高考高中数学条件概率
人教版高中数学精讲精练选择性必修三7.1 条件概率及全概率(解析版)

7.1条件概率及全概率公式考法一条件概率【例1-1】(2023·云南)某校有7名同学获省数学竞赛一等奖,其中男生4名,女生3名.现随机选取2名学生作“我爱数学”主题演讲.假设事件A 为“选取的两名学生性别相同”,事件B 为“选取的两名学生为男生”,则()|P B A =()A .14B .34C .13D .23【答案】D【解析】由题意得,事件A 包含的样本点数()2234C C 9n A =+=,事件A 和B 包含的样本点数()24C 6n AB ==,所以()()()62|93n AB P B A n A ===.故选:D【例1-2】(2024·陕西汉中)袋中有除颜色外完全相同的6个小球,其中4个白球和2个红球,现从袋中不放回地连取两个.在第一次取得白球前提下,则第二次取得红球的概率为()A .0.25B .0.4C .0.5D .0.6【答案】B【解析】设第一次取得白球为事件A ,第二次取得红球为事件B ,所以在第一次取得红球前提下,则第二次取得白球的概率为:42()265(|)0.445()565P AB P B A P A ⨯⨯====⨯⨯.故选:B.【一隅三反】1.(2024·辽宁)小张、小王两家计划国庆节期间去辽宁游玩,他们分别从“丹东凤凰山,鞍山千山,本溪水洞,锦州笔架山,盘锦红海滩”这五个景点中随机选择一个游玩,记事件A :“两家至少有一家选择丹东风凰山”,事件B :“两家选择景点不同”.则概率()P B A =()A .23B .59C .45D .89【答案】D【解析】由题意可知:A 两家都没选择丹东凤凰山,即()44165525P A =⨯=,所以()()9125P A P A =-=,而:AB 有一家选择丹东凤凰山,另一家选别的景点,则()4255P AB ⨯=⨯,所以()()()88259925P AB P B A P A ===.故选:D2.(2024·全国·高二假期作业)现有若干大小、质地完全相同的黑球和白球,已知某袋子中装有3个白球、2个黑球,现从袋中随机依次摸出2个球,若第一次摸出的是白球,则放回袋中;若第一次摸出的是黑球,则把黑球换作白球,放回袋中.记事件A =“第一次摸球摸出黑球”,事件B =“第二次摸球摸出白球”,则()P B A =()A .625B .825C .35D .45【答案】D【解析】根据题意可知,2()5P A =第一次摸出黑球且第二次摸出白球的概率()2485525P A B ⋂=⨯=,则()8()4252()55P A B P B A P A ⋂===,故选:D.3.(2024·北京)俗话说“斜风细雨不须归”,在自然界中,下雨大多伴随着刮风.已知某地8月份刮风的概率为1331,下雨的概率为1131,既刮风又下雨的概率为731.记事件A 为“8月份某天刮风”,事件B 为“8月份某天下雨”,则()P B A =()A .711B .713C .731D .1131【答案】B【解析】根据题意可得()()()1311,,1317331P A P B P AB ===利用条件概率公式可得()()()7731131331P AB P B A P A ===.故选:B4.(2024·江西)我国的生态环境越来越好,旅游的人越来越多.现有两位游客慕名来江苏旅游,他们分别从“太湖鼋头渚、苏州拙政园、镇江金山寺、常州恐龙园、南京夫子庙、扬州瘦西湖”这6个景点中随机选择1个景点游玩.记事件A 为“两位游客中至少有一人选择太湖鼋头渚”,事件B 为“两位游客选择的景点相同”,则()P B A 等于()A .111B .211C .19D .29【答案】A【解析】由题意,知()()66551111,66366636P A P AB ⨯-⨯====⨯⨯,所以()()()111P AB P B A P A ==.故选:A .考法二条件概率性质【例2-1】(2024·湖北)已知A ,B 是一个随机试验中的两个事件,若()12P A B =,()13P B A =,则()()()P AB P AB P AB +等于()A .3B .4C .5D .6【答案】A【解析】因为()12P A B =,所以()1()2P AB P B =,即()2()P B P AB =,同理,由()13P B A =得()3()P A P AB =,因为()()()2()P B P AB P AB P AB =+=,所以()()P AB P AB =,()()()3()P A P AB P AB P AB =+=,所以()2()P AB P AB =,所以()()3()3()()P AB P AB P AB P AB P AB +==.故选:A.【例2-2】(2023上·高二课时练习)下列式子成立的是()A .()()P AB P B A =∣∣B .()01P BA <<∣C .()()()P AB P A P BA =⋅∣D .()()()P AB P B P BA =⋅∣【答案】C【解析】由条件概率公式知()()()()(),()P AB P AB P AB P B A P B P A ==∣∣,但是()P A 不一定等于()P B ,所以选项A 错误;根据条件概率的性质可知()01P B A ≤≤∣,所以选项B 错误;由条件概率公式()()()P AB P BA P A =∣可得出()()()P AB P A P BA =⋅∣,所以选项C 正确;由条件概率公式()()()P AB P AB P B =∣可得出()()()P AB P B P AB =⋅∣,所以选项D 错误.故选:C【例2-3】(2023·云南保山)(多选),A B 为随机事件,已知()0.5P A =,()0.3P B =,下列结论中正确的是()A .若,AB 为互斥事件,则()0.8P A B +=B .若,A B 为互斥事件,则()0.8P A B +=C .若,A B 相互独立,则()0.65P A B +=D .若()|0.3P B A =,则,A B 相互独立【答案】ACD【解析】A 选项,根据互斥事件的加法公式可得,()()()0.50.30.8P A B P A P B +=+=+=,A 选项正确;B 选项,若,A B 为互斥事件,故()0P AB =,类似集合的运算:A B A B = ,由()()()()1()101P A B P A B P A B P AB P AB +====-=-= ,故B 选项不正确;C 选项,由于,A B 是相互独立事件,故()()()P AB P A P B =,于是()()()()0.50.30.50.30.65P A B P A P B P AB +=+-=+-⨯=,C 选项正确;D 选项:)()(|)0.3()(P AB P B A P B A P ===,即()()()P AB P A P B =,于是,A B 相互独立,D 选项正确.故选:ACD.【一隅三反】1.