江苏省扬州市树人中学2018-2019学年八年级第一学期第一次月考数学试题
江苏省扬州市八年级数学上册第一次月考试卷

江苏省扬州市八年级数学上册第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019八上·天山期中) 平面内点和点的对称轴是()A . 轴B . 轴C . 直线D . 直线2. (2分)(2017·江都模拟) 函数y= 中自变量x的取值范围是()A . x>﹣1B . x≥﹣1C . x<﹣1D . x≤﹣13. (2分)将A(1,1)先向左平移2个单位,再向下平移2个单位得点B,则点B的坐标是()A . (-1,-1)B . (3,3)C . (0,0)D . (-1,3)4. (2分) 2015年4月25日尼泊尔发生了里氏8.1级强烈地震,地震波及我区某县.我军某部奉命前往灾区,途中遇到塌方路段,经过一段时间的清障,该部加速前进,最后到达救灾地点.则该部行进路程y与行进时间x的函数关系的大致图象是()A .B .C .D .5. (2分)以方程组的解为坐标的点,在平面直角坐标系中的位置是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限6. (2分)要画一个面积为20cm2的长方形,其长为xcm,宽为ycm,在这一变化过程中,常量与变量分别为()。
A . 常量为20,变量为x,yB . 常量为20、y,变量为xC . 常量为20、x,变量为yD . 常量为x、y,变量为207. (2分)一个数在数轴上所对应的点向右移动8个单位后,得到它的相反数,则这个数是()A . 4B . ﹣4C . 8D . ﹣88. (2分) (2017八上·金华期中) 如图,小手盖住的点的坐标可能为()A .B .C .D .9. (2分)如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是−1,则顶点A坐标是()A . (2,−1)B . (1,−2)C . (1,2)D . (2,1)10. (2分) (2017七下·个旧期中) 在平面直角坐标系中,点A ( 5,3 )的坐标变为( 3,﹣1),则点A经历了怎样的图形变化()A . 先向左平移2个单位长度,再向下平移4个单位长度B . 先向左平移2个单位长度,再向上平移4个单位长度C . 先向右平移2个单位长度,再向上平移4个单位长度D . 先向右平移2个单位长度,再向下平移4个单位长度11. (2分) (2017七下·临沭期末) 如图,把图①中的⊙A经过平移得到⊙O(如图②),如果图①中⊙A上一点P的坐标为(m,n),那么平移后在图②中的对应点P′的坐标为()A . (m+2,n+1)B . (m﹣2,n﹣1)C . (m﹣2,n+1)D . (m+2,n﹣1)12. (2分) (2017八下·陆川期末) 如图,在矩形ABCD中,AB=2,AD=3,点E是BC边上靠近点B的三等分点,动点P从点A出发,沿路径A→D→C→E运动,则△APE的面积y与点P经过的路径长x之间的函数关系用图象表示大致是()A .B .C .D .二、填空题 (共6题;共6分)13. (1分) (2019七下·新疆期中) 如果电影院中“5排7号”记作(5,7),那么(3,4)表示的意义是________。
江苏省2018-2019年八年级上第一次月考数学试卷含解析

八年级(上)第一次月考数学试卷一.选择题(每小题3分,共36分)1.(3分)若三角形的三边长分别为3,4,x,则x的值可能是()A.1 B.6 C.7 D.102.(3分)△ABC中,∠A=60°,∠C=70°,则∠B的度数是()A.50°B.60°C.70°D.90°3.(3分)如图,△BAC的外角∠CAE为120°,∠C=80°,则∠B为()A.60°B.40°C.30°D.45°4.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性5.(3分)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对6.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.87.(3分)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°8.(3分)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB9.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块10.(3分)下列各选项中的两个直角三角形不一定全等的是()A.两条直角边对应相等的两个直角三角形B.两个锐角对应相等的两个直角三角形C.斜边和一条直角边对应相等的两个直角三角形D.有一个锐角及这个锐角的对边对应相等的两个直角三角形全等11.(3分)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°12.(3分)如图,△ABC≌△EBD,AB=3cm,BD=5cm,则CE的长度为()A.3cm B.5cm C.8cm D.2cm二.填空题(每小题3分,共24分)13.(3分)在△ABC中,若AB=5,BC=2,且AC的长为奇数,则AC=.14.(3分)如果一个多边形的内角和为1080°,则它是边形.15.(3分)在直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为.16.(3分)已知图中的两个三角形全等,则∠α的度数是.17.(3分)如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”,需要添加的条件是.18.(3分)如图,△ABC的角平分线AD交BD于点D,∠1=∠B,∠C=66°,则∠BAC的度数是.19.(3分)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=.20.(3分)如图,△ADB≌△ACE,∠E=40°,∠C=25°,则∠DAB=.三.解答题(5小题,共40分)21.(8分)一个多边形的内角和比外角和的3倍多180°,则它是几边形?22.(8分)如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.23.(8分)如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.24.(8分)已知:如图,点B、F、C、E在同一条直线上,AB∥DE,∠A=∠D,BF=EC.求证:AC=DF.25.(8分)如图,两根旗杆AC,BD相距10米,旗杆AC高3米,且AC⊥AB,BD⊥AB,一同学从B点出发向A点走去,当他走到点M时,发现自己刚好走了3米,此时他仰望旗杆的顶点C,D,又发现两条视线CM=DM.(1)求旗杆BD的高为多少米?(2)两条视线CM,DM有怎样的位置关系?请说明理由.参考答案与试题解析一.选择题(每小题3分,共36分)1.(3分)若三角形的三边长分别为3,4,x,则x的值可能是()A.1 B.6 C.7 D.10【解答】解:∵4﹣3=1,4+3=7,∴1<x<7,∴x的值可能是6.