+π4 =cos π3+tan π4=12+1=32. (2)原式=sin(2×360°+90°)+tan(3×360°+45°)+cos(360°+60°)=sin90°+tan45°+cos60°=1+1+12=52. [名师提醒](1)公式一的实质是终边相同的角的同名三角函数值相等.利用它可将大角转化为[0,2π)范围内的角,再借助特殊角的三角函数值达到化简求值的目的.(2)熟记一些特殊角的三角函数值.[针对训练]4.计算下列各式的值:(1)sin(-1395°)cos1110°+cos(-1020°)sin750°;(2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan4π. [解] (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin45°cos30°+cos60°sin30°=22×32+12×12=64+14=1+64. (2)原式=sin ⎝⎛⎭⎫-2π+π6+cos ⎝⎛⎭⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12. 【课堂小结】1.正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或比值为函数值的函数.2.角α的三角函数值的符号只与角α所在象限有关,角α所在象限确定,则三角函数值的符号一定确定,规律是“一全正,二正弦,三正切,四余弦”.3.公式一的理解(1)公式一的实质:是说终边相同的角的三角函数值相等,即角α的终边每绕原点旋转一周,函数值将重复出现一次,体现了三角函数特有的“周而复始”的变化规律.(2)公式一的作用利用诱导公式一可把负角的三角函数化为0~2π间角的三角函数,亦可把大于2π的角的三角函数化为0~2π间角的三角函数,即实现了“负化正,大化小”.【随堂巩固】1.已知角α的终边经过点(-4,3),则cos α=( )A.45B.35 C .-35 D .-45[解析] ∵x =-4,y =3,∴r =(-4)2+32=5,∴cos α=x r =-45=-45,故选D. [答案] D2.sin ⎝⎛⎭⎫-35π6的值等于( ) A.12 B .-12 C.32 D .-32[解析] ∵sin ⎝⎛⎭⎫-35π6=sin ⎝⎛⎭⎫-6π+π6=sin π6=12,∴选A. [答案] A3.若sin α<0且tan α>0,则α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] 由于sin α<0,则α的终边在第三或第四象限或y 轴非正半轴上,又tan α>0,则α的终边在第一或第三象限,所以α的终边在第三象限.[答案] C4.已知角α的终边经过点P (m ,-6),且cos α=-45,则m =________. [解析] ∵cos α=-45<0,∴α角应为第二或第三象限角, 又∵y =-6<0,∴α为第三象限角,∴m <0 又∵-45=m m 2+(-6)2,∴m =-8. [答案] -85.求值:tan405°-sin450°+cos750°.[解] tan405°-sin450°+cos750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan45°-sin90°+cos30°=1-1+32=32。

三角函数的定义教案

三角函数的定义教案

三角函数的定义教案使学生理解并掌握三角函数线的作法,能利用三角函数线解决一些简单问题. 2.培养学生分析、探索、归纳和类比的能力,以及形象思维能力。

下面是我给大家整理的三角函数的定义教案5篇,希望大家能有所收获!三角函数的定义教案1教学准备教学目标1、知识与技能(1)了解周期现象在现实中广泛存在;(2)感受周期现象对实际工作的意义;(3)理解周期函数的概念;(4)能熟练地判断简单的实际问题的周期;(5)能利用周期函数定义进行简单运用。

2、过程与方法通过创设情境:单摆运动、时钟的圆周运动、潮汐、波浪、四季变化等,让学生感知周期现象;从数学的角度分析这种现象,就可以得到周期函数的定义;根据周期性的定义,再在实践中加以应用。

3、情感态度与价值观通过本节的学习,使同学们对周期现象有一个初步的认识,感受生活中处处有数学,从而激发学生的学习积极性,培养学生学好数学的信心,学会运用联系的观点认识事物。

教学重难点重点:感受周期现象的存在,会判断是否为周期现象。

难点:周期函数概念的理解,以及简单的应用。

教学工具投影仪教学过程【创设情境,揭示课题】同学们:我们生活在海南岛非常幸福,可以经常看到大海,陶冶我们的情操。

众所周知,海水会发生潮汐现象,大约在每一昼夜的时间里,潮水会涨落两次,这种现象就是我们今天要学到的周期现象。

再比如,[取出一个钟表,实际操作]我们发现钟表上的时针、分针和秒针每经过一周就会重复,这也是一种周期现象。

所以,我们这节课要研究的主要内容就是周期现象与周期函数。

(板书课题)【探究新知】1.我们已经知道,潮汐、钟表都是一种周期现象,请同学们观察钱塘江潮的图片(投影图片),注意波浪是怎样变化的?可见,波浪每隔一段时间会重复出现,这也是一种周期现象。