(2024·广西)(多选)设A ,B 是一个随机试验中的两个事件,且1()2P A =,11()24P B =,7(24P AB AB +=,则下列结论中正确的是()A .1()8P AB =B .5()6P A B +=C .9()11|P A B =D .()||)(P A B P B A =【答案】AB【解析】因为1()2P A =,11()24P B =,所以1()2P A =,13(24P B =.因为AB 与AB 为互斥事件,所以()0P AB AB ⋅=,所以(()()()()(P AB AB P AB P AB P AB AB P AB P AB +=+-⋅=+()()()()P B P AB P A P AB =-+-1112()224P AB =+-724=,所以1()3P AB =,故111()1()8()243P B P A P B AB =-=-=,故A 正确;115()(()()()()[()()](()236P A B P A P B P AB P A P B P B P AB P A P AB +=+-=+--=+=+=,故B 正确;1()83()11()1124|P AB P A B P B ===,故C 错误;1()38()11()1124|P AB P A B P B ===,11()()()123()1()()3|2P AB P A P AB P B A P A P A --===,所以()||)(P A B P B A ≠,故D 错误.故选:AB.2.(2024·福建)(多选)已知随机事件,,A B C 满足()01P A <<,()01P B <<,()01P C <<,则下列说法正确的是()A .不可能事件∅与事件A 互斥B .必然事件Ω与事件A 相互独立C .()()()P AC P AB C P AB C =+∣∣∣D .若()()||P A B P A B =,则()()12P A P A ==【答案】ABC【解析】因为不可能事件∅与事件 A 不会同时发生,所以互斥,故选项A 正确;因为)1,()(),())()((P A P A P P A P P AΩ=Ω=Ω=,所以()()()P A P A P Ω=Ω,所以必然事件Ω与事件 A 相互独立,故选项B 正确;因为AB AB A = ,且,AB AB 互斥,所以()()()P AC P AB C P AB C =+∣∣∣,故选项C 正确;对于选项D ,假如做抛掷一枚骰子1次的试验,设事件B 为出现点数小于等于4,事件A 为出现点数小于等于2,则()()||P A B P A B =,但12(),(),()(),33P A P A P A P A ==≠故选项D 错误.故选:ABC.3.(2024下·全国·高二随堂练习)(多选)玻璃缸中装有2个黑球和4个白球,现从中先后无放回地取2个球.记“第一次取得黑球”为1A ,“第一次取得白球”为2A ,“第二次取得黑球”为1B ,“第二次取得白球”为2B ,则()A .()()1122P AB P A B =B .()()1221P A B P A B =C .()()11211P B A P B A +<∣∣D .()()21121P B A P B A +>∣∣【答案】BD【解析】由题意,第一次取得黑球的概率()12116C 1C 3P A ==,第一次取得白球的概率()14216C 2C 3P A ==,第一次取黑球、第二次取黑球的概率()1121111165C C 1C C 15P A B ==,第一次取白球、第二次取白球的概率()1143221165C C 2C C 5P A B ==,()()1122P A B P A B ≠,所以A 错误;第一次取黑球、第二次取白球的概率()1124121165C C 4C C 15P A B ==,第一次取白球、第二次取黑球的概率()1142211165C C 4C C 15P A B ==,()()1221P A B P A B =,所以B 正确;由()()()111111115153P A B P B A P A ===,()()()122114415153P A B P B A P A ===,得()()11211P B A P B A +=,所以C 错误;由()()()211224215253P A B P B A P A ===,得()()2112615P B A P B A +=>,所以D 正确.故选:BD4.(2023·河南平顶山)(多选)一个口袋中有除颜色外完全相同的3个红球和2个白球,每次从中随机取出一个球,若取到红球,则往口袋里再放入一个白球,若取到白球,则往口袋里再放入一个红球,取出的球不放回.像这样取两次球,设事件()1,2i A i =为“第i 次取到红球”,事件()1,2j B j =为“第j 次取到白球”,事件C 为“两次取到的球颜色相同”,则()A .1A 与2A 相互独立B .()2135P B A =∣C .()12825P B A =D .()825P C =【答案】BCD【解析】对于A ,()()()112262414,,5552555552533232P A P A A P A ==⨯==⨯+⨯=,则()()()2112P P A A A P A ≠,所以1A 与2A 不相互独立,故A 错误;对于B ,()21P B A ∣是指在第一次取出红球的条件下,第二次取出白球的概率,第一次取出红球后,再放入一个白球,袋中变为2个红球和3个白球,此时取出白球的概率为35,故B 正确;对于C ,()12P B A 是第一次取到白球且第二次取到红球的概率,()122485525P B A =⨯=,故C 正确;对于D ,事件C 包含“两次都取到红球”和“两次都取到白球”两种情况,()()12123()5P C P A A P B B =+=⨯221855525+⨯=,故D 正确.故选:BCD.考法三全概率公式【例3-1】(2024·黑龙江)某人外出出差,委托邻居给家里盆栽浇一次水,若不浇水,盆栽枯萎的概率为0.8;若浇水,盆栽枯萎的概率为0.1.若邻居浇水的概率为P ,该人回来盆栽没有枯萎的概率为0.83,则实数P 的值为()A .0.9B .0.85C .0.8D .0.75【答案】A【解析】记A 为事件“盆栽没有枯萎”,W 为事件“邻居给盆栽浇水”,由题意可得(),()1P W P P W P ==-,()0.8,()0.1P A W P A W ==∣∣,由对立事件的概率公式可得()1()10.830.17P A P A =-=-=.由全概率公式可得(()()()()0.1(1)0.80.17P A P W P A W P W P A W P P =+=⨯+-⨯=∣∣,解得0.9P =.故选:A【例3-2】(2024·河南南阳)长时间玩手机可能影响视力.