故选:B.2.(3分)△ABC中,∠A=60°,∠C=70°,则∠B的度数是()A.50°B.60°C.70°D.90°【解答】解:由三角形内角和定理得:∠B=180°﹣∠A﹣∠C=180°﹣60°﹣70°=50°;故选:A.3.(3分)如图,△BAC的外角∠CAE为120°,∠C=80°,则∠B为()A.60°B.40°C.30°D.45°【解答】解:由三角形的外角性质得:∠CAE=∠B+∠C,∴∠B=∠CAE﹣∠C=120°﹣80°=40°;故选:B.4.(3分)如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是()A.两点之间的线段最短B.长方形的四个角都是直角C.长方形是轴对称图形D.三角形有稳定性【解答】解:用木条EF固定长方形门框ABCD,使其不变形的根据是三角形具有稳定性.故选:D.5.(3分)不一定在三角形内部的线段是()A.三角形的角平分线B.三角形的中线C.三角形的高D.以上皆不对【解答】解:三角形的角平分线、中线一定在三角形的内部,直角三角形的高线有两条是三角形的直角边,钝角三角形的高线有两条在三角形的外部,所以,不一定在三角形内部的线段是三角形的高.故选:C.6.(3分)若a、b、c为△ABC的三边长,且满足|a﹣4|+=0,则c的值可以为()A.5 B.6 C.7 D.8【解答】解:∵|a﹣4|+=0,∴a﹣4=0,a=4;b﹣2=0,b=2;则4﹣2<c<4+2,2<c<6,5符合条件;故选:A.7.(3分)一个正多边形的内角和为540°,则这个正多边形的每一个外角等于()A.60°B.72°C.90°D.108°【解答】解:设此多边形为n边形,根据题意得:180(n﹣2)=540,解得:n=5,∴这个正多边形的每一个外角等于:=72°.故选:B.8.(3分)如图,下列条件中,不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.AB=DC,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DC,∠DBC=∠ACB【解答】解:根据题意知,BC边为公共边.A、由“SSS”可以判定△ABC≌△DCB,故本选项错误;B、由“SAS”可以判定△ABC≌△DCB,故本选项错误;C、由BO=CO可以推知∠ACB=∠DBC,则由“AAS”可以判定△ABC≌△DCB,故本选项错误;D、由“SSA”不能判定△ABC≌△DCB,故本选项正确.故选:D.9.(3分)小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1、2、3、4的四块),你认为将其中的哪一些块带去,就能配一块与原来一样大小的三角形?应该带()A.第1块B.第2块C.第3块D.第4块【解答】解:1、3、4块玻璃不同时具备包括一完整边在内的三个证明全等的要素,所以不能带它们去,只有第2块有完整的两角及夹边,符合ASA,满足题目要求的条件,是符合题意的.故选:B.10.(3分)下列各选项中的两个直角三角形不一定全等的是()A.两条直角边对应相等的两个直角三角形B.两个锐角对应相等的两个直角三角形C.斜边和一条直角边对应相等的两个直角三角形D.有一个锐角及这个锐角的对边对应相等的两个直角三角形全等【解答】解:A、根据SAS可证明两个直角三角形全等,故此选项不合题意;B、两个锐角对应相等的两个直角三角形不一定全等,故此选项符合题意;C、根据HL定理可判定两个直角三角形全等,故此选项不合题意;D、根据AAS两个直角三角形全等,故此选项不合题意;故选:B.11.(3分)如图,△ACB≌△A′CB′,∠BCB′=30°,则∠ACA′的度数为()A.20°B.30°C.35°D.40°【解答】解:∵△ACB≌△A′CB′,∴∠ACB=∠A′CB′,即∠ACA′+∠A′CB=∠B′CB+∠A′CB,∴∠ACA′=∠B′CB,又∠B′CB=30°∴∠ACA′=30°.故选:B.12.(3分)如图,△ABC≌△EBD,AB=3cm,BD=5cm,则CE的长度为()A.3cm B.5cm C.8cm D.2cm【解答】解:∵△ABC≌△EBD,∴BE=AB,BC=BD,∵AB=3cm,BD=5cm,∴BE=3cm,BC=5cm,∴EC=5cm﹣3cm=2cm,故选:D.二.填空题(每小题3分,共24分)13.(3分)在△ABC中,若AB=5,BC=2,且AC的长为奇数,则AC=5.【解答】解:根据题意得5﹣2<AC<5+2,即3<AC<7,而AC的长为奇数,所以AC=5.故答案为5.14.(3分)如果一个多边形的内角和为1080°,则它是八边形.【解答】解:设这个多边形的边数为n,则(n﹣2)×180°=1080°,解得n=8,故这个多边形为八边形.故答案为:八.15.(3分)在直角三角形中,两个锐角的差为40°,则这两个锐角的度数分别为65°,25°.【解答】解:设这两个锐角的度数分别为x,y,根据题意得,,解得.故答案为:65°,25°.16.(3分)已知图中的两个三角形全等,则∠α的度数是50°.【解答】解:∵两个三角形全等,∴α=50°.故答案为:50°.17.(3分)如图,已知AD平分∠BAC,要使△ABD≌△ACD,根据“SAS”,需要添加的条件是AB=AC.【解答】解:AB=AC,理由是:∵AD平分∠BAC,∴∠BAD=∠CAD,在△ABD和△ACD中,,∴△ABD≌△ACD(SAS),故答案为:AB=AC.18.(3分)如图,△ABC的角平分线AD交BD于点D,∠1=∠B,∠C=66°,则∠BAC的度数是76°.【解答】解:∵△ABC的角平分线AD交BD于点D,∴∠CAD=∠1=∠BAC,∵∠1=∠B,∴∠ADC=∠1+∠B=2∠1,在△ABC中,∠B+2∠1+∠C=180°,∴3∠1=180°﹣∠C=114°,∴∠1=38°,∴∠BAC=2∠1=76°.故答案为76°19.(3分)如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.【解答】解:△ABE和△ACD中,,∴△ABE≌△ACD(AAS),∴AD=AE=2,AC=AB=5,∴CE=BD=AB﹣AD=3,故答案为3.20.(3分)如图,△ADB≌△ACE,∠E=40°,∠C=25°,则∠DAB=115°.【解答】解:如图,∵∠E=40°,∠C=25°,∠E+C+∠CAE=180°,∴∠CAE=115°,又∵△ADB≌△ACE,∴∠DAB=∠CAE=115°故答案是:115°.三.解答题(5小题,共40分)21.(8分)一个多边形的内角和比外角和的3倍多180°,则它是几边形?【解答】解:设多边形的边数为n,根据题意得:(n﹣2)×180°﹣360°×3=180°,解得:n=9.答:它是九边形.22.(8分)如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,∠CAB=90°.试求:(1)AD的长;(2)△ABE的面积;(3)△ACE和△ABE的周长的差.【解答】解:∵∠BAC=90°,AD是边BC上的高,∴AB•AC=BC•AD,∴AD===4.8(cm),即AD的长度为4.8cm;(2)如图,∵△ABC是直角三角形,∠BAC=90°,AB=6cm,AC=8cm,=AB•AC=×6×8=24(cm2).