请你举出生活中存在周期现象的例子。

(单摆运动、四季变化等)(板书:一、我们生活中的周期现象)2.那么我们怎样从数学的角度研究周期现象呢?教师引导学生自主学习课本P3——P4的相关内容,并思考回答下列问题:①如何理解“散点图”?②图1-1中横坐标和纵坐标分别表示什么?③如何理解图1-1中的“H/m”和“t/h”?④对于周期函数的定义,你的理解是怎样?以上问题都由学生来回答,教师加以点拨并总结:周期函数定义的理解要掌握三个条件,即存在不为0的常数T;x 必须是定义域内的任意值;f(x+T)=f(x)。

三角函数教案

三角函数教案

三角函数教案在教学工作者实际的教学活动中,就有可能用到教案,编写教案有利于我们弄通教材内容,进而选择科学、恰当的教学方法。

快来参考教案是怎么写的吧!下面是店铺帮大家整理的三角函数教案,仅供参考,希望能够帮助到大家。

三角函数教案篇1一、指导思想与理论依据数学是一门培养人的思维,发展人的思维的重要学科。

因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”。

所以在学生为主体,教师为主导的原则下,要充分揭示获取知识和方法的思维过程。

因此本节课我以建构主义的“创设问题情境——提出数学问题——尝试解决问题——验证解决方法”为主,主要采用观察、启发、类比、引导、探索相结合的教学方法。

在教学手段上,则采用多媒体辅助教学,将抽象问题形象化,使教学目标体现的更加完美。

二、教材分析三角函数的诱导公式是普通高中课程标准实验教科书(人教a版)数学必修四,第一章第三节的内容,其主要内容是三角函数诱导公式中的公式(二)至公式(六)。

本节是第一课时,教学内容为公式(二)、(三)、(四)。

教材要求通过学生在已经掌握的任意角的三角函数的定义和诱导公式(一)的基础上,利用对称思想发现任意角与终边的对称关系,发现他们与单位圆的交点坐标之间关系,进而发现他们的三角函数值的关系,即发现、掌握、应用三角函数的诱导公式公式(二)、(三)、(四)。

同时教材渗透了转化与化归等数学思想方法,为培养学生养成良好的学习习惯提出了要求。

为此本节内容在三角函数中占有非常重要的地位。

三、学情分析本节课的授课对象是本校高一(1)班全体同学,本班学生水平处于中等偏下,但本班学生具有善于动手的良好学习习惯,所以采用发现的教学方法应该能轻松的完成本节课的教学内容。

四、教学目标(1)、基础知识目标:理解诱导公式的发现过程,掌握正弦、余弦、正切的诱导公式;(2)、能力训练目标:能正确运用诱导公式求任意角的正弦、余弦、正切值,以及进行简单的三角函数求值与化简;(3)、创新素质目标:通过对公式的推导和运用,提高三角恒等变形的能力和渗透化归、数形结合的数学思想,提高学生分析问题、解决问题的能力;(4)、个性品质目标:通过诱导公式的学习和应用,感受事物之间的普通联系规律,运用化归等数学思想方法,揭示事物的本质属性,培养学生的唯物史观。