据调查,某校学生大约20%的人近视,而该校大约有10%的学生每天玩手机超过1小时,这些人的近视率约为60%,现从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率为()A .521B .940C .745D .720【答案】C【解析】令1A =“玩手机时间超过1小时的学生”,2A =“玩手机时间不超过1小时的学生”,B =“任意调查一人,此人近视”,12A A Ω= ,且12,A A 互斥,()()()()1210.10.9|0.6,0,.2 ,P A P A P B A P B ====,依题意有()()()()()()11222||0.10.60.9|0.2P B P A P B A P A P B A P B A =+=⨯+⨯=,解得()20.1470.945|P B A ==从每天玩手机不超过1小时的学生中任意调查一名学生,则他近视的概率为745.故选:C 【一隅三反】1.(2024·黑龙江)小明参加答题闯关游戏,答题时小明可以从A ,B ,C 三块题板中任选一个进行答题,答对则闯关成功.已知他选中A ,B ,C 三块题板的概率分别为0.2,0.3,0.5,且他答对A ,B ,C 三块题板中题目的概率依次为0.91,0.92,0.93.则小明闯关失败的概率是()A .0.24B .0.14C .0.077D .0.067【答案】C【解析】由题意,小明闯关失败的概率()()()0.210.910.310.920.510.930.077P =⨯-+⨯-+⨯-=.故选:C.2.(2024·全国·高二假期作业)某批麦种中,一等麦种占80%,二等麦种占20%等麦种种植后所结麦含有50粒以上麦粒的概率分别为0.6,0.2,则这批麦种种植后所结麦穗含有50粒以上麦粒的概率为()A .0.48B .0.52C .0.56D .0.65【答案】B【解析】种植一等麦种和二等麦种的事件分别为12,A A ,所结麦穗含有50粒以上麦粒为事件B ,依题意,()10.8P A =,()20.2P A =,()1|0.6P B A =,()2|0.2P B A =,由全概率公式得,()()()12P B P BA P BA =+()()()()1122||P A P B A P A P B A =+0.80.60.20.20.52=⨯+⨯=.故选:B3.(2023·湖北)某卡车为乡村小学运送书籍,共装有10个纸箱,其中5箱英语书、5箱数学书.到目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下9箱中任意打开两箱,结果都是英语书,则丢失的一箱也是英语书的概率为()A .29B .38C .112D .58【答案】B【解析】用A 表示丢失一箱后任取两箱是英语书,用1B 表示丢失的一箱为英语书,2B 表示丢失的一箱为数学书,则()()1212P B P B ==,()24129C 61C 366P A B ===,()25229C 105C 3618P A B ===,由全概率公式可得()()()()()112211152262189P A P B P A B P B P A B =⋅+⋅=⨯+⨯=,所以,()()()1111326289P AB P B A P A ⨯===.故选:B.4.(2023·湖北)(多选)某儿童乐园有甲,乙两个游乐场,小王同学第一天去甲、乙两家游乐场游玩的概率分别为0.3和0.7,如果他第一天去甲游乐场,那么第二天去甲游乐场的概率为0.7;如果第一天去乙游乐场,那么第二天去甲游乐场的概率为0.6,则王同学()A .第二天去甲游乐场的概率为0.63B .第二天去乙游乐场的概率为0.42C .第二天去了甲游乐场,则第一天去乙游乐场的概率为23D .第二天去了乙游乐场,则第一天去甲游乐场的概率为13【答案】AC【解析】设1A :第一天去甲游乐场,2A :第二天去甲游乐场,1B :第一天去乙游乐场,2B :第二天去乙游乐场,依题意可得()10.3P A =,()10.7P B =,()210.7P A A =,()210.6P A B =,对A ,()()()()()21211210.30.70.70.60.63P A P A P A A P B P A B =+=⨯+⨯=,A 正确;对B ,()()2210.37P B P A =-=,B 错误;对C ,()()()()1211220.70.620.633P B P A B P B A P A ⨯===,C 正确;对D ,()()()()()()()()121121122210.310.790.3737P A P A A P A P B A P A B P B P B ⎡⎤-⨯-⎣⎦====,D 错误,故选:AC.5.(2024·陕西汉中)某电子设备厂所用的元件由甲、乙两家元件厂提供,根据以往的记录,这两个厂家的次品率分别为0.01,0.03,提供元件的份额分别为0.90,0.10.设这两个厂家的产品在仓库里是均匀混合的,且无任何区分的标志,现从仓库中随机取出一个元件,取到的元件是次品的概率为.【答案】0.012【解析】设事件:A “取得一件次品”事件1B :“取得次品是甲厂生产”,2B :“取得次品是乙厂生产”,由题意可知()()()()12120.9,0.1,0.01,0.03P B P B P A B P A B ====,所以由全概率公式知取得次品的概率为()()()()()11220.010.900.030.100.012P A P A B P B P A B P B =+=⨯+⨯=.故答案为:0.012考法四贝叶斯公式【例4】(2024·福建)根据曲靖一中食堂人脸识别支付系统后台数据分析发现,高三年级小孔同学一周只去食堂一楼和二楼吃饭.周一去食堂一楼和二楼的概率分别为13和23,若他周一去了食堂一楼,那么周二去食堂二楼的概率为34,若他周一去了食堂二楼,那么周二去食堂一楼的概率为12,现已知小孔同学周二去了食堂二楼,则周一去食堂一楼的概率为().A .37B .47C .15D .45【答案】A【解析】记小孔同学周一去食堂一楼为事件A ,周二去食堂一楼为事件B ,则本题所求()()()()()()()13334132173432P B A P A P A B P B A P A P B A P A ⨯⋅===⋅+⋅⨯+⨯.故选:A .【一隅三反】1.(2024湖南)设有5个袋子中放有白球,黑球,其中1号袋中白球占13,另外2,3,4,5号4个袋子中白球都占14,今从中随机取1个袋子,从所取的袋子中随机取1个球,结果是白球,则这个球是来自1号袋子中的概率为()A .14B .13C .12D .23【答案】A【解析】设事件i A 表示“取到第i 号袋子”(i =1,2,3,4,5),事件B 表示“取到白球”,则由贝叶斯公式得1115111()()153()11111114()()5354444j j j P A P B A P A B P A P B A =⨯===⎛⎫⨯+⨯+++ ⎪⎝⎭∑,故选:A2.(2023·全国·高二课堂例题)张宇去某地参加会议,他乘汽车或飞机去的概率分别为0.6、0.4.如果他乘汽车或飞机前去,迟到的概率如图所示.结果他迟到了,求张宇乘的是汽车的概率.【答案】917【解析】记事件A 为“张宇乘汽车”,则事件A 为“张宇乘飞机”,事件B 为“张宇迟到”,则()0.6P A =,()0.4P A =,()14P B A =,()13P B A =.