条件概率条件分布与条件数学期望
3.6 条件分布与条件期望--概率论课件

-r
r x
2 2
r 2 x2
x r
r x r x
2
2
2
2
0,
1 dy, 2 r
r xr
其他
r xr 其他
2 r 2 x 2 , 2 r 0,
同理,
fY ( y ) f ( x, y )dx
2 r y , r y r 2 r 0, 其他
1 2 2 F | ( x | y ) 为 N a1 ( y a2 ), 1 (1 ) 分布 2
2 2 2 F| ( y | x) 为 N a2 ( x a1 ), 2 (1 ) 分布 1
注意
FX Y ( x y ), f X Y ( x y ) 仅是 x 的函数,
y是常数, 对每一 fY (y) >0 的 y 处, 只要
符合定义的条件, 都能定义相应的函数. FY X ( y x), fY X ( y x) 相仿论述. 类似于乘法公式:
f ( x, y ) f X ( x ) f Y X ( y x ) fY ( y ) f X Y ( x y )
( x a1 )( y a2 )
1 2
( y a2 ) 2 2 2
1 e 2 2
( y a2 )2 2 2 2
1 ( x a1 )2 ( x a1 )( x a2 ) 2 ( y a2 )2 exp 2 2 2 2 2 1 2 2 21 1 2(1 ) 1 1
2 x a1 1 1 y a2 exp 2 2 2(1 ) 1 2 2 1 1
§3.5---条件分布与条件期望

FX|Y(x | y) P(X x |Y y)
lim P(X x | y Y y y) y0
lim P(X x, y Y y y) y0 P( y Y y y)
lim F (x, y y) F (x, y) 分子、分母同除 y y0 FY ( y y) FY ( y)
Pij PJ
i=1,2,.....
Pj|i
Pij Pi
j=1,2,........
例3.5.5.设(X, Y)的联合密度为:
P( x,
y)
24(1
0
x)
y
0 x 1, 0 y x 其它
求条件密度函数 PX|Y (x | y)和 PY|X ( y | x)
解:PX (x)
P(x, y)dy
5 4 20
PX 0,Y 1 P(X 0)P(Y 1| X 0) 2 3 6
5 4 20
PX 1,Y 0 P(Y 1)P(Y 0 | X 1)
32 6 5 4 20
PX 1,Y 1 P(X 1)P(Y 1| X 1)
32 6 5 4 20
XY 0 1
0
2
6
20 20
1
X|Y 3 1
2
P
4/7 3/7
例3.5.3 设随机变量X,Y独立,X P(1),Y P(2)
在X Y n 条件下,求X 的条件分布?
解:由已知条件和泊松分布的可加性得:XY P(1 2)
所以 P(X k |XY n)
P(X k, XY P(XY n)
n)
P(X k ,Y n k) P(XY n)
6
6
20 20
第三章 条件概率与条件期望

2012/3/2
Copyright©Pei Zhang ,2012
6
例3.2
• 有n个零件,零件i在雨天运转的概率为pi, 在非雨天运转的概率为qi,i=1,2,……,n。 明天下雨的概率为。计算在明天下雨时, 运转的零件数的条件期望。
2012/3/2
Copyright©Pei Zhang ,20Zhang ,2012
12
例3.6(几何分布的均值)
• 连续抛掷一枚正面出现的概率为p的硬 币直至出现正面为止,问需要抛掷的 次数的期望是多少?
2012/3/2
Copyright©Pei Zhang ,2012
13
例3.7
• 某矿工身陷在有三个门的矿井之中,经 第1个门的通道行进2小时后,他将到达 安全地。经第二个门的通道前进3小时 后,他将回到原地。经过第三个门的通 道前进5小时后,他还是回到原地。假 定这个矿工每次都等可能地选取任意一 个门,问直到他到达安全地所需时间的 期望是多少?