高中数学教案《三角函数的概念》

高中数学教案《三角函数的概念》

教学计划:《三角函数的概念》一、教学目标1.知识与技能:o学生能够准确理解三角函数(正弦、余弦、正切)的基本定义,并能识别其在直角三角形中的表示。

o学生能够掌握三角函数值与角度之间的对应关系,理解三角函数是周期函数的特点。

o学生能够运用三角函数的基本性质进行简单的计算与推导。

2.过程与方法:o通过观察、比较和归纳,引导学生从实际情境中抽象出三角函数的概念。

o借助图像直观展示三角函数的周期性,培养学生的数形结合能力。

o通过小组讨论和合作学习,促进学生之间的交流与合作,共同探索三角函数的性质。

3.情感态度与价值观:o激发学生对数学学习的兴趣,感受数学与生活的紧密联系。

o培养学生的探究精神和创新思维,鼓励他们勇于提出问题并尝试解决。

o引导学生认识到数学在解决实际问题中的重要性,增强应用数学的意识。

二、教学重点和难点●重点:三角函数(正弦、余弦、正切)的定义、图像及基本性质。

●难点:理解三角函数值与角度之间的对应关系,以及三角函数周期性的概念。

三、教学过程1. 导入新课(5分钟)●生活实例引入:通过展示如钟摆运动、海浪波动等自然界中的周期性现象,引导学生思考这些现象背后的数学规律,从而引出三角函数的概念。

●复习旧知:回顾直角三角形的相关知识,如勾股定理、锐角与钝角的定义,为学习三角函数做好铺垫。

●明确目标:简要介绍本节课的学习目标,即掌握三角函数的基本概念、图像及基本性质。

2. 讲授新知(15分钟)●定义讲解:详细讲解正弦、余弦、正切三种三角函数在直角三角形中的定义,强调它们与边长的比例关系。

●图像展示:利用多媒体设备展示三种三角函数的图像,引导学生观察图像特征,如正弦、余弦函数的周期性,正切函数的间断性等。

●性质归纳:结合图像,引导学生归纳出三角函数的基本性质,如定义域、值域、奇偶性、单调性等。

3. 互动探究(10分钟)●小组讨论:将学生分成若干小组,每组分配一个探究任务,如“探究正弦函数在哪些区间内是增函数?”、“尝试用三角函数表示一个圆上某点的坐标”。