根据贝叶斯公式可得()()()()()()()10.69411170.60.443P A P B A P A B P A P B A P A P B A⨯===+⨯+⨯.因此,张宇迟到了,他乘的是汽车的概率为917.3.(2023·湖南)某一地区患有某疾病的人占0.005,患者对一种试验反应是阳性的概率为0.95,正常人对这种试验反应是阳性的概率为0.04.现抽查了一个人,试验反应是阳性,问此人是患者的概率有多大?(保留小数点后四位)【答案】0.1066【解析】设“抽查的人是患者”为事件A ,“试验反应是阳性”为事件B ,则“抽查的人不是患者”为事件A ,由题意可知()0.005P A =,()()10.995P A P A =-=,()0.95P B A =,()0.04P B A =,则由贝叶斯公式可得()()()()()()()()()P A P B A P AB P A B P B P A P B A P A P B A ==+0.0050.950.10660.0050.950.9950.04⨯==⨯+⨯,即抽查一个人,试验反应是阳性,此人是患者的概率为0.1066.考法五综合运用【例5-1】(2024·吉林)中国传统文化中,过春节吃饺子,饺子是我国的传统美食,不仅味道鲜美而且寓意美好.现有甲、乙两个箱子装有大小、外观均相同的速冻饺子,已知甲箱中有3盒肉馅的“饺子”,2盒三鲜馅的“饺子”和5盒青菜馅的“饺子”,乙箱中有3盒肉馅的“饺子”,3个三鲜馅的“饺子”和4个青菜馅的“饺子”.问:(1)从甲箱中取出一盒“饺子”是肉馅的概率是多少?(2)若依次从甲箱中取出两盒“饺子”,求第一盒是肉馅的条件下,第二盒是三鲜馅的概率;(3)若先从甲箱中随机取出一盒“饺子”放入乙箱,再从乙箱中随机取出一盒“饺子”,从乙箱取出的“饺子”是肉馅的概率.【答案】(1)310(2)29(3)310【解析】(1)设事件A =“取出饺子是肉馅”,()310P A =,(2)设事件B =“甲箱中取出的第一盒饺子是肉馅”,事件C =“取出第二个盒饺子是三鲜馅”,()()()3221093910P BC P C B P B ⨯===(3)设事件D =“从乙箱取出的“饺子”是肉馅”.设事件1A ,2A ,3A 分别是甲箱中取出肉馅的“饺子”,三鲜馅的“饺子”和青菜馅的“饺子”,()()()()()()()112233P D P A P D A P A P D A P A P D A =++342353310111011101110=⨯+⨯+⨯=【例5-2】(2023·河北保定)某地举办了一次地区性的中国象棋比赛,小明作为选手参加.除小明外的其他参赛选手中,一、二、三类棋手的人数之比为5:7:8,小明与一、二、三类棋手比赛获胜的概率分别是0.6、0.5、0.4.(1)从参赛选手中随机抽取一位棋手与小明比赛,求小明获胜的概率;(2)如果小明获胜,求与小明比赛的棋手分别为一、二、三类棋手的概率.【答案】(1)0.485(2)3097、3597、3297.【解析】(1)记事件B :“小明获胜”,记事件i A :“小明与第()1,2,3i i =类棋手相遇”,由题可得,()150.2520P A ==,()270.3520P A ==,()380.420P A ==,()10.6P B A =,()20.5P B A =,()30.4P B A =(1)由全概率公式可知()()()()()()()112233P B P A P B A P A P B A P A P B A =++0.250.60.350.50.40.40.485=⨯+⨯+⨯=.(2)由条件概率公式可得()()()()()()11110.250.6300.48597P A P B A P A B P A B P B P B ⨯====,()()()()()()22220.350.5350.48597P A P B A P A B P A B P B P B ⨯====,()()()()()()33330.40.4320.48597P A P B A P A B P A B P B P B ⨯====.即小明获胜,对手分别为一、二、三类棋手的概率为3097、3597、3297.【一隅三反】1.(2023下·安徽芜湖·高二统考期末)(多选)一个不透明的袋子里,装有大小相同的3个红球和2个白球,每次从中不放回地取出一球,现取出2个球,则下列说法正确的是()A .两个都是红球的概率为625B .在第一次取到红球的条件下,第二次取到白球的概率为12C .第二次取到红球的概率为35D .第二次取到红球的条件下,第一次取到白球的概率为12【答案】BCD【解析】对于A 选项,抽取的两个都是红球的概率为2325C 3C 10=,A 错;对于B 选项,记事件:M 第一次取红球,事件:N 第二次取白球,则()35P M =,()3235410P MN ⨯==⨯,所以,()()()3511032P MN P N M P M ==⨯=,B 对;对于C 选项,记事件:M 第一次取红球,事件:Q 第二次取红球,则()35P M =,()25P M =,()12P Q M =,()34P Q M =,由全概率公式可得()()()()()3123352545P Q P M P Q M P M P Q M =+=⨯+⨯=,C 对;对于D 选项,记事件:M 第一次取红球,事件:Q 第二次取红球,则()()()2335410P MQ P M P Q M ==⨯=,所以,()()()3511032P MQ P M Q P Q ==⨯=,D 对.故选:BCD.2.(2024上·黑龙江·高二校联考期末)(多选)已知编号为1,2,3的三个盒子,其中1号盒子内装有一个1号球,一个2号球和两个3号球;2号盒子内装有一个1号球,两个3号球;3号盒子内装有两个1号球,三个2号球.若第一次先从1号盒子内随机抽取1个球,将取出的球放入与球同编号的盒子中,第二次从该盒子中任取一个球,则下列说法正确的是()A .在第一次抽到3号球的条件下,第二次抽到2号球的概率为12B .第一次抽到3号球且第二次抽到2号球的概率为14C .第二次抽到2号球的概率为316D .如果第二次抽到的是2号球,则它来自1号盒子的概率最大【答案】AB【解析】记第一次取得()1,2,3i i =号球为事件i A ,则()()()123111,442P A P A P A ===,在第一次抽到3号球的条件下,第二次抽到2号球的概率为31512P ==+,即A 正确;第一次抽到3号球且第二次抽到2号球的概率为111224P =⨯=,即B 正确;记第二次在第i 号盒子内抽到2号球的事件分别为()1,2,3i B i =,而123,,A A A 两两互斥,和为Ω,且()()()112233111,,442P B A P B A P B A ===∣∣∣,记第二次抽到2号球的事件为B ,则()()()33111111113()4444228i i i i ii i P B P A B P A P B A =====⨯+⨯+⨯=∑∑∣,即C 错误;由于原先2号盒子没有2号球,如果第二次取到的是2号球,则它来自1号盒子的概率为()()()112211111616338P A B P A B P P B ++===,它来自3号盒子的概率()()333124338P A B P P B ===,即如果第二次抽到的是2号球,则它来自3号盒子的概率最大,故D 错误.