∴S△ABC又∵AE是边BC的中线,∴BE=EC,=S△AEC,∴BE•AD=EC•AD,即S△ABES△ABC=12(cm2).∴S△ABE=∴△ABE的面积是12cm2.(3)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长﹣△ABE的周长=AC+AE+CE﹣(AB+BE+AE)=AC﹣AB=8﹣6=2(cm),即△ACE和△ABE的周长的差是2cm.23.(8分)如图,已知△ABC≌△DEF,∠A=30°,∠B=50°,BF=2,求∠DFE的度数和EC的长.【解答】解:∵∠A=30°,∠B=50°,∴∠ACB=180°﹣∠A﹣∠B=180°﹣30°﹣50°=100°,∵△ABC≌△DEF,∴∠DFE=∠ACB=100°,EF=BC,∴EF﹣CF=BC﹣CF,即EC=BF,∵BF=2,∴EC=2.24.(8分)已知:如图,点B、F、C、E在同一条直线上,AB∥DE,∠A=∠D,BF=EC.求证:AC=DF.【解答】证明:∵AB∥DE(已知),∴∠ABC=∠DEF((两直线平行,内错角相等),∵BF=EC(已知),∴BF+FC=EC+CF,即BC=EF,在△ABC和△DEF中,,∴△ABC≌△DEF(AAS),∴AC=DF(全等三角形对应边相等).25.(8分)如图,两根旗杆AC,BD相距10米,旗杆AC高3米,且AC⊥AB,BD⊥AB,一同学从B点出发向A点走去,当他走到点M时,发现自己刚好走了3米,此时他仰望旗杆的顶点C,D,又发现两条视线CM=DM.(1)求旗杆BD的高为多少米?(2)两条视线CM,DM有怎样的位置关系?请说明理由.【解答】解:(1)∵AC⊥AB,BD⊥AB,∴∠A=∠B=90°,在Rt△ACM和Rt△BMD中,,∴Rt△ACM≌Rt△BMD(HL),∴AM=BD,∴AM=AB﹣BM=7,∴BD=AM=7;(2)CM⊥DM,理由:∵Rt△ACM≌Rt△BM D,∴∠C=∠BMD,∵∠C+∠AMC=90°,∴∠BMD+∠AMC=90°,∴∠CMD=90°,∴CM⊥DM.。
江苏省扬州市八年级上学期第一次月考数学试卷及答案含有详细解析

江苏省扬州市八年级上学期第一次月考数学试卷(带解析)一、选择题1、图中的图形中是常见的安全标记,其中是轴对称图形的是( )2、某同学把一块三角形的玻璃打碎也成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是( ) A .带①去 B .带②去 C .带③去 D .带①和②去3、已知∠AOB =30°,点P 在∠AOB 的内部,P 1与P 关于OA 对称,P 2与P 关于OB 对称,则△P 1OP 2是A .含30°角的直角三角形B .顶角是30的等腰三角形C .等边三角形D .等腰直角三角形 4、下列说法错误的是( )A .能完全重合的两个三角形是全等三角形B .全等三角形的对应角相等C .面积相等的两个三角形一定是全等三角形D .全等三角形的对应边相等 5、在△ABC 和△A ′B ′C ′中,①AB = A ′B ′,②BC = B ′C ′,③AC = A ′C ′,④∠A =∠A ′,⑤∠B =∠B ′,⑥∠C =∠C ′,则下列条件组不能保证△ABC ≌△A ′B ′C ′的是( )A .①②③B .①②⑤C .②④⑤D .①③⑤6、如图,在△ABC 与△DEF 中,B 、F 、C 、E 在一条直线上,若BF =CE ,AC =FD ,则下列补充的条件:①∠E =∠B ; ②AC ∥DF ; ③∠A =∠D ,能说明△ABC ≌△DEF 的有( )(第6题图)(第7题图) (第8题图)A .1个B .2个C .3个D .0个7、如图,在Rt △ABC 中,∠ACB =90°,E 是AB 上一点,且BE =BC ,过E 作DE ⊥AB 交AC 于点D ,如果AC ="5" cm ,则AD +DE =( )A .3 cmB .4 cmC .5 cmD .6 cm 8、如图,平分于点,点是射线上的一个动点,若,则的最小值为( )A .1B .2C .3D .4 二、填空题9、如图两个三角形关于某条直线对称,∠1=110°,∠2=46°,则x =________。
树人学校2018-2019学年八年级(上)第一次月考数学试卷(解析版)

2018-2019学年江苏省扬州市广陵区树人学校八年级(上)第一次月考数学试卷一、选择题(每小题3分,共24分)1.下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.2.对0.000009进行开平方运算,对所得结果的绝对值再进行开平方运算…随着开方次数的增加,其运算结果()A.越来越接近1B.越来越接近0C.越来越接近0.1D.越来越接近0.3【分析】把0.000009设为a,那么开n次方就是=,当n无限大时,无限趋近于0,则a≈a0,从而由a0=1来解.【解答】解:设0.000009=a,∵=,当n无限大时,无限趋近于0,故=就是=≈a0=1.故选:A.3.若a>0,b<﹣2,则点(a,b+2)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.【解答】解:∵a>0,b<﹣2,∴b+2<0,∴点(a,b+2)在第四象限.故选D.4.如图,△ABC的面积为1cm2,AP垂直∠B的平分线BP于P,则△PBC的面积为()A.0.4 cm2B.0.5 cm2C.0.6 cm2D.0.7 cm2【分析】延长AP交BC于E,根据AP垂直∠B的平分线BP于P,即可求出△ABP≌△BEP,又知△APC和△CPE等底同高,可以证明两三角形面积相等,即可证明三角形PBC的面积.【解答】解:延长AP交BC于E,∵AP垂直∠B的平分线BP于P,∠ABP=∠EBP,又知BP=BP,∠APB=∠BPE=90°,∴△ABP≌△BEP,∴S△ABP =S△BEP,AP=PE,∴△APC和△CPE等底同高,∴S△APC =S△PCE,∴S△PBC =S△PBE+S△PCE=S△ABC=0.5cm2,故选:B.5.已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为()A.40B.80C.40或360D.80或360【分析】根据题意作出图形分为高线在三角形内和高线在三角形外两种情况,然后根据勾股定理计算求解即可.【解答】解:由题意可作图左图中AC=10,CD=6,CD⊥AB根据勾股定理可知AD=8∴BD=2∴BC2=22+62=40右图中AC=10,CD=6,CD⊥BD,根据勾股定理知AD=8∴BD=18∴BC2=182+62=360.故选C.6.如图,在2×2的正方形网格中,有一个格点△ABC(阴影部分),则网格中所有与△ABC成轴对称的格点三角形的个数为()A.2B.3C.4D.5【分析】因为对称图形是全等的,所以面积相等,据此连接矩形的对角线,观察得到的三角形即可解答.【解答】解:如图,与△ABC成轴对称的格点三角形有△ACF、△ACD、△DBC,△HEG,△HBG共5个,故选:D.7.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数是()A.90°B.120°C.135°D.180°【分析】直接利用平角的定义结合三角形内角和定理以及全等三角形的性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,进而得出答案.