5.2.1三角函数的概念(1)学案(学生版)人教版高中数学必修一

5.2.1三角函数的概念(1)学案(学生版)人教版高中数学必修一

5.2.1 三角函数的概念(第1课时)【学习目标】1.理解任意角三角函数(正弦、余弦、正切)的定义;2.掌握任意角三角函数(正弦、余弦、正切)在各象限的符号.【教材知识梳理】一.利用单位圆定义任意角的三角函数在直角坐标系中,我们称以原点O 为圆心,以 为半径的圆为单位圆. 前提 在平面直角坐标系中,设α是一个任意角,α∈R ,它的终边与 交于点P (x ,y ),那么:定义 正弦把点P 的纵坐标y 叫做α的正弦函数,记作 ,即y = 余弦把点P 的横坐标x 叫做α的余弦函数,记作 ,即x = 正切单位圆上点P 的纵坐标与横坐标的比值y x为函数值的函数叫做α的正切函数,记作 ,即y x = (x ≠0) 正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数.正弦函数y =sin x ,定义域为 ;余弦函数y =cos x ,定义域为 ;正切函数y =tan x ,定义域为 .α的终边上任意一点的坐标定义三角函数推广到一般情况:设α为一个任意角,在α的终边上任取一点P (异于原点),其坐标为(x ,y ),且OP =r = x 2+y 2 (r >0),则sin α= ,cos α= ,tan α= (x ≠0). 注意:三角函数值是比值,是一个实数,这个实数的大小和P (x ,y )所在终边上的位置无关,而由角α的终边位置决定.二.三角函数值在各象限的符号三角函数值的符号变化规律可概括为“ ”,即第一象限各三角函数值均为正,第二象限只有正弦值为正,第三象限只有正切值为正,第四象限只有余弦值为正.概念辨析(正确的打“√”,错误的打“×”)(1)若sinα=sinβ,则α=β.( )(2)已知α是三角形的内角,则必有sinα>0.( )(3)任意角α的正弦值sinα、余弦值cosα、正切值tanα都有意义.( )(4)若α是第二象限角,且(,)P x y 是其终边与单位圆的交点,则cos x α=-.( )(5)由三角函数的定义,可知1≤sinα≤1.( )【教材例题变式】【源于P179例2】例1 (1)若角α的终边经过点P (5,-12),求sin α,cos α,tan α的值.(2)已知角α的终边落在直线3x +y =0上,求sin α,cos α,tan α的值.【源于P178例1】例2 .利用三角函数的定义求下列各角的正弦、余弦和正切值. (1)2π; (2)4π-; (3)34π, (4)73π. 【源于P180例3】例3 .对于sin 0θ>,②sin 0θ<,③cos 0θ>,④cos 0θ<,⑤tan 0θ>与⑥tan 0θ<,选择恰当的关系式序号填空:(1)角θ为第一象限角的充要条件是_____;(2)角θ为第二象限角的充要条件是_____; (3)角θ为第三象限角的充要条件是_____;(4)角θ为第四象限角的充要条件是______.【源于P181例4】例4 .确定下列三角函数值的符号:①sin 156°;②cos 165π;③cos(-450°);④tan )817(π-;⑤sin )34(π-;⑥tan 556°. 【教材拓展延伸】例5.(1)已知θ是第二象限角,试判断()()tan sin tan cos θθ的符号.(2)若()()sin cos cos sin 0θθ<,求θ的终边的位置.【课外作业】基础过关:1.已知角α的终边经过点(4,3)-,则cos α=( )A .45B .35C .35D .45- 2.若sin 0α<,且tan 0α>,则α是( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角 3.点()cos2023,tan8A ︒在平面直角坐标系中位于( )A .第一象限B .第二象限C .第三象限D .第四象限 4.已知角α的顶点在原点,始边与x 轴的非负半轴重合,终边在第三象限且与单位圆交于点P m ⎛⎫ ⎪ ⎪⎝⎭,则sin α=( )A .BC . D5.已知角θ的终边经过点1,2P ⎛- ⎝⎭,则角θ可以为( ) A .76π B .23π C .43π D .53π 6.(多选)已知点()(),20P m m m -≠是角α终边上一点,则( )A .tan 2αB .cos αC .sin cos 0αα<D .sin cos 0αα> 7.若点(4,)P a -在角240°的终边上,则实数a 的值是__________.8.点P 从点()10A ,出发,沿单位圆221x y +=逆时针方向运动23π弧长到达点Q ,则点Q 的坐标是___________.9.已知角α的终边落在直线3y x =-上,求2sin 3cos αα+的值.能力提升:10.设角θ是第一象限角,且满足cos=cos 22θθ-,则2θ的终边所在的象限是( ) A .第一象限B .第二象限C .第三象限D .第四象限 11.(多选)函数y sin cos tan sin cos tan x x x x x x =++的值可能为( ) A .﹣3 B .3 C .1 D .﹣112.(多选)给出下列各三角函数值,其中符号为负的是( )A .sin(100°)B .cos(220°)C .tan(10)D .cos013.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.14.已知角α的终边上一点P 与点()1,2A -关于y 轴对称,角β的终边上一点Q 与点A 关于原点O 中心对称,则sin sin αβ+=______.15.已知角α的终边上有一点)1Pa +,a ∈R . (1)若60α=︒,求实数a 的值.(2)若cos 0α>且tan 0α<,求实数a 的取值范围.16.如图所示,滚珠P ,Q 同时从点(2,0)A 出发沿圆形轨道匀速运动,滚珠P 按逆时针方向每秒钟转π3弧度,滚珠Q 按顺时针方向每秒钟转6π弧度,相遇后发生碰撞,各自按照原来的速度大小反向运动.(1)求滚珠P ,Q 第一次相遇时所用的时间及相遇点的坐标;(2)求从出发到第二次相遇滚珠P ,Q 各自滚动的路程.。

三角函数教学教案

三角函数教学教案

三角函数教学教案一、教学目标:1. 让学生理解三角函数的概念,掌握三角函数的基本性质和图像。

2. 培养学生运用三角函数解决实际问题的能力。

3. 提高学生对数学知识的兴趣和积极性。

二、教学内容:1. 三角函数的概念和定义2. 三角函数的图像和性质3. 特殊角的三角函数值4. 三角函数的运算5. 三角函数在实际问题中的应用三、教学重点与难点:1. 重点:三角函数的概念、图像和性质,特殊角的三角函数值,三角函数的运算。

