第二章 几何组成分析

合集下载

结构力学第2章平面几何组成分析

结构力学第2章平面几何组成分析

几何组成作业题
2-3, 2-5 2-7, 2-8 2-10, 2-12 2-16, 2-21 交作业时间:周 3
§2. 几何组成分析
补充作业:(不做) 2-1 (b)试计算图示体系的计算自由度
解:
或:
W 8 3 11 2 3 1 W 1 3 5 2 2 2 10 1
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片.
例4: 对图示体系作几何组成分析
解: 该体系为瞬变体系. 方法3: 将只有两个铰与其它 部分相连的刚片看成链杆. 书上例题2-1、2-3同。
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆.
计算自由度大于零一定可变; 若等于零则一定不变吗? 五. 计算自由度 六. 多余约束 必要约束 计算自由度小于零一定不变吗? 计算自由度小于零一定有多余约束
§2.1 基本概念
§2-1 基本概念 一. 几何不变体系 几何可变体系 二. 刚片 三. 自由度 四. 约束(联系) 链杆 单铰 复铰 虚铰 实铰 五. 计算自由度 六. 多余约束 必要约束
练习: 对图示体系作几何组成分析
方法1: 若基础与其它部分三杆相连,去掉基础只分 析其它部分 方法2: 利用规则将小刚片变成大刚片. 方法3: 将只有两个铰与其它部分相连的刚片看成链杆. 方法4: 去掉二元体. 方法5: 从基础部分(几何不变部分)依次添加.
练习: 对图示体系作几何组成分析
无多余约束的几何不变体系。
三杆不平行不变 平行且等长常变 平行不等长瞬变
§1. 几何组成分析

几何组成分析

几何组成分析
3
1 2
3
A
A
1
B
2
C
3
1 2 3 1 2 3
1 2 3 1 2 3
几何常变体系
几何瞬变体系
几何瞬变体系
2.基本原则二: 三刚片组成原则 三刚片由三个不共线的铰两两相连,组成无多余约束几 何不变体系。
1.基本原则一: 二刚片组成原则
二刚片由三个不平行、不交于一点的链杆相连,组成无 多余约束几何不变体系。
虚铰
无多余约束几何不变体系
无多余约束几何不变体系
两个链杆相当于一个铰,故二刚片组成原则可改写为: 二刚片由不共线的一个铰和一个链杆相连,组成无多余约 束几何不变体系。
几何常变体系
1 2
几何瞬变体系
4.有多余约束几何不变体系: 减少一个或多个约束(链杆)仍为几 何不变的体系。
无多余约束几何不变体系
有多余约束几何不变体系
无多余约束几何不变体系 二、约束
有多余约束几何不变体系

一个链杆为一个约束 一个铰链相当于两个链杆,为两个约束
虚铰 交于无穷远

固定端相当于三个链杆,为三个约束
二、无多余约束几何不变体系的组成原则
无多余约束几 何不变体系
无多余约束几 何不变体系
几何瞬变体系
3.二元片理论 一个铰连接两个不共线的链杆称为二元片。 在一个体系上增加或减少一个二元片,不改 变原体系的几何组成性质。 二元片

无多余约束几何不变体系

有一个多余约束几何不变体系
三、刚片的划分 1. 铰接三链杆的三角形为无多余约束几何不变体系,可作为一 个刚片。在此基础上增加若干个二元片,仍为无多余约束几何不 变体系,可视作该刚片的扩大。