【解答】解:如图所示:由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,∵三个全等三角形,∴∠4+∠9+∠6=180°,又∵∠5+∠7+∠8=180°,∴∠1+∠2+∠3+180°+180°=540°,∴∠1+∠2+∠3的度数是180°.故选:D.8.已知△ABC的三边长分别为4、4、6,在△ABC所在平面内画一条直线,将△ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()条.A.3B.4C.5D.6【分析】根据等腰三角形的性质,利用4作为腰或底边长,得出符合题意的图形即可.【解答】解:如图所示:当AC=CD,AB=BG,AF=CF,AE=BE时,都能得到符合题意的等腰三角形(AD,AE,AF,AG分别为分割线).故选:B.二、填空题(本题30分)9.的平方根是±2 .【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±210.实数a在数轴上的位置如图,则|a﹣|= ﹣a .【分析】根据数轴上点的位置判断出a﹣的正负,利用绝对值的代数意义化简即可得到结果.【解答】解:∵a<0,∴a﹣<0,则原式=﹣a,故答案为:﹣a11.△ABC中,∠A=30°,当∠B= 75°或30°或120°时,△ABC是等腰三角形.【分析】根据等腰三角形两底角相等列式进行计算即可得解.【解答】解:当∠A为顶角等于30°时,∴底角∠B=(180°﹣30°)=75°,△ABC是等腰三角形,当∠A=∠B=30°时,△ABC是等腰三角形,当∠A=∠C=30°时,则∠B=120°,△ABC是等腰三角形,故答案为:75°或30°或120°.12.点C到x轴的距离为1,到y轴的距离为3,且在第三象限,则C点坐标是(﹣3,﹣1).【分析】根据到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度,第三象限的点的横坐标与纵坐标都是负数解答.【解答】解:∵点C到x轴的距离为1,到y轴的距离为3,且在第三象限,∴点C的横坐标为﹣3,纵坐标为﹣1,∴点C的坐标为(﹣3,﹣1).故答案为:(﹣3,﹣1).13.在△ABC中,AB=AC=5,BC=6,若点P在边AB上移动,则CP的最小值是 4.8 .【分析】作BC边上的高AF,利用等腰三角形的三线合一的性质求BF=3,利用勾股定理求得AF的长,利用面积相等即可求得AB边上的高CP的长.【解答】解:如图,作AF⊥BC于点F,作CP⊥AB于点P,根据题意得此时CP的值最小;解:作BC边上的高AF,∵AB=AC=5,BC=6,∴BF=CF=3,∴由勾股定理得:AF=4,∴S△ABC=AB•PC=BC•AF=×5CP=×6×4得:CE=4.8故答案为4.8.14.如图,在3×3的正方形网格中标出了∠1和∠2,则∠1+∠2= 45°.【分析】根据题意,作出合适的辅助线,然后根据勾股定理的逆定理即可解答本题.【解答】解:如右图所示,作CD∥AB,连接DE,则∠2=∠3,设每个小正方形的边长为a,则CD=,DE=a,CE=a,∵CD2+DE2==10a2=CE2,CD=DE,∴△CDE是等腰直角三角形,∠CDE=90°,∴∠DCE=45°,∴∠3+∠1=45°,∴∠1+∠2=45°,故答案为:45°.15.如图,△ABC中,AB=AC,∠BAC=54°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O 恰好重合,则∠OEC为108 度.【分析】连接OB、OC,根据角平分线的定义求出∠BAO,根据等腰三角形两底角相等求出∠ABC,再根据线段垂直平分线上的点到线段两端点的距离相等可得OA=OB,根据等边对等角可得∠ABO=∠BAO,再求出∠OBC,根据全等三角形的性质可得OB=OC,根据等边对等角求出∠OCB=∠OBC,根据翻折的性质可得OE=CE,然后根据等边对等角求出∠COE,再利用三角形的内角和定理列式计算即可得解.【解答】解:如图,连接OB、OC,∵∠BAC=54°,AO为∠BAC的平分线,∴∠BAO=∠BAC=×54°=27°,又∵AB=AC,∴∠ABC=(180°﹣∠BAC)=(180°﹣54°)=63°,∵DO是AB的垂直平分线,∴OA=OB,∴∠ABO=∠BAO=27°,∴∠OBC=∠ABC﹣∠ABO=63°﹣27°=36°,∵AO为∠BAC的平分线,AB=AC,∴△AOB≌△AOC(SAS),∴OB=OC,∴∠OCB=∠OBC=36°,∵将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,∴OE=CE,∴∠COE=∠OCB=36°,在△OCE中,∠OEC=180°﹣∠COE﹣∠OCB=180°﹣36°﹣36°=108°.故答案为:108.16.如图,已知E是边长为12的正方形的边AB上一点,且AE=5,P是对角线AC上任意一点,则PE+PB的最小值是13 .【分析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.【解答】解:如图,连接DE,交AC于P,连接BP,则此时PB+PE的值最小.∵四边形ABCD是正方形,∴B、D关于AC对称,∴PB=PD,∴PB+PE=PD+PE=DE,∵E是边长为12的正方形的边AB上一点,且AE=5,∴PB+PE的值最小为:==13.故答案为:13.17.定义:在平面直角坐标系xOy中,把从点P出发沿纵或横方向到达点Q(至多拐一次弯)的路径长称为P,Q的“实际距离”.如图,若P(﹣1,1),Q(2,3),则P,Q的“实际距离”为5,即PS+SQ=5或PT+TQ=5.环保低碳的共享单车,正式成为市民出行喜欢的交通工具.设A,B,C三个小区的坐标分别为A(3,1),B(5,﹣3),C(﹣1,﹣5),若点M表示单车停放点,且满足M到A,B,C的“实际距离”相等,则点M的坐标为(1,﹣2).【分析】若设M(x,y),构建方程组即可解决问题.【解答】解:设M(x,y),由“实际距离”的定义可知:点M只能在ECFG区域内,﹣1<x<5,﹣5<y<1,又∵M到A,B,C距离相等,∴|x﹣3|+|y﹣1|=|x﹣5|+|y+3|=|x+1|+|y+5|,①∴|x﹣3|+1﹣y=5﹣x+|y+3|=x+1+y+5,②要将|x﹣3|与|y+3|中绝对值去掉,需要判断x在3的左侧和右侧,以及y在﹣3的上侧还是下侧,将矩形ECFG分割为4部分,若要使M到A,B,C的距离相等,由图可知M只能在矩形AENK中,故x<3,y>﹣3,则方程可变为:3﹣x+1﹣y=y+5+x+1=5﹣x+3+y,解得,x=1,y=﹣2,则M(1,﹣2)故答案为:(1,﹣2).18.如图,点A、B的坐标分别为(0,3)、(4,6),点P为x轴上的一个动点,若点B关于直线AP的对称点B′恰好落在坐标轴上,则点B′的坐标为(﹣4,0)(0,﹣2)(0,8).【分析】利用对称的性质结合A,B点坐标得出AB的长,进而分别得出符合题意的答案.