2. 难点:三角函数图像的分析和运用,实际问题的解决。

四、教学方法:1. 采用问题驱动法,引导学生探索和发现三角函数的规律。

2. 利用多媒体课件,展示三角函数的图像和实际应用场景。

3. 开展小组讨论,培养学生的合作能力和口头表达能力。

4. 注重个体差异,给予学生个性化的指导和关爱。

五、教学过程:1. 导入新课:通过展示生活中常见的三角函数应用场景,激发学生的学习兴趣。

2. 知识讲解:讲解三角函数的概念、定义和图像,引导学生理解并掌握三角函数的基本性质。

3. 特殊角的三角函数值:让学生自主探究特殊角的三角函数值,培养学生的自主学习能力。

4. 三角函数的运算:通过例题讲解和练习,使学生掌握三角函数的运算方法。

5. 应用拓展:布置课后作业,让学生运用所学知识解决实际问题。

6. 课堂小结:对本节课的内容进行总结,强调重点和难点。

7. 课后反思:教师根据学生的反馈,调整教学方法,为下一节课做好准备。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答情况以及小组合作表现,了解学生的学习状态和兴趣。

2. 作业评价:通过学生提交的作业,检查学生对课堂所学知识的掌握程度和应用能力。

3. 测试评价:定期进行小型测试,评估学生对三角函数知识的系统掌握情况。

4. 学生自评与互评:鼓励学生进行自我评价和同伴评价,促进学生自我反思和相互学习。

七、教学资源:1. 教材:选用适合学生水平的三角函数教材,提供系统的学习材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数的概念学案
本资料为woRD文档,请点击下载地址下载全文下载地址学案41
三角函数的概念、弧度制
一、课前准备:
【自主梳理】
.任意角
(1)角的概念的推广:
(2)终边相同的角:
2.弧度制:

弧度与角度的换算:



3.弧长公式:

扇形的面积公式:

4.任意角的三角函数
(1)任意角的三角函数定义



(2)三角函数在各象限内符号口诀是

5.三角函数线
【自我检测】

度.
2.是第
象限角.
3.在上与终边相同的角是

4.角的终边过点,则

5.已知扇形的周长是6,面积是2,则扇形的圆心角的弧度数是

6.若且则角是第
象限角.
二、课堂活动:
【例1】填空题:
(1)若则为第
象限角.
(2)已知是第三象限角,则是第
象限角.
(3)角的终边与单位圆(圆心在原点,半径为的圆)交于第二象限的点,则

(4)函数的值域为_____
_________.
【例2】(1)已知角的终边经过点且,求的值;
(2)为第二象限角,为其终边上一点,且求的值.
【例3】已知一扇形的中心角是,所在圆的半径是.
(1)若求扇形的弧长及该弧所在的弓形面积;
(2)若扇形的周长是一定值,当为多少弧度时,该扇形有最大面积.
课堂小结
三、课后作业
.角是第四象限角,则是第
象限角.
2.若,则角的终边在第
象限.
3.已知角的终边上一点,则

4.已知圆的周长为,是圆上两点,弧长为,则
弧度.
5.若角的终边上有一点则的值为

6.已知点落在角的终边上,且,则的值为

7.有下列各式:①②③④,其中为负值的序号为

8.在平面直角坐标系中,以轴为始边作锐角,它们的终边分别与单位圆相交于两点,已知两点的横坐标分别为,则

9.若一扇形的周长为,则当扇形的圆心角等于多少弧度时,这个扇形的面积最大?最大值是多少?
的正弦、余弦和正切值.
四、纠错分析
错题卡
题号
错题原因分析
学案41
三角函数的概念、弧度制参考答案
一、课前准备:
【自主梳理】
.略
2.用弧度作为角的单位来度量角的单位制3.
4.(1)
(2)一全正,二正弦,三正切,四余弦【自我检测】
.75
2.一
3.
4.
5.1或4
6.三
二、课堂活动:
【例1】(1)一或三
(2)二或四
(3)
(4)
【例2】解:(1)由题意,且∴;
(2)由题意,且∴
∴.
【例3】解:(1)∵∴扇形的弧长,∴,∴.
(2)∵,∴,
∴,

当即
时,扇形有最大面积.
三、课后作业
.三
2.一
3.
4.
5.
6.
7.②③④
8.
9.解:设扇形弧长为,所在圆的半径是由题意:∴,
∴,

当即
时,扇形有最大面积

0.解:①若角终边在第一象限,则②若角终边在第三象限,则.。

相关文档
最新文档