第2章 平面体系的几何组成分析

第2章  平面体系的几何组成分析

瞬变体系
去支座后再分析

是什么 体系?
O是虚 O不是
铰吗?
O
无多不变
II
方法1: 若基础与系统三杆相连,去掉基础只分析系统本身。 方法2: 利用规则将小刚片变成大刚片.扩大刚片范围,减少刚片数。 方法3: 将只有两个铰与其它部分相连的刚片看成链杆。 方法4: 去掉暴露在最外边的二元体.使结构简化。 例:对图示体系作几何组成分析
刚片Ⅲ
2.几何组成分析的目的
1)如何设计一个体系为几何不变体系,从而能承受荷载。 2)判断一个已知体系是否为几何不变体系,从而确定能否作 为结构。 3)区分静定与超静定结构,以便选择计算方法。
3.几何组成分析时的注意点
1)一个结构的几何属性只于结构的几何组成有关,而与所 受荷载无关。 2)由于不考虑材料的自身应变,因此可把一根梁、一根 杆、或体系中已经确定为几何不变的某个部分看作一个刚片。
5)定向支座(平行支链杆):可以减少二个自由度。
3.多余约束
材力中多余约束的概念是从平衡方程的个数和未知力的个数的 比较找出多余约束的。从体系自由度的角度同样可以引出多余约束 的概念 。
在一个体系中增加或减少一个约束,体系的自由度并不因 此而减少或增加,则该约束称为多余约束。
4.体系的计算自由度
方法1: 若基础与系统三杆相连,去掉基础只分析系统本身。
方法2: 利用规则3将小刚片变成大刚片.扩大刚片范围,减少刚片数。
例:对图示体系作几何组成分析
解:该体系为瞬变体系.
方法3: 将只有两个铰与其它部分相连的刚片看成链杆。
方法1: 若基础与系统三杆相连,去掉基础只分析系统本身。
方法2: 利用规则3将小刚片变成大刚片.扩大刚片范围,减少刚片数。

结构力学第二章 平面体系的几何组成分析

结构力学第二章 平面体系的几何组成分析

不完全铰节点 1个单铰
13/73
2-1 几何构造分析的几个概念
四、约束 两个互不相连的刚片,若用刚结点连接, 则两者被连为一体成为一个刚片,自由 度由6减少为3。 一个单刚结点相当于3个约束。 单刚结点
三个互不相连的刚片,若用刚结点连接, 自由度由9减少为3。
由此类推:
复刚节点
连接 n 个刚片的复刚结点,它相当于n-1 个单刚结点或3(n- 1)个约束。
A A
1 B
2 C B
1
3
2 C
B 1
A 2
C
几何可变 几何不变 有多余约束
几何不变 无多余约束
规律1 一个刚片与一个点用两根链杆相连,且三个铰不在同一 直线上,则组成几何不变的整体,并且没有多余约束。
23/73
2-2 平面几何不变体系的组成规律
二、两个刚片之间的联结方式
A 2 B I 3 C
A II B I 3 C
16/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I
C
A
II
1 B
2 C
两根链杆彼此共线 1、从微小运动的角度看,这是一个可变体系。 左图两圆弧相切,A点可作微小运动; 右图两圆弧相交,A点被完全固定。
17/73
2-1 几何构造分析的几个概念
六、瞬变体系
B 1
I II A
2
I A 1 B C 2 D
在体系运动的过程中,瞬铰的位臵随之变 化。 用瞬铰替换对应的两个链杆约束,这种约 束的等效变换只适用于瞬时微小运动。
20/73
2-1 几何构造分析的几个概念
八、无穷远处的瞬铰

第2章 平面体系的几何组成分析

第2章  平面体系的几何组成分析

[例] 试对图示体系进行几何组成分析
因三铰在一直线上, 故该体系为瞬变体系。
例 试分析图所示体系的几何组成。
解 (1) 用公式 (2-1) 计算体 系的自由度 m = 3, h = 2, r = 5 W = 3m-2h-r = 3 × 3-2 × 2-5 = 0
(2)几何组成分析 先把杆 AB 、 BC 及地基分别看作是刚片 I ,Ⅱ,Ⅲ, 相互用实铰 A(1 , 3) 、实铰 B(1 , 2) 及虚铰 (2 , 3) 相连, (虚铰是在两平行支承链杆的交点处,即无限远处。) 三铰不在 — 直线上,此部分是几何不变的。然后再加上 一个二元体,亦是几何不变。 因此,整个体系是几何不变的。
2.平面链杆系的自由度
仅在杆的两端用铰连接的杆件称为链杆,它是刚 片的特殊形式,桁架是由这类杆件组成。 链杆系的自由度也可以用式W = 3m – 2h – r ,但 在链杆系中复铰较多,计算有所不便,因此另外从 节点出发推导两个方便计算的公式。
在链杆系中,假如各节点都是互不相连地独 立存在,则每一节点在平面内的自由度是2。
例2-4 计算图所示体系的自由度。
解: 用式(2-3)计算 W=2j–b–r 因为 j=9,b=15,r=3 所以 W= 2×9 –15 – 3 = 0 即体系没有自由度。
例2-5 计算图所示体系的自由度。
解:图中 A , B , C 应算作 节点。其余与地基相连的 铰不算入节点数 j 内 (因为两 斜杆视作支承链杆)。 因为 j = 3,b = 2,r = 5 所以 W = 2 j-b-r = 2× 3-2-5=-1 即体系不但没有自由度, 且多一个约束。
解: 该体系不与基础相连,r=0,故 用式(2-2) V = 3m – 2h – 3 因为 m=7,h=7+2=9