故选:AB3.(2023下·湖北武汉·高二校联考期末)某中学篮球队根据以往比赛统计:甲球员能够胜任前锋,中锋,后卫三个位置,且出场概率分别为0.1,0.5,0.4.在甲球员出任前锋,中锋,后卫的条件下,篮球队输球的概率依次为0.2,0.2,0.7.(1)当甲球员参加比赛时,求该篮球队某场比赛输球的概率;(2)当甲球员参加比赛时,在该篮球队输了某场比赛的条件下,求甲球员在这一场出任中锋的概率;(3)如果你是教练员,应用概率统计的有关知识该如何使用甲球员?【答案】(1)0.4(2)0.25(3)应该多让甲球员出任前锋来增加赢球场次【解析】(1)设1A 表示“甲球员出任前锋”,2A 表示“甲球员出任中锋”,3A 表示“甲球员出任后卫”,则123A A A Ω= ,设B 表示“球队输掉某场比赛”,则()10.1P A =,()20.5P A =,()30.4P A =,()()120.2P B A P B A ==||,()30.7P B A =|,所以()()()123()P B P A B P A B P A B =++()()()()()()112233P A P B A P A P B A P A P B A =⋅+⋅+⋅|||0.10.20.50.20.40.7=⨯+⨯+⨯0.4=.所以当甲球员参加比赛时,该球队某场比赛输球的概率是0.4.(2)由(1)知,球队输了某场比赛的条件下,甲球员在这一场出任中锋的概率()()()()22220.50.20.25()()0.4P B A P A P A B P A B P B P B ⨯====||.(3)由(1)知,已知球队输了某场比赛的条件下,甲球员在这场出任前锋的概率()()110.10.20.05()0.4P A B P A B P B ⨯===∣;甲球员在这场出任后卫的概率()()()330.40.70.70.4P A B P A B P B ⨯===∣;由(2)知,甲球员在这一场出任中锋的概率()20.25P A B =|.所以有,()()()123P A B P A B P A B <<∣∣∣,所以应该多让甲球员出任前锋来增加赢球场次.一.单选题1.(2024·北京昌平)已知某班级中,喜欢文学阅读的学生占75%,喜欢文学阅读而且喜欢科普阅读的学生占30%.若从这个班级的学生中任意抽取一人、则在抽到的学生喜欢文学阅读的条件下,该学生也喜欢科普阅读的概率为()A .22.5%B .30%C .40%D .75%【答案】C【解析】设事件A 为“抽到喜欢文学阅读的学生”,设事件B 为“抽到喜欢科普阅读的学生”,则()0.75P A =,()0.3P AB =,则()()()0.320.755P AB P B A P A ===,即在抽到的学生喜欢文学阅读的条件下,该学生也喜欢科普阅读的概率为40%.故选:C.2.(2023·广东肇庆)已知()0.5P A =,()0.3P B =,()0.1P B A ⋂=,求()|P B A =()A .110B .13C .15D .1【答案】C【解析】由题可得()()()0.110.55|P AB P B A P A ===.故选:C.3.(2023·山东德州)掷一个均匀的骰子.记A 为“掷得点数大于2”,B 为“掷得点数为奇数”,则()P B A 为()A .56B .34C .23D .12【答案】D【解析】掷一个均匀的骰子,有1,2,3,4,5,6共6种结果,事件A 包含点数为3,4,5,6,共4种结果,所以()4263P A ==;事件AB 包含点数为3,5共2种结果,所以()2163P AB ==,所以()()()12P AB P B A P A ==.故选:D4.(2023下·辽宁·高二辽宁实验中学校考阶段练习)某货车为某书店运送书籍,共10箱,其中5箱语文书、3箱数学书、2箱英语书.到达目的地时发现丢失一箱,但不知丢失哪一箱.现从剩下的9箱书中随机打开2箱,结果是1箱语文书、1箱数学书,则丢失的一箱是英语书的概率为()A .15B .14C .13D .38【答案】B【解析】记事件:A 从剩下的9箱书中随机打开2箱,结果是1箱语文书、1箱数学书,记事件2:B 丢失的一箱是语文书,事件2:B 丢失的一箱是数学书,事件3:B 丢失的一箱是英语书,则()()()3222199914335215312C 10C 5C 3i i i P A P B P A B =⨯⨯⨯==⨯+⨯+⨯=∑,()()()3332915315C 12P AB P B P A B ⨯==⨯=,由贝叶斯公式可得()()()33113124P AB P B A P A ==⨯=.故选:B.5.(2024下·全国·高二随堂练习)袋子中装有大小、形状完全相同的3个白球和2个红球,现从中不放回地摸取两个球,已知第二次摸到的是红球,则第一次摸到红球的概率为()A .14B .16C .110D .25【答案】A【解析】记i A 为第i 次摸到的是红球,则()()()12122P A A P A A P A =,又()()()121212115410P A A P A P A A ==⨯=,()()()()()()()212121211212132254545P A P A A P A A P A P A A P A P A A =+=+=⨯+⨯=,所以()1214P A A =,故选:A.6.(2023上·上海·高二上海市第二中学校考阶段练习)下列各式中不能判断事件A 与事件B 独立的是()A .()()()P A B P A P B ⋂=B .()()()()()P A B P A P B P A P B =+- C .()()1P A B P A +=D .()()1P A B P A B +=【答案】D【解析】选项A :因为()()P A B P AB = ,所以()()()P AB P A P B =,由事件相互独立意义可知,事件A 与事件B 独立;故A 正确;选项B :因为()()()()P A B P A P B P A B =+- ,又()()()()()P A B P A P B P A P B =+- ,所以()()()P A B P A P B ⋂=,由选项A 可知,事件A 与事件B 独立;故B 正确;选项C :因为()()()()()1P AB P A B P A P A P B +=+=,即()()()()1P ABP A PA PB =-=所以()()()P AB P A P B =,即事件A 与事件B 独立,所以事件A 与事件B 独立,故C 正确;故选:D.7.(2023下·黑龙江齐齐哈尔·高二齐齐哈尔市恒昌中学校校考期末)下列有关事件的说法正确的是()A .