• 连续地做每次成功率为p的独立试验。N 是首次成功时的试验次数,求Var(N)
2012/3/2
Copyright©Pei Zhang ,2012
16
三、通过取条件期望计算概率
• E是一个事件,定义示性随机变量X为:
1,若E发生 X 0,若E不发生 由X的定义推出: E[X]=P(E) E[X|Y=y]=P(E|Y=y)
7
第二节
连续随机变量的条件概率与条件期望
• X和Y是连续随机变量,联合密度函数为 f(x,y),那么在Y=y时X的条件概率密度函数 定义为:
f ( x, y ) f X |Y ( x | y) fY ( y )
• 给定Y=y时X的条件期望定义为:
条件概率,条件分布,条件期望

FX Y ( x y )
x
y
f X Y ( x y ) d x [ f ( x , y ) fY ( y )]d x .
y
x
FY X ( y x )
说明
fY X ( y x ) d y [ f ( x , y ) f X ( x )]d y .
定义
设二维随机变量( X ,Y ) 的概率密度为
f ( x , y ), ( X ,Y ) 关于 Y 的边缘概率密度为 fY ( y ).若 f ( x, y) 对于固定的 y , fY ( y ) 0, 则称 为在Y y fY ( y ) 的条件下 X 的条件概率密度 , 记为 f ( x, y) f X Y ( x y) . fY ( y )
为在事件A发生的条件下事件B发生的条件概率.
二
条件分布
一、离散型随机变量的条件分布
问题
考虑一大群人, 从其中随机挑选一个人 , 分别 用 X 和 Y 记此人的体重和身高 , 则X 和 Y 都是随 机变量, 他们都有自己的分布 .
现在如果限制Y 取值从1.5 m 到1.6 m , 在这个限制下求X 的 分布 .
一 条件概率 (Conditional Probability) 条件概率是指在事件A发生的条 件下,另一事件B发生的概率,记用 P(B|A).
引例 从所有有两个孩子的家庭随机抽取一个家庭记录男 孩女孩的情况。
则试验所有可能的结果为(男孩记为“b”,女孩记为“g”) (b,b) (b,g) (g,b) (g,g) 设A={ 至少一个男孩}, B ={ 至少一个女孩}, 考虑在事件A发生的条件下,事件B发生的概率。
定义 设 ( X ,Y ) 是二维离散型随机变量 , 对于固定
条件分布与条件期望

这表明,二元正态分布的条件分布仍为正态分布:
1 2 2 N r y , 1 r 2 1 1 2
.
31
二.条件数学期望
32
1.条件数学期望的概念
33
条件分布的数学期望称为条件数学期望.
34
对于离散型随机变量,当 Y y j 时,随机变量 X 的条 件分布律为
1 2 PX Y n
n!
n
e
1 2
.
所以,当 X Y n 时, X 的取值为 0, 1,
2, , n .
13
PX k X Y n
PX k , X Y n PX k , Y n k PX Y n PX Y n
PX k PY n k k! n k ! PX Y n 1 2 n e 1 2 n!
n! 1 k!n k ! 1 2
k
1k
e 1
2 n k
e 2
2 2 1
17
所以,
PY k PX nP Y k X n
n 0
PX nP Y k X n PX nP Y k X n
n 0 nk
k 1
n 0
k 1
n
n!
e 0
nk
n
n!
e C p 1 p
f X x 0 .
26
例
设二维随机变量 X , Y 服从平面区域
x, D
y:
x y 1
条件分布律条件分布函数条件概率密度ppt课件

第三章 随机变量及其分布
一、随机变量的独立性
§4随机变量的独立性
设 (X, Y )是二维随机变量,其联合分布函数为 F (x, y) ,又随机变量X 的分布函数为FX (x), 随机变量Y 的分布函数为FY ( y).
如果对于任意的x, y,有
F (x, y) FX (x) FY (y)
则称 X, Y 是相互独立的随机变量.