第2章-结构的几何组成分析

第2章-结构的几何组成分析

平面刚体——刚片
B
x
n=3
A
y
注:基础为不动刚片,其自由度为零。
2021/4/614:46
: 元朱 、占 李元 静、李静朱占元、李静朱上占一张 下一张 主 页 1退0 出
2.2.2 约束(或联系)
1、定义:
物体的自由度,将会因加入限制运动的装置而 减少,凡减少自由度的装置称为约束(联系)
2、常见约束装置对自由度的影响:
瞬变体系和常变体系
瞬变体系
常变体系
2021/4/614:46
思考题:瞬变体系能 否作为结构?为什么?
: 元朱 、占 李元 静、李静朱占元、李静朱上占一张 下一张 主 页 退4 出
2、几何不变体系
在任意荷载作用下,几何形状及位置均 保持不变的体系。(不考虑材料的变形)
2021/4/614:46
: 元朱 、占 李元 静、李静朱占元、李静朱上占一张 下一张 主 页 退5 出
W=3m-(2n+r) = 3*4-(2*4+6) =-2 <0
2021/4/614:46
: 元朱 、占 李元 静、李静朱占元、李静朱上占一张 下一张 主 页 1退6 出
小结
W>0, 缺少足够联系,体系几何可变。 W=0, 具备成为几何不变体系所要求
的最少联系数目。 W<0, 体系具有多余联系。
W> 0 W≤ 0
2021/4/614:46
: 元朱 、占 李元 静、李静朱占元、李静朱上占一张 下一张 主 页 2退1 出
2.3.2 三刚片规则
规则: 三个刚片用不在同一直线上的三个单铰两两相 连,组成的体系是几何不变的,且无多余约束。
应用条件:不在同一直线上的三个铰两两相连,若在 同一直线上则为瞬变体系。

第2章几何组成分析

第2章几何组成分析

6、刚片的等效代换:在不改变刚片与周围的连结方式 的前提下,可以改变它的大小、形状及内部组成。即用一个 等效(与外部连结等效)刚片代替它。
有一个多余约束的几何不变体系
Ⅰ Ⅱ Ⅰ



两个刚片用三根平行不等长的链杆相连,几何瞬变体系
体系是无多余约束的几何不变体系
三、进一步举例
例题1
结论:
无多余约束的几何不变体系
A
A
相交在∞点
6 多余约束与必要约束 不减少体系自由度的约束称为多余约束。反之为必要约束。
▽注意:多余约束不改变体系的自由度,但将影响结构的受力与Байду номын сангаас形。
几何组成分析
二、 几何不变体系的基本组成规则
1、两个刚片之间的联结(规则一): 两个刚片上用一个铰和一根不通过此铰的一根链杆相连结,形成无 多余约束的几何不变体系(或:两个刚片上用三根不交于一点、也不 全平行的三根链杆相连结 ,形成无多余约束的几何不变体系)。
几何组成分析
2.4 几何组成分析举例
一、思路 1可先考察体系的计算自由度,若W0,则体系为几 何可变,不必进行几何组成分析;若W<0,则应进行几何 组成分析(辅助)。 2若体系可视为两个或三个刚片时,则直接应用三规则 分析。 3若体系不能直接视为两个或三个刚片时,可先把其中 已分析出的几何不变部分视为一个刚片或撤去“二元体”, 使原体系简化。
一、几何可变体系 一般无静力解答。
实饺
虚饺
三饺共线 (瞬变)
几何组成分析 3、一个刚片与一个结点之间的联结(规则三): 在刚片上用两根不在一条直线上的链杆联结出一个结点,形成 无多余约束的几何不变体系(或:在一个刚片上增加二元体)。