事件A ,B 中至少有一个发生的概率一定比A ,B 中恰有一个发生的概率大B .若()()()1P A B P A P B =+= ,则事件A ,B 为对立事件C .若A ,B 为互斥事件,则()()1P A P B +≤D .若事件A ,B ,C 满足条件()0P B >,A 和C 为互斥事件,则()()()()P A C B P A B P C B <+∣∣∣ 【答案】C【解析】对于A 中,若事件A 和B 都为不可能事件,此时两个概率相等,所以A 错误;对于B 中,若在不同试验下,虽然有()()()1P A B P A P B =+= ,但事件A 和B 不对立;若在同一试验下,说明事件A 和B 对立,则B 错误;对于C 中,若A ,B 互斥,且A ,B 对立,则()()1P A P B +=,若A ,B 不对立,则()()1P A P B +<,所以C 正确;对于D 中,若事件A ,B ,C 满足条件()0P B >,A 和C 为互斥事件,则()()()()|||P A C B P A B P C B =+ ,所以D 错误,故选:C.8.(2023下·浙江台州·高二统考期末)已知()P A ,()P B ,()P C ,()P AC ,()P AB ,()P BC 均大于0,则下列说法不正确的是()A .()()()P AB P A P B =B .若()()P B A P B =,则()()P A B P A =C .若()()P B A P A B =,则()()P A P B =D .()()()()P ABC P A P C A P B AC =【答案】A【解析】对于A ,若,A B 相互独立,则()()()P AB P A P B =,故A 错误;对于B ,若()()P B A P B =,则()()()P AB P B P A =,即()()()P AB P A P B =,所以()()()()()()()P AB P A P B P A B P A P B P B ===,故B 正确;对于C ,若()()P B A P A B =,则()()()()P AB P AB P A P B =,则()()P A P B =,故C 正确;对于D ,()()()()()()()()()P AC P ABC P A P C A P B AC P A P ABC P A P AC =⋅⋅=,故D 正确.故选:A.二.多选题9.(2023·吉林长春·)盒子中有12个乒乓球,其中8个白球4个黄球,白球中有6个正品2个次品,黄球中有3个正品1个次品.依次不放回取出两个球,记事件=i A “第i 次取球,取到白球”,事件i B =“第i 次取球,取到正品”,1,2i =.则下列结论正确的是()A .()1123P A B =B .()212P B =C .()2113P A B =D .()2134P B A =【答案】AD【解析】对A ,()193==124P B ,()1161==122P A B ,所以()()()111112==3P A B P A B P B ,故A 正确;对B ,事件2B =“第2次取球,取到正品”,()2119392212A A A 3A 4P B +==,故B 错误;对C ,事件21A B =“第1次取球,取到正品且第2次取球,取到白球”,包括(正白,正白),(正白,次白),(正黄,正白),(正黄,次白),共有65+62+36+32=66⨯⨯⨯⨯种情况,()21212661=A 2P A B =,故C 错误;对D ,事件12A B =“第1次取球,取到白球且第2次取球,取到正品”,包括(白正,白正),(白正,黄正),(白次,白正),(白次,黄正),共有65+63+26+23=66⨯⨯⨯⨯种情况,()12212661=A 2P A B =,又因为()182==123P A ,()()()122113==4P A B P B A P A ,故D 正确;故选:AD.10.(2024·全国·高二假期作业)口袋里装有2红,2白共4个形状相同的小球,对其编号红球1,2,白球3,4,从中不放回的依次取出两个球,事件A =“第一次取出的是红球”,事件B =“第二次取出的是红球”,事件C =“取出的两球同色”,事件D =“取出的两球不同色”,则()A .A 与B 互斥B .C 与D 互为对立事件C .A 与C 相互独立D .()13P D B =【答案】BC【解析】基本事件有12,13,14,23,24,34,21,31,41,32,42,43,共12种,事件A =“12,13,14,21,23,24”;事件B =“12,21,31,41,32,42”;事件C =“12,21,34,43”;事件D =“13,14,23,24,31,41,32,42”.∵A B ⋂≠∅,∴A 与B 不是互斥事件,故A 错误;C D =Ω ,C D ⋂=∅,∴C 与D 互为对立事件,故B 正确;事件AC =“12,21”,∴()61122P A ==,()41123P C ==,()21126P AC ==,()()()P AC P A P C =,∴A 与C 相互独立,故C 正确;事件BD =“31,41,32,42”,()12P B =,()41123P BD ==,∴()()()23P BD P D B P B ==,故D 错误.故选:BC.11.(2023下·山东聊城·高二统考期末)若A 、B 分别为随机事件A 、B 的对立事件,()0P A >,()0P B >,则下列结论正确的是()A .()()1P B A P B A +=B .()()()()P A B P B P B A P A=C .()()()P A B P A B P B +=D .若()()P A B P A =,则()()P B A P B =【答案】BD【解析】对于A 选项,因为()()()()()()()()()()()1P AB P AB P AB P AB P A P B A P B A P A P A P A P A ++=+===,但()P B A 与()P B A 不一定相等,故()()P B A P B A +不一定等于1,A 错;对于B 选项,因为()()()P A B P B P AB =,()()()P B A P A P AB =,所以,()()()()P A B P B P B A P A =,B 对;对于C 选项,()()()()()()()()1P AB P AB P B P A B P A B P B P B P B +=+==,C 错;对于D 选项,因为()()()()P AB P A B P A P B ==,所以,()()()P AB P A P B =,所以,事件A 、B 独立,故()()()()P AB P B A P B P A ==,D 对.故选:BD.12.(2024·河南)深圳某中学社团招新活动开展得如火如荼,小王、小李、小张三位同学计划篮球社、足球社、羽毛球社三个社团中各自任选一个,每人选择各社团的概率均为13,且每人选择相互独立,则()A .