【解答】解:如图1,当AB⊥AP,设直线AB的解析式为:y=kx+b,则,解得:,则y=x+3,当y=0时,x=﹣4,故B′(﹣4,0),如图2,当B与B″关于直线AP对称,∵A(0,3)、B(4,6),∴AB==5,∴AB″=5,∴B″(0,8);如图3,当B与B″′关于直线AP对称,则AB=AB″′,故AB=AB″′=5,则B″′(0,﹣2),综上所述,点B′的坐标为:(﹣4,0),(0,﹣2),(0,8).故答案为:(﹣4,0),(0,﹣2),(0,8).三.解答题(共96分)19.(8分)①+﹣()2②.【分析】①原式利用平方根及立方根的定义化简即可得到结果;②原式第一项利用绝对值的代数意义化简,第二项利用二次根式的化简公式计算,第三项利用零指数幂法则计算即可得到结果.【解答】解:①原式=﹣2﹣3=﹣;②原式=﹣1+2﹣1=.20.(8分)如图所示,在△ABC中,AB=10,AC=6,BC=8,把△ABC折叠,使AB落在直线AC上,求重叠部分(阴影部分)的面积.【分析】利用勾股定理逆定理求出∠ACB=90°,根据翻转变换的性质可得AB′=AB,B′D=BD,然后求出B′C,设CD=x,表示出B′D,再利用勾股定理列方程求出x,最后根据三角形的面积公式列式计算即可得解.【解答】解:∵AC2+BC2=62+82=100,AB2=102=100,∴AC2+BC2=AB2,∴△ABC是直角三角形,∠ACB=90°,∵△ABC折叠AB落在直线AC上,∴AB′=A B=10,B′D=BD,∴B′C=AB′﹣AC=10﹣6=4,设CD=x,则B′D=BD=BC﹣CD=8﹣x,在Rt△B′CD中,由勾股定理得,B′C2+CD2=B′D2,即42+x2=(8﹣x)2,解得x=3,即CD=3,所以,阴影部分的面积=AC×CD=×6×3=9.21.(8分)已知:如图,∠ABC=∠ADC=90°,E、F分别是AC、BD的中点.求证:EF⊥BD.【分析】连接BE、DE,根据直角三角形斜边上的中线等于斜边的一半可得BE=DE=AC,再根据等腰三角形三线合一的性质证明.【解答】证明:如图,连接BE、DE,∵∠ABC=∠ADC=90°,E是AC的中点,∴BE=DE=AC,∵F是BD的中点,∴EF⊥BD.22.(8分)如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论.(2)连接AM,求证:MA平分∠EMF.【分析】(1)先由条件可以得出∠EAC=∠BAE,再证明△EAC≌△BAF就可以得出结论;(2)作AP⊥CE于P,AQ⊥BF于Q.由△EAC≌△BAF,推出AP=AQ(全等三角形对应边上的高相等).由AP⊥CE于P,AQ⊥BF于Q,可得AM平分∠EMF;【解答】(1)解:结论:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAE.在△EAC和△BAF中,,∴△EAC≌△BAF(SAS),∴EC=BF.∠AEC=∠ABF∵∠AEG+∠AG E=90°,∠AGE=∠BGM,∴∠ABF+∠BGM=90°,∴∠EMB=90°,∴EC⊥BF.∴EC=BF,EC⊥BF.(2)证明:作AP⊥CE于P,AQ⊥BF于Q.∵△EAC≌△BAF,∴AP=AQ(全等三角形对应边上的高相等).∵AP⊥CE于P,AQ⊥BF于Q,∴AM平分∠EMF.23.(10分)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC上,且BE=CF,AD+EC=AB.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数;(3)△DEF可能是等腰直角三角形吗?为什么?【分析】(1)求出EC=DB,∠B=∠C,根据SAS推出△BED≌△CFE,根据全等三角形的性质得出DE=EF即可;(2)根据三角形内角和定理求出∠B=∠C=70°,根据全等得出∠BDE=∠FEC,求出∠DEB+∠FEC=110°,即可得出答案;(3)根据等腰直角三角形得出∠DEF=90°,求出∠B=90°,∠C=90°,根据三角形内角和定理即可得出答案.【解答】(1)证明:∵AD+EC=AB=AD+DB,∴EC=DB,又∵AB=AC,∴∠B=∠C,在△BED和△CFE中∴△BED≌△CFE,∴DE=EF,∴△DEF是等腰三角形;(2)解:∵∠A=40°,∴∠B=∠C=70°,∵由(1)知△BED≌△CFE,∴∠BDE=∠FEC,∴∠DEB+∠FEC=∠DEB+∠BDE=180°﹣∠B=110°,∴∠DEF=180°﹣(∠DEB+∠FEC)=70°;(3)解:∵若△DEF是等腰直角三角形,则∠DEF=90°,∴∠DEB+∠BDE=90°,∴∠B=90°,因而∠C=90°,∴△DEF不可能是等腰直角三角形.24.(10分)如图,△ABC中,∠C=90°,AB=10cm,BC=6cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t 秒.(1)问t为何值时,PA=PB?(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?【分析】(1)分两种情况:点P在AC上和点P在AB上,分别根据移动的路程,求得时间t的值即可;(2)分两种情况:①若P在边AC上时,BC=CP=6cm,此时用的时间为6s;②若P在AB边上时,有三种可能:i若使BP=CB=6cm,此时AP=4cm,P运动的路程为4+8=12cm,用的时间为12时;ii)若CP=BC=6cm,过C作CD⊥AB于点D,根据面积法求得高CD=4.8cm,求出BP=2PD=7.2cm,得出P运动的路程为18﹣7.2=10.8cm,即可得出结果;ⅲ)若BP=CP,则∠PCB=∠B,证出PA=PC得出PA=PB=5cm,得出P的路程为13cm,即可得出结果;(3)分两种情况:①当P、Q没相遇前:P点走过的路程为t,Q走过的路程为2t,根据题意得出方程,解方程即可;②当P、Q没相遇后:当P点在AB上,Q在AC上,则AP=t﹣8,AQ=2t﹣16,根据题意得出方程,解方程即可;即可得出结果.【解答】解:(1)如图2,作AB的垂直平分线DE,交AB于E,交AC于D,连接DB,则DA=DB,EA=EB,∵△ABC中,∠C=90°,AB=10cm,BC=6cm,∴AC==8cm,①当点P与点D重合时,PA=PB,此时,CP=1t=t,AP=8﹣t=BP,∴在Rt△BCP中,t2+62=(8﹣t)2,解得t=;②当点P与点E重合时,PA=PB,此时,PA=PB=AB=5,∴CA+AP=13,即1t=13,解得t=13,故当t=或13s时,△BCP为等腰三角形;(2)如图3,若P在边AC上时,BC=CP=6cm,此时用的时间为6s,△BCP为等腰三角形;若P在AB边上时,有三种情况:①如图4,若使BP=CB=6cm,此时AP=4cm,P运动的路程为12cm,所以用的时间为12s,故t=12s时△BCP为等腰三角形;②如图5,若CP=BC=6cm,过C作斜边AB的高,根据面积法求得高为4.8cm,根据勾股定理求得BP=7.2cm,所以P运动的路程为18﹣7.2=10.8cm,∴t的时间为10.8s,△BCP为等腰三角形;③如图6,若BP=CP时,则∠PCB=∠PBC,∵∠ACP+∠BCP=90°,∠PBC+∠CAP=90°,∴∠ACP=∠CAP,∴PA=PC∴PA=PB=5cm∴P的路程为13cm,所以时间为13s时,△BCP为等腰三角形.