第三章 随机变量及其分布
一 、离散型随机变量的条件分布律
§3条件分布
设 ( X ,Y ) 是二维离散型随机变量,其分布律为 P{ X= xi ,Y= yj }= pi j , i , j=1,2,...
(X, Y ) 关于 X 和关于 Y 的边缘分布律分别为:
P{ X xi } pi• pi j , i 1,2, j 1
1 2
- 2)
(y
- 2 )2
2 2
目 录 前一页 后一页 退 出
第三章 随机变量及其分布
又随机变量Y 的边缘密度函数为
§3条件分布
fY (y)
1
- ( y-2 )2
e 2
2 2
2 2
(- < y < )
因此,对任意的 y,fY ( y) 0,
( ) ( ) f X Y
xy
f (x, y) fY (y)
所以,当0 < y < 1时, 0,
其它.
fY (y) f (x,
-
y)dx
y 1 dx - ln(1 -
0 1- x
y
y).
所以,随机变量 Y 的密度函数为
1
fY
(y)
ln(1 -
0,
y),
计量经济学中的“条件”与“无条件”

计量经济学中的“条件”与“⽆条件”初学者难免困惑于计量经济学中诸多的 “条件” 与 “⽆条件”,⽐如条件概率与⽆条件概率,条件分布与⽆条件分布,条件期望与⽆条件期望,条件⽅差与⽆条件⽅差,条件中位数与⽆条件中位数,条件分位数与⽆条件分位数。
这些 “条件” 与 “⽆条件” 的概念,究竟有什么区别与联系,在实践中⼜该如何应⽤呢?本⽂将为你逐⼀辨析。
条件概率 vs ⽆条件概率什么是概率?简单说,概率(probability)就是在⼤量重复试验下,随机事件发⽣的频率趋向的某个稳定值。
⽐如,记随机事件 “下⾬” 为,则其发⽣的概率⼀般记为。
“⽆条件概率”(unconditional probability)其实就是我们⼀般所说的概率,只是为了与 “条件概率” 相区别,有时才强调它是 “⽆条件的”。
事实上,计量经济学更关⼼条件概率。
⽐如,记事件 “出太阳” 为,则在出太阳的前提条件下降⾬的 “条件概率” (conditional probability) 可定义为其中,为与同时发⽣的概率,参见下⾯的维恩图(Venn diagram)。
在此图中,矩形的⽅框表⽰整个世界(包括所有可能的随机试验结果,即样本空间),不妨将其⾯积标准化为 1。
圆形的⾯积即为事件发⽣的(⽆条件)概率,⽽圆形的⾯积则为事件发⽣的(⽆条件)概率。
考虑在给定发⽣情况下,发⽣的条件概率。
此时,世界所处的状态只能是,⽽之外的状态均为不可能。
进⼀步,在发⽣的情况下,如果也发⽣,则表明与同时发⽣,故为集合与集合的交集,即。
因此,将此交集的概率除以 “全集” 的发⽣概率,即为在给定发⽣情况下,发⽣的条件概率。
在实践中,究竟应该使⽤(⽆条件)概率还是条件概率呢?看⼀个简单例⼦就能明⽩。
⽐如,假设股市崩盘的(⽆条件)概率为万分之⼀;⽽在经济陷⼊严重萧条的情况下,股市崩盘的条件概率为百分之⼀。
此时,如果已知经济已陷⼊严重萧条,你会使⽤哪种概率来预测股市崩盘的可能性呢?如果仍使⽤万分之⼀的⽆条件概率,就显得过于僵化,因为既然经济已经严重萧条,⾃然应将此条件考虑在内,⽽使⽤百分之⼀的条件概率。
第六章条件概率与条件期望

第六章 条件概率与条件期望6.1 定义和性质设为概率空间,),,(P F ΩF ∈B 且,记0)(>B P ())()()(B P AB P B A P A P B ==),P ,,则易证明为概率空间。
考虑F ∈∀A ),,(B P F Ω,(F Ω上的随机变量ξ在此概率空间上的积分,若存在则称它为∫ΩξB dP ξ在给定事件B 之下的条件期望,记为(B E ξ),即()B ∫Ω=B dP ξE ξ。
命题1:若ξE 存在,则(B E ξ)存在且()∫=BdP B P B E ξξ)(1。
由此可见,ξ在给定事件B 之下的条件期望的意义是ξ在B 上的“平均值”。