三人选择社团一样的概率为19B .三人选择社团各不相同的概率为227C .至少有两人选择篮球社的概率为727D .在至少有两人选择羽毛球社的前提下,小王选择羽毛球社的概率为57【答案】ACD【解析】对于A ,三人选择社团一样的事件是都选篮球社的事件、都选足球社的事件、都选羽毛球社的事件的和,它们互斥,三人选择社团一样的概率为3113(39⨯=,A 正确;对于B ,三人选择社团各不相同的事件,是小王从3个社团中任选1个,小李从余下两个中任选1个,最后1个社团给小张的事件,共6个不同结果,因此三人选择社团各不相同的概率为3126()39⨯=,B 错误;对于C ,至少有两人选择篮球社的事件是恰有2人选篮球社与3人都选篮球社的事件和,其概率为213332117C C ()()3327⨯+=,C 正确;对于D ,令至少有两人选择羽毛球社的事件为A ,由选项C 知,7()27P A =,小王选择羽毛球社的事件为B ,则事件AB 是含小王只有2人择羽毛球社的事件和3人都择羽毛球社的事件和,其概率113322115()C C ((3327P AB =⨯+=,所以在至少有两人选择羽毛球社的前提下,小王选择羽毛球社的概率为()5(|)()7P AB P B A P A ==,D 正确.故选:ACD三.填空题13.(2024上·山东潍坊·高二昌乐二中校考期末)已知某地区内狗的寿命超过15岁的概率是0.6,超过20岁的概率是0.2.那么该地区内,一只寿命超过15岁的狗,寿命能超过20岁的概率是.【答案】13【解析】设A :狗的寿命超过15岁,B :狗的寿命超过20岁,则所要求的就是(|)P B A .依题意有2,()0.6()0.P A P B ==.又因为B A ⊆,所以B A B =I ,从而()()0.2P B A P B == ,因此()()()0.21|0.63P B A P B A P A ⋂===.所以一只寿命超过15岁的狗,寿命能超过20岁的概率是13,故答案为:13.14.(2023上·河南南阳·高二南阳中学校考阶段练习)口袋里装有2红,2白共4个形状相同的小球,对其编号红球1,2,白球3,4,从中不放回的依次取出两个球,事件A =“第一次取出的是红球”,事件B =“第二次取出的是红球”,事件C =“取出的两球同色”,事件D =“取出的两球不同色”,则以下命题所有正确的序号是.①A 与B 互斥②C 与D 互为对立事件③A 与C 相互独立④1(|)3P D B =【答案】②③【解析】依题意,按取球先后次序排列取球编号,得试验的样本空间{12,13,14,21,23,24,31,32,34,41,42,43}Ω=,事件{12,13,14,21,23,24}A =,事件{12,21,31,32,41,42}B =,事件{12,21,34,43}C =,事件{13,14,23,24,31,41,32,42}D =,显然事件,A B 有公共的基本事件12,21,即,A B 不互斥,①错误;事件,C D 不能同时发生,但必有一个发生,则C 与D 互为对立事件,②正确;6141(),()122123P A P C ====,事件{12,21}AC =,21()()()126P AC P A P C ===,A 与C 相互独立,③正确;61()122P B ==,事件{31,41,32,42}BD =,41()123P BD ==,()2(|)()3P BD P D B P B ==,④错误,所以命题中所有正确的序号是②③.故答案为:②③15.(2024下·全国·高二随堂练习)甲、乙两名游客慕名来到四川旅游,准备分别从九寨沟、峨眉山、海螺沟、都江堰、青城山这5个景点中随机选一个.事件:A 甲和乙选择的景点不同,事件:B 甲和乙恰好有一人。
2025届高中数学一轮复习课件《事件的相互独立性与条件概率》ppt

第1页
第十章 统计、排列组合与概率
第8讲 事件的相互独立性与条件概率
高考一轮总复习•数学
第2页
复习要点 1.在具体情境中,结合古典概型,了解条件概率和两个事件相互独立的概 率.2.结合古典概型,了解条件概率与独立性的关系,会用乘法公式计算概率.3.结合古典概 型,会利用全概率公式计算概率.
它们相互独立,所以所求概率为(1-β)(1-α)(1-β)=(1-α)(1-β)2,A 正确; 对于 B,三次传输,发送 1,相当于依次发送 1,1,1,
利用相互独立事件的概率公式判断 A,B.
则依次收到 1,0,1 的事件,是发送 1 接收 1、发送 1 接收 0、发送 1 接收 1 的 3 个事件的 积,
门科目考试成绩的结果互不影响,那么这位同学恰好得 2 个 A+的概率是____3_0___.
高考一轮总复习•数学
解析:(1)P(A)=AA22A66 55=13,P(B)=AA33A66 34=15, A66
P(C)=2AA3366A33=110,P(D)=AA6336=A133=16. 对于 A,P(AB)=A22AA3366A23=110≠P(A)·P(B),故 A 错误; 对于 B,P(AC)=2C15AA6622A22=74200=118≠P(A)P(C),故 B 错误; 对于 C,P(AD)=C12AC1466C15=118=P(A)·P(D),故 C 正确; 对于 D,P(BC)=P(C)≠P(B)P(C),故 D 错误.
解析 答案
高考一轮总复习•数学
第10页
3 . (2024·四 川 成 都 七 中 月 考 ) 某 保 险 公 司 将 其 公 司 的 被 保 险 人 分 为 三 类 : “ 谨 慎
事件的相互独立性、条件概率与全概率公式-高考数学复习

)
A. 甲与丙相互独立
B. 甲与丁相互独立
C. 乙与丙相互独立
D. 丙与丁相互独立
目录
解析:
1
事件甲发生的概率 P (甲)= ,事件乙发生的概率 P
6
1
5
5
(乙)= ,事件丙发生的概率 P (丙)=
= ,事件丁发生的概
6
6×6
36
6
1
率 P (丁)=
= .事件甲与事件丙同时发生的概率为0, P (甲
)=(1-0.6)×0.5×0.5×0.4+0.6×(1-0.5)×0.5×0.4+
0.6×0.5×(1-0.5)×0.4+0.6×0.5×0.5×(1-0.4)=0.25,4人需
使用设备的概率 P 2=0.6×0.5×0.5×0.4=0.06,故所求的概率 P =
3
2
3
5
( )·P ( )·P ( )=(1- )(1- )(1- )= .
4
3
8
96
因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙
三人中,至少有一人答对这道题”是对立事件,
5
91
所以所求事件的概率为 P ( M )=1- = .
96
96
目录
解题技法
1. 求相互独立事件同时发生的概率的步骤
2∪…∪ An =Ω,且 P ( Ai )>0, i =1,2,…, n ,则对任意的事
件 B ⊆Ω,有 P ( B )=
∑ P ( Ai ) P ( B | Ai )
i=1
,我们称上面
的公式为全概率公式.