∴当t=6s或13s或12s或10.8s 时,△BCP为等腰三角形;(3)分两种情况:①当P、Q没相遇前:如图7P点走过的路程为tcm,Q走过的路程为2tcm,∵直线PQ把△ABC的周长分成相等的两部分,∴t+2t=12,∴t=4s;②当P、Q相遇后:如图8当P点在AB上,Q在AC上,则AP=t﹣8,AQ=2t﹣16,∵直线PQ把△ABC的周长分成相等的两部分,∴t﹣8+2t﹣16=12,∴t=12s,故当t为4秒或12秒时,直线PQ把△ABC的周长分成相等的两部分.25.(10分)在△ABC中,AB=AC,D是B C的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.(1)若∠BAC=40°,求∠AEB的度数;(2)求证:∠AEB=∠ACF;(3)求证:EF2+BF2=2AC2.【分析】(1)根据等腰直角三角形的旋转得出∠ABE=∠AEB,求出∠BAE,根据三角形内角和定理求出即可;(2)根据等腰三角形的性质得出∠BAF=∠CAF,根据SAS推出△BAF≌△CAF,根据全等得出∠ABF=∠ACF,即可得出答案;(3)根据全等得出BF=CF,求出∠CFG=∠EAG=90°,根据勾股定理求出EF2+BF2=EF2+CF2=EC2,EC2=AC2+AE2=2AC2,即可得出答案.【解答】(1)解:∵AB=AC,△ACE是等腰直角三角形,∴AB=AE,∴∠ABE=∠AEB,又∵∠BAC=40°,∠EAC=90°,∴∠BAE=40°+90°=130°,∴∠AEB=(180°﹣130°)÷2=25°;(2)证明:∵AB=AC,D是BC的中点,∴∠BAF=∠CAF.在△BAF和△CAF中∴△BAF≌△CAF(SAS),∴∠ABF=∠ACF,∵∠ABE=∠AEB,∴∠AEB=∠ACF;(3)证明:∵△BAF≌△CAF,∴BF=CF,∵∠AEB=∠ACF,∠AGE=∠FGC,∴∠CFG=∠EAG=90°,∴EF2+BF2=EF2+CF2=EC2,∵△ACE是等腰直角三角形,∴∠CAE=90°,AC=AE,∴EC2=AC2+AE2=2AC2,即EF2+BF2=2AC2.26.(10分)如图,在长方形OABC中,O为平面直角坐标系的原点,点A坐标为(a,0),点C的坐标为(0,b),且a、b满足+|b﹣6|=0,点B在第一象限内,点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A ﹣O的线路移动.(1)a= 4 ,b= 6 ,点B的坐标为(4,6);(2)当点P移动4秒时,请指出点P的位置,并求出点P的坐标;(3)在移动过程中,当点P到x轴的距离为5个单位长度时,求点P移动的时间.【分析】(1)根据+|b﹣6|=0,可以求得a、b的值,根据长方形的性质,可以求得点B的坐标;(2)根据题意点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A ﹣O的线路移动,可以得到当点P移动4秒时,点P的位置和点P的坐标;(3)由题意可以得到符合要求的有两种情况,分别求出两种情况下点P移动的时间即可.【解答】解:(1)∵a、b满足+|b﹣6|=0,∴a﹣4=0,b﹣6=0,解得a=4,b=6,∴点B的坐标是(4,6),故答案是:4,6,(4,6);(2)∵点P从原点出发,以每秒2个单位长度的速度沿着O﹣C﹣B﹣A﹣O的线路移动,∴2×4=8,∵OA=4,OC=6,∴当点P移动4秒时,在线段CB上,离点C的距离是:8﹣6=2,即当点P移动4秒时,此时点P在线段CB上,离点C的距离是2个单位长度,点P的坐标是(2,6);(3)由题意可得,在移动过程中,当点P到x轴的距离为5个单位长度时,存在两种情况,第一种情况,当点P在OC上时,点P移动的时间是:5÷2=2.5秒,第二种情况,当点P在BA上时.点P移动的时间是:(6+4+1)÷2=5.5秒,故在移动过程中,当点P到x轴的距离为5个单位长度时,点P移动的时间是2.5秒或5.5秒.27.(12分)如图,在直角坐标系xOy中,直线AB交x轴于A(2,0),交y轴负半轴于B(0,﹣10),C为x轴正半轴上一点,且OC=5OA.(1)求△ABC的面积;(2)延长BA到P(自己补全图形),使得PA=AB,过点P作PM⊥OC于M,求P点的坐标;(3)如图,D是第三象限内一动点,直线BE⊥CD于E,OF⊥OD交BE延长线于F.当D点运动时,的大小是否发生变化?若改变,请说明理由;若不变,求出这个比值.【分析】(1)易求OC的长,即可求得AC的长,即可解题;(2)作出图形,易证△PAM≌△BAO,可得PM=OB,AM=OA,即可解题;(3)易证∠OCD=∠OBF和∠COD=∠BOF,即可证明△CDO≌△BFO,可得DO=FO,即可解题.【解答】解:(1)∵OC=5AO,AO=2,∴OC=10,∴AC=OC﹣OA=8,=AC•OB=×8×10=40;∴S△ABC(2)作出图形,在△PAM和△BAO中,,∴△PAM≌△BAO(AAS),∴PM=OB=10,AM=OA=2,∴点P坐标为(4,10);(3)如图,∵∠OCD+∠OGE=90°,∠OFE+∠OBF=90°,∴∠OCD=∠OBF,∵∠FOG+∠DOG=90°,∠DOG+∠BOD=90°,∴∠BOD=∠FOG,∵∠BOC=∠BOG=90°,∴∠BOD+90°=∠FOG+90°,即∠COD=∠BOF,在△CDO和△BFO中,,∴△CDO≌△BFO(ASA),∴DO=FO,∴=1.28.(12分)如图.把长方形纸片ABCD沿EF折叠后,使得点D与点B重合,点C 落在点C′的位置.(1)若∠1:∠3=3:4,求∠3的度数;(2)若AB=4.8,AD=6.4.①以点B 为坐标原点,BC 边所在的直线为x 轴,过点B 的BC 的垂线为y 轴,建立如图所示的直角坐标系,求E 点的坐标.②动点P 自B 点出发以每秒1个单位的速度沿B ﹣E ﹣F 的路线运动至F 结束,请直接写出当时间t 等于多少时,点P 到△BEF 的两边的距离相等?【分析】(1)可以假设∠1=3x ,∠3=4x ,由∠3+∠FEB+∠2=180°,∠2=∠FEB=3x ,列出方程即可解决问题.(2)①设AE=a ,则EB=ED=6.4﹣x ,在Rt △AEB 中,由AB 2+AE 2=EO 2,可得4.82+x 2=(6.4﹣x )2,解方程即可.②作EH ⊥OC 于H ,则四边形AOHE 是矩形,EH=OA=4.8,先求出EO 、OF ,分两种情形①当点P 在OE 上时,作P 1M ⊥EF 于M ,P 1N ⊥OF 于N , 根据===,由此即可求出OP .②当点P 在EF 上时,由OE=OF ,可知EP 2=FP 2时,点P 到OE ,OF 两边距离相等,由此即可解决问题.【解答】解:(1)∵∠1:∠3=3:4,∴可以假设∠1=3x ,∠3=4x ,∵四边形ABCD 是矩形,∴AD ∥BC ,∠DAB=90°,∴∠2=∠1=3x ,∵∠3+∠FEB+∠2=180°,∠2=∠FEB=3x ,∴4x+3x+3x=180°,∴x=18°,∴∠3=4x=72°.(2)①设AE=a ,则EB=ED=6.4﹣x ,在Rt △AEB 中,∵AB 2+AE 2=EO 2,∴4.82+x 2=(6.4﹣x )2,∴x=1.4,∴点E 坐标(1.4,4.8).②作EH ⊥OC 于H ,则四边形AOHE 是矩形,EH=OA=4.8, 由①可知,EO===5,∵∠OEF=∠1,∴OE=OF=5,∴EF===6. a 、当点P 在OE 上时,作P 1M ⊥EF 于M ,P 1N ⊥OF 于N , 如果P 1M=P 1N ,则有===,∴OP 1=×5=, ∴t=s 时.b 、当点P 在EF 上时,∵OE=OF ,∴EP 2=FP 2时,点P 到OE ,OF 两边距离相等,此时t=5+3=8s .综上所述,t=s 或8s 时,点P 到△BEF 的两边的距离相等.。