此外给定事件在给定事件A B 的条件概率)B ()(I E B A P A =0)(>n B P 可看成条件期望的特殊情形。
设{}为的一个分割且,令F ⊂n B Ω)2,1,L =(=n n B σA ,则。
若F A ⊂ξE 存在,()∑为nE B n I n B ξ),A (Ω上的可测函数,称其为给定σ-代数A 之下关于P 的条件期望,记作()A ξE ,即()()∑=E ξA nB n I ξn B E 。
命题2:A ∈B ∀且,0)(>B P ()()∫=BdP E B P B E A ξξ)(1。
证明:A ∈B ∀,{L ,2,1⊂}∃K 使得∑∈=K i i B B ,()()()()∑∫∫∑∑∫∑∫∈∈=====K i BB Ki i i nn n BnB nBdPdP B P B E B B P B E dP IB E dP E inξξξξξξ)()(I A由此可见,若称满足下式的(),A Ω上的可测函数()A ξE 为ξ在给定σ-代数A 的条件期望:()∫∫=BBdP dP E ξξA ,A ∈∀B则由于不定积分,∫=BdP B v ξ)(A ∈∀B 为),(A Ω上的符号测度且v ,由Radon-Nikodym 定理存在唯一的(P <<P s a ..),A Ω上的可测函数满足上式,即()dPdvE =A ξ(Ω,故由命题2,两者定义一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解 设B表示取得一等品,A表示取得合格品,则
(1)因为100 件产品中有 70 件一等品,P(B) 70 0.7
(2)方法1:因为95
件合格品中有
70
100 件一等品,所以
Q B AAB B
P(B A) 70 0.7368
方法2:
95
P(B
A)
P( AB) P( A)
70 95
100 100
P B A P(AB) n(AB) P(A) n(A)
例1:在5道题中有3道理科题和2道文科题,如果 不放回地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
解:设第1次抽到理科题为事件A,第2次抽到理科题 为事件B,则第1次和第2次都抽到理科题为事件AB.
解:设第1次抽到理科题为事件A,第2次抽到理科题 为事件B,则第1次和第2次都抽到理科题为事件AB.
(2)Q n( AB) A32 6
P( AB) n( AB) 6 3 n() 道文科题,如果 不放回地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
在原样本空间 的概率
称为在事件A发生的条件下,事件B发生的条件概率。 一般把P(B|A)读作A发生的条件下B的概率。 注意: (1)条件概率的取值在0和1之间,即0≤P(B|A) ≤1 (2)如果B和C是互斥事件,则
P(B∪C |A)= P(B|A)+ P(C|A)
反思
求解条件概率的一般步骤: (1)用字母表示有关事件 (2)求P(AB),P(A)或n(AB),n(A) ( 3 )利用条件概率公式求
法三:第一次抽到理科题,则还剩下两道理科、 两道文科题,故第二次抽到理科题的概率为1/2
例2 一张储蓄卡的密码共有6位数字,每位数字
都可从0—9中任选一个。某人在银行自动取款 机上取钱时,忘记了密码的最后一位数字,求:
(1)任意按最后一位数字,不超过2次就按对 的概率;
(2)如果他记得密码的最后一位是偶数,不超 过2次就按对的概率。
解1:设A={出现的点数不超过3}={1,2,3} B={出现的点数是奇数} ={1,3,5}
只需求事件 A 发生的条件下,
事件 B 的概率即P(B|A)
51
B3
A
2
P(B | A) n( AB) 2
4,6
n( A) 3 解法一(减缩样本空间法)
例 2 考虑恰有两个小孩的家庭.