结构力学第2章平面体系的几何组成分析

结构力学第2章平面体系的几何组成分析

➢ 在任意体系上依次增加,或依 次拆除二元体,原体系的自由度 数不变。
(a)
(b)
3、基本组成规则中约束方式 的影响
利用这两个规则的要点是规则中 的三个要素:
❖ 刚片及刚片数 ❖ 约束、约束数及约束的方式 ❖ 结论
两个刚片用三个链杆相连 的情况:
❖ 当三个链杆平行并且长度相等时, 是几何可变体系
两平行链杆构成一交点在无穷远的虚铰其作用相当于无穷远处的一个实铰的作用一个铰接三角形是无多余约束的几何不变体系或是刚片或是内部几何不变体系基本三角形规则基本三角形规则可用以下12两个简单组成规则等效
结构力学第2章平面体系的几何 组成分析
第二章 平面体系的几何组成分析
§2.1 概述
本章研究平面杆系结构的基本 组成规律和合理形式。
(b)
(c)
虚铰的典型运动特征为:瞬心
从瞬时运动角度来看,刚片1与刚 片2的相对运动,相当于绕两链杆 的交点处的一个实铰的转动。
(a)
(b)
➢ 两平行链杆构成一交点在 无穷远的虚铰,其作用相当于
无穷远处的一个实铰的作用 。
§2.3 平面几何不变体系的基 本组成规律
1.基本组成规律的产生 (a)
例2-4-6(多余约束)
分析图: (a)
说明:
对于有多余约束的几何不变体系, 可以用去掉约束的方法,使体系成 为无多余约束的几何不变体系,所 去掉的约束数就是原体系所具有的
多余约束数,这种方法叫拆除约束 法。
例2-4-7
分析图:
说明:
把四周用连续杆、刚结点及固定端 构成的体系叫封闭框。一个封闭框 是有3个多余约束的几何不变体系。
❖ 当三个链杆平行但长度不全相 等时,是几何瞬变体系
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 几何组成分析
1. 图示铰接体系是超静定结构。

( )
2. 图中多余联系数目为4。

( )
3. 图示体系是超静定结构。

( )
4. 图示体系在给定荷载情况下可处于平衡,因此可作为结构承担荷载。

( )
5. 图示体系是超静定结构。

( )
6. 图中体系多余联系数目为。

( )
7. 图中体系多余联系数目为。

( )
8. 铰A相当于几个简单铰。

( )
9. 图示多余联系数目为 ( )
10. 图示多余联系数目为 ( )
11. 两刚片用一杆一铰彼此相连,所组成的体系是 ( )
A.有多余联系几何不变体系
B.可变性无法确定
C.无多余联系几何不变体系
D.瞬变体系
12. 图示体系是 ( )
A.常变的
B.无多余联系几何不变的
C.瞬变的
D.有多余联系几何不变的
13. 静定结构是 ( )
A.常变体系
B.有多余联系几何不变体系
C.体系
D.余联系几何不变
14. 三刚片用三个不共线的铰两两相连,则所组成的体系是 ( )
A. 瞬变
B. 常变
C.余联系几何不变
D.变也可能瞬变
15. 图示体系是 ( )
A. 常变的
B. 无多余约束几何不变的
C. 瞬变的
D. 有多余约束几何不变的
16. 图示铰接体系是 ( )
A. 常变的
B. 无多余约束几何不变的
C. 瞬变的
D. 有多余约束几何不变的
17. 图示铰接体系是 ( )
A. 常变的
B. 无多余约束几何不变的
C. 瞬变的
D. 有多余约束几何不变的
18. 图示体系是 ( )
A. 常变的
B. 无多余约束几何不变的
C. 瞬变的
D. 有多余约束几何不变的
19. 图示体系是 : ( )
A. 无多余约束几何不变的体系
B. 常变体系
C. 有多余约束几何不变的体系
D. 瞬变体系
20. 图示体系是 ( )
A. 无多余约束几何不变的体系
B. 常变体系
C. 有多余约束几何不变的体系
D. 瞬变体系。

相关文档
最新文档