江苏省扬州市八年级上学期数学月考试卷

江苏省扬州市八年级上学期数学月考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)(2016·铜仁) 如图是我国几家银行的标志,其中即是轴对称图形又是中心对称图形的有()A . 2个B . 3个C . 4个D . 5个2. (2分) (2017九下·江都期中) 下列计算正确的是()A . a3+a2=a5B . a6÷a3=a2C . (a2)3=a8D . a2·a3=a53. (2分)等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A . 60°B . 120°C . 60°或150°D . 60°或120°4. (2分)如图,△ABC中,AB=AC=13,BC=10,AD是BC边上的中线,F是AD上的动点,E是AC边上的动点,则CF+EF的最小值为().A .B . 10C . 12D . 135. (2分) (2016八上·宁阳期中) 已知等腰三角形一边是3,一边是6,则它的周长等于()A . 12B . 12或15C . 15D . 18或156. (2分) (2019八下·合浦期中) 在中,,于,平分交于,则下列结论一定成立的是()A .B .C .D .7. (2分) (2017·梁子湖模拟) 如图,正方形ABCD中,AB=4,点E是边BC的中点,点G,H分别是边CD,AB上的动点,连接GH交AE于F,且使GH⊥AE,连接AG,EH,则EH+AG的最小值是()A . 8B . 4C . 2D . 88. (2分) (2019九上·龙华期末) 如图,在边长4的正方形ABCD中,E是边BC的中点,将△CDE沿直线DE 折叠后,点C落在点F处,冉将其打开、展平,得折痕DE。
树人学校九龙湖校区2018-2019上学期八年级第一次月考数学试卷

扬州树人学校九龙湖2018~2019第一学期第一次月考八年级数学一、选择题(本题24分) 1.下面四个手机应用图标中是轴对称图形的是( )。
2.如图,已知AE=CF ,AFD=CEB ∠∠,那么添加一个条件后,仍无法判定ADF CBE ∆≅∆的是( )。
A . A=C ∠∠ B.AD=CB C.BE=DF D.AD BC3. 如图,ABC ∆中,AB=AC ,BD=CE ,BE=CF ,若0A=50∠,则DEF ∠的度数是( )。
A.075B.070C.065D. 060第2题 第3题 第4题4. 如图,AOB ∠的平分线上一点P 到OA 的距离为5,Q 是OB 上任意一点,则( )。
A. PQ≥5B.PQ >5C.PQ≤5D.PQ <55. 如图,已知AD 平分BAC ∠,AB=AC,则此图中全等三角形有( )A.2对B.3对C.4对D. 5对第5题 第6题 第7题6. 如图,DE 是AC 边的垂直平分线,AB =5cm ,BC =4cm 。
那么△BEC 的周长是( )A.6cm B .7cm C .8cm D .9cm7.三个全等三角形按如图的形式摆放,则1+2+3∠∠∠的度数是( )A. 090B.0120C.0135D.01808.已知:如图,BD 为△ABC 的角平分线,且BD=BC ,E 为BD 延长线上的一点,BE=BA ,过E 作EF ⊥AB ,F 为垂足.下列结论:①△ABD ≌△EBC ;②∠BCE+∠BCD=180°;③AD=AE=EC ;④BA+BC=2BF .其中正确的是( )A .①②③B .①③④C .①②④D .①②③④第8题二、填空题(本大题共10小题,每小题3分,共30分)9.已知等腰三角形的两边分别是2cm 、4cm ,则它的周长为 cm 。
10.在镜子里看到时钟显示的时间是,则实际时间是 。
11.若△ABC ≌△DEF ,∠A=70°,∠B=50°,点A 的对应点是D ,AB=DE ,那么∠F 的度数是 。
江苏省扬州市八年级上学期数学第一次月考试卷

江苏省扬州市八年级上学期数学第一次月考试卷姓名:________ 班级:________ 成绩:________一、选择题(每小题3分,共30分) (共10题;共30分)1. (3分) (2018八下·宁远期中) 如图,□ABCD中,对角线AC和BD交于O,若AC=8,BD=6,则AB长的取值范围是()A .B .C .D .2. (3分)如图,已知在△ABC中,AB=AC,给出下列条件,不能使BD=CE的是()A . BD和CE分别为AC和AB边上的中线B . BD和CE分别为∠ABC和∠ACB的平分线C . BD和CE分别为AC和AB边上的高D . ∠ABD=∠BCE3. (3分)下列语句中,不是命题的是()A . 若两角之和为90º,则这两个角互补B . 同角的余角相等C . 作线段的垂直平分线D . 相等的角是对顶角4. (3分)下列图形中具有不稳定性的是()A . 长方形B . 等腰三角形C . 直角三角形D . 锐角三角形5. (3分)等腰直角三角形的对称轴是()A . 顶角的平分线B . 底边上的中垂线C . 底边上的高D . 底边上的中线6. (3分)如图,AC=BC,AD=BD,下列结论不正确的是()A . CO=DOB . AO=BOC . AB⊥CDD . △ACO≌△BCO7. (3分) (2017八上·上城期中) 下列各组所列条件中,不能判断和全等的是().A . ,,B . ,,C . ,,D . ,,8. (3分)如图,直线y= x﹣4与x轴、y轴分别交于A、B两点,把△AOB以x轴为对称轴翻折得到△AOB′,再将△AOB′绕点A顺时针旋转90°,得到△AO′B″,则点B″的坐标是()A . (3,4)B . (4,4)C . (7,3)D . (7,4)9. (3分)(2015·宁波) 如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△AD E沿着过AD中点D1的直线折叠,使点A落在DE 边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2015次操作后得到的折痕D2014E2014到BC的距离记为h2015 .若h1=1,则h2015的值为()A .B .C . 1﹣D . 2﹣10. (3分)△ABC的两条高的长度分别为4和12,若第三条高也为整数,则第三条高的长度是()A . 4B . 4或5C . 5或6D . 6二、填空题(每小题4分,共24分) (共6题;共24分)11. (4分) (2019七下·封开期中) 把命题“同旁内角互补,两直线平行”改写成“如果……,那么……”的形式:________.12. (4分)(2017·常德) 命题:“如果m是整数,那么它是有理数”,则它的逆命题为:________.13. (4分)如图,小明书上的三角形被墨迹污染了一部分,他根据所学知识画出一个与此三角形全等的三角形,他画图依据的基本事实是________14. (4分)△ABC中,AB=AC,∠A+∠B=115°,则∠A=________,∠B=________。