(1)若已知 某一家有一个女孩,求这家另一个是男孩 的概率;
2.2.1 条件概率
浙江省富阳市新登中学高二数学备课组 2013-3-17
复习引入:
事件概率加法公式:
若事件A与B互斥,则. P( A U B) P( A) P(B)
注: 1.事件A与B至少有一个发生的事件叫做A与B的
和事件,记为 A U B (或 A B );
2.事件A与B都发生的事件叫做A与B的积事件,
(2)若已知某家第一个是男孩,求这家有两个男孩 (相当于第二个也是男孩)的概率
(假定生男生女为等可能)
例3
设P(A|B)=P(B|A)=
(1)从5道题中不放回地依次抽取2道的事件数为
n() A52 20
根据分步乘法计数原理,n( A) A31 A41 12
P( A) n( A) 12 3 n() 20 5
例1、在5道题中有3道理科题和2道文科题,如果不放回 地依次抽取2道题,求: (1)第一次抽取到理科题的概率; (2)第一次和第二次都抽取到理科题的概率;
(1)P( A)
P( A1)
P(
A1 A2
)
1 10
9g1 10g9
1 5
(2)P(A |
B)
P( A1
|
B)
P( A1A2
|
B)
1 5
4g1 5g4
2 5
练习:设 100 件产品中有 70 件一等品,25 件二
等品,规定一、二等品为合格品.从中任取1 件,
求 (1) 取得一等品的概率;
(2) 已知取得的是合格品,求它是一等品的概率.
(3)在第一次抽到理科题的条件 下,第二次抽到理科题的概率。
法一:由(1)(2)可得,在第一次抽到理科题
的条件下,第二次抽到理科题的概率为
3
P(B
A)
P( AB) P( A)
10 3
1 2
5
法二:因为n(AB)=6,n(A)=12,所以
P(B A) n( AB) 6 1 n( A) 12 2
由古典概型可知,最后一名同学抽到中奖奖券的
概率为:P(B) n(B) 1 n() 3
一般地,我们用来 表示所有基本事件 的集合,叫做基本 事件空间(或样本 空间)
如果已经知道第一名同学没有抽到中奖 奖券,那么最后一名同学抽到中奖奖券 的概率又是多少?
“第一名同学没有抽到中奖奖券”为事件A “最后一名同学抽到中奖奖券”为事件B 第一名同学没有抽到中奖奖券的条件下,最后 一名同学抽到中奖奖券的概率记为P(B|A)
记为 A I B (或 AB );
3.若 AB 为不可能事件,则说事件A与B互斥.
三张奖券中只有一张能中奖,现分别 由3名同学无放回地抽取,问最后一 名同学抽到中奖奖券的概率是否比前
两位小?
解:记“最后一名同学中奖”为事件B Ω 为所有结果组成的全体
B
一般地,n(B)表示 事件B包含的基本 事件的个数
二、内涵理解:
为什么上述例中P(B|A) ≠ P(B)? 样本空间不一样 P(B)以试验下为条件,样本空间是
P(B|A)以A发生为条件,样本空间缩小为A
Ω
B
A
P(B |A)相当于把A看作 新的样本空间求AB发生 的概率
条件概率的定义:
一般地,设A,B为两个事件,且P(A)>0,则
P(B A) P( AB) P( A)
0.7368
B 70 95A
5
反思
求解条件概率的一般步骤: (1)用字母表示有关事件 (2)求P(AB),P(A)或n(AB),n(A) ( 3 )利用条件概率公式求
P B A P(AB) n(AB) P(A) n(A)
例题2 在某次外交谈判中,中外双方都为了自身的利益 而互不相让,这时对方有个外交官提议以抛掷一 颗骰子决定,若已知出现点数不超过3的条件下再 出现点数为奇数则按对方的决议处理,否则按中 方的决议处理,假如你在现场,你会如何抉择?