江苏省徐州市树人初级中学2018-2019学年第一学期第一次月考初二年级数学试题

树人初级中学2019-2019学年第一学期第一次月考初二数学(考试时间100分钟,总分120分 )一、选择题: (每题3分,共30分)1、如图,下列图案中,其中是轴对称图形的有 ( )A 、1个B 、2个C 、3个D 、4个2、如图:若△ABE ≌△ACF ,且AB=5,AE=2,则EC 的长为 ( ) A :2 B :3 C :5 D :2.53.下列说法中,正确的是 ( ) A 、关于某直线对称的两个三角形是全等三角形 B 、全等三角形是关于某直线对称的C 、两个图形关于某直线对称,则这两个图形一定分别位于这条直线的两侧D 、有一条公共边的两个全等三角形关于公共边所在的直线对称4.下列条件中不能判断两个三角形全等的是 ( ) A 、有两边和它们的夹角对应相等. B 、有两边和其中一边的对角对应相等. C 、有两角和它们的夹边对应相等. D 、有两角和其中一角的对边对应相等. 5.在ΔABC 和ΔFED 中,∠A=∠F ,∠B=∠E ,要使这两三角形全等,还需要的条件是 ( )A 、AB=DEB 、BC=EFC 、AB=FED 、∠C=∠D 6.如图,已知AD 平分∠BAC ,AB=AC ,则此图中全等三角形有 ( ) A 、 2对 B 、3 对 C 、4对 D 、5对7.用直尺和圆规画一个角等于已知角,是运用了“全等三角形的对应角相等”这一性质,其运用全等的方法是 ( ) A 、SAS B 、ASA C 、AASD 、SSS第6题 第 7题 第8题 8.AD 是ABC △的中线, DE DF .下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE .其中正确的有 ( )FEDABCADCBEF(第2题)FECBAA 、1个B 、2个C 、3个D 、4个9.下列说法正确的是 ( ) A 、两边和一角对应相等的两三角形全等 B 、两边对应相等的两个三角形全等C 、一锐角和一边对应相等的两个直角三角形全等D 、所有的等边三角形都全等 10. △ABC 中,AB=AC=12厘米,∠B=∠C ,BC=8厘米,点D 为AB 的中点.如果点P 在线段BC 上以2厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.若点Q 的运动速度为v 厘米/秒,则当△BPD 与△CQP 全等时,v 的值为( ) A 、2 B 、3 C 、2或3 D 、1或5 二、填空题:(每空3分,共21分)11. 如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称.12. 如图,已知△ABC 的两条高AD 、BE 交于F ,AE =BE ,若要运用“HL ”说明△AEF ≌△BEC ,还需添加条件: .13. 如图,AB ∥CD ,AD ∥BC ,OE =OF ,图中全等三角形共有_________对.第11题 第12题 第13题 第14题14. 如图,方格纸中△ABC 的三个顶点分别在小正方形的顶点(格点)上,这样的三角形叫格点三角形,图中与△ABC 全等的格点三角形共有__________个(不含△ABC). 15、如图,△ABC 中,∠C =90°,AD 平分∠BAC ,AB =5,CD =2,则△ABD 的面积是______;第16题16.如图,一个直角三角形ABC ,∠C=90°,AC=12,BC=6,一条线段PQ=AB ,P 、Q 两点分别在AC 和过点A 且垂直于AC 的射线AX 上运动,问P 点运动到 位置时,才能使ΔABC ≌ΔQPA.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
扬州树人学校2018-2019年度第一学期阶段练习
八年级数学2018.9 一、选择题(24分)
2.
3.
4.
5.
6.
8
二、填空题(30分).
10.在镜子中看到时钟显示的时间是,实际时间是.
11.
12.如图,A、B两点分别位于一个池塘的两端,点C是AD的中点,也是BE的中点,若DE
13.在几何图形:等边三角形、正方形、正六边形和圆中,对称轴条数最多的是
14.如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,
则△BCE的周长是_____.
15.
16.如图,△AMN的周长为18,∠ABC,∠ACB的平分线相交于点O,过O点的直线MN∥BC,分别交AB,AC于点M,N,则AB+AC= .
17.
18.
三、解答题(96分)
19.
21(本题8分)已知一个等腰三角形的两个内角分别为(2x−2)∘和(3x−5)∘,求这个等腰三角形各内角的度数。
22(本题8分)已知△ABC中∠BAC=140∘,AB、AC的垂直平分线分别交BC于E. F. 求∠EAF 的度数。
23(本题10分)如图,在四边形ABCD中,E是AB的中点,,.
(1)求证:;
(2)当AB=6时,求CD的长.
24(本题10分)如图:在长度为1个单位的小正方形组成的网格中,点A、B、C在小正方形的顶点上.
(1)在图中画出与△ABC关于直线l成轴对称的△AB′C′;
(2)△ABC的面积为__________;
(3)以AC为边与△ABC全等的三角形,则可作出个三角形与△ABC全等
(4)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为__________个单位长度.
(在图形中标出点P)
25(本题10分)如图,在等腰三角形ABC中,AB=AC,AD是BC边上的中线,∠ABC的
平分线BG,交AD于点E,EF⊥AB,垂足为F.
①若∠BAD=20∘,则∠C= ∘.
②求证:EF=ED.
、
26(本题10分)如图:AE⊥AB,AF⊥AC,AE=AB,AF=AC,
(1)图中EC、BF有怎样的数量和位置关系?试证明你的结论。
(2)连接AM,求证:MA平分∠EMF.
27(本题12分)如图,在△ABC中,AB=AC,点D,E,F分别在AB,BC,AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40∘时,求∠DEF的度数;
(3)△DEF可能是等腰直角三角形吗?为什么?
28(本题12分)
如图(1),已知:在△ABC中,∠BAC=,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为点D、E。
证明:DE=BD+CE。
如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、 E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角。
请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由。
拓展与应用:如图(3),D、E是D、A、 E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状。