目录
1. 判断正误.(正确的画“√”,错误的画“×”)
高中数学条件概率和相互独立精选题目(附解析)

高中数学条件概率和相互独立精选题目(附解析)(1)条件概率的定义一般地,设A,B为两个事件,且P(A)>0,称P(B|A)=P(AB)P(A)为在事件A发生的条件下,事件B发生的条件概率.P(B|A)读作A发生的条件下B发生的概率.(2)条件概率的性质①任何事件的条件概率都在0和1之间,即0≤P(B|A)≤1.②如果B和C是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).(3)相互独立事件的概念设A,B为两个事件,若P(AB)=P(A)P(B),则称事件A与事件B相互独立.(4)相互独立事件的性质如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.一、利用条件概率公式求条件概率1.现有6个节目准备参加比赛,其中4个舞蹈节目,2个语言类节目,如果不放回地依次抽取2个节目,求(1)第1次抽到舞蹈节目的概率;(2)第1次和第2次都抽到舞蹈节目的概率;(3)在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率.解:设第1次抽到舞蹈节目为事件A,第2次抽到舞蹈节目为事件B,则第1次和第2次都抽到舞蹈节目为事件AB.(1)从6个节目中不放回地依次抽取2个,总的事件数n(Ω)=A26=30.根据分步乘法计数原理,有n(A)=A14A15=20,所以P(A)=n(A)n(Ω)=2030=23.(2)因为n(AB)=A24=12,所以P(AB)=n(AB)n(Ω)=1230=25.(3)法一:由(1)(2),得在第1次抽到舞蹈节目的条件下,第2次抽到舞蹈节目的概率P(B|A)=P(AB)P(A)=2523=35.法二:因为n(AB)=12,n(A)=20,所以P(B|A)=n(AB)n(A)=1220=35.注:1.在题目条件中,若出现“在……发生的条件下……发生的概率”时,一般可认为是条件概率.2.条件概率的两种计算方法:(1)在原样本空间中,先计算P(AB),P(A),再利用公式P(B|A)=P(AB)P(A)计算求得P(B|A);(2)若事件为古典概型,可利用公式P(B|A)=n(AB)n(A),即在缩小后的样本空间中计算事件B发生的概率.2.某个班级共有学生40人,其中团员有15人.全班分成四个小组,第一小组有学生10人,其中团员有4人.如果要在班内任选1人当学生代表.(1)求这个代表恰好在第一小组的概率;(2)求这个代表恰好是团员代表的概率;(3)求这个代表恰好是第一小组团员的概率;(4)现在要在班内任选1个团员代表,问这个代表恰好在第一小组的概率.解:设A={在班内任选1名学生,该学生属于第一小组},B={在班内任选1名学生,该学生是团员}.(1)P(A)=1040=14.(2)P(B)=1540=38.(3)P(AB)=440=110.(4)法一:P (A |B )=P (AB )P (B )=11038=415. 法二:P (A |B )=n (AB )n (B )=415. 3.某地区气象台统计,该地区下雨的概率为415,刮风的概率为215,既刮风又下雨的概率为110,则在下雨天里,刮风的概率为( )A.8225B.12C.38D.34解析:选C 设A 为下雨,B 为刮风,由题意知P (A )=415,P (B )=215,P (AB )=110,P (B |A )=P (AB )P (A )=110415=38.故选C. 4.某班学生的考试成绩中,数学不及格的占15%,语文不及格的占5%,两门都不及格的占3%,已知一学生数学不及格,则他的语文也不及格的概率是( )A.15B.310C.12D.13解析:选A 设A 为事件“数学不及格”,B 为事件“语文不及格”,P (B |A )=P (AB )P (A )=0.030.15=15,所以当数学不及格时,该学生语文也不及格的概率为15. 5.一个家庭有两个小孩,假设生男生女是等可能的,已知这个家庭有一个是女孩的条件下,另一个也是女孩的概率是( )A.14B.23C.12D.13解析:选D 一个家庭中有两个小孩只有4种可能:(男,男),(男,女),(女,男),(女,女).记事件A 为“其中一个是女孩”,事件B 为“另一个是女孩”,则A ={(男,女),(女,男),(女,女)},B ={(男,女),(女,男),(女,女)},AB ={(女,女)}.于是可知,P(A)=34,P(AB)=14.问题是求在事件A发生的情况下,事件B发生的概率,即求P(B|A),由条件概率公式,得P(B|A)=P(AB)P(A)=1434=13.6.从写着数字0,1,2,3,4,5的六张卡片中抽取两张,则在其中一张是写着数字0的卡片的条件下,另一张写着数字为偶数的概率为________.解析:一张写着数字0的卡片的抽取情况为:(0,1),(0,2),(0,3),(0,4),(0,5),故另一张写着数字为偶数的概率为P=2 5.答案:2 57.如图,一个正方形被平均分成9部分,向大正方形区域随机地投掷一点(每一次都能投中).设投中最左侧3个小正方形区域的事件记为A,投中最上面3个小正方形或正中间的1个小正方形区域的事件记为B,求P(A|B),P(AB).解:用μ(B)表示事件B所包含区域的面积,μ(Ω)表示大正方形区域的面积,由题意可知,P(AB)=μ(AB)μ(Ω)=19,P(B)=μ(B)μ(Ω)=49,P(A|B)=P(AB)P(B)=14.二、求互斥事件的条件概率1.在一个袋子中装有除颜色外完全相同的10个球,其中有1个红球,2个黄球,3个黑球,4个白球,从中依次不放回地摸2个球,求在第一个球是红球的事件下,第二个球是黄球或黑球的概率.解:分别求出第一个球是红球的条件下,第二个球是黄球和第二个球是黑球的概率.再用互斥事件概率公式得概率,也可用古典概型求概率.法一:设“摸出的第一个球是红球”是事件A,“摸出的第二个球是黄球”是事件B,“摸出的第二个球是黑球”是事件C,则P(A)=1 10,P(AB)=1×210×9=145,P(AC)=1×310×9=130.∴P(B|A)=P(AB)P(A)=145110=1045=29,P(C|A)=P(AC)P(A)=130110=13.∴P(B∪C|A)=P(B|A)+P(C|A)=29+13=59.∴所求的条件概率为5 9.法二:∵n(A)=1×C19=9,n[(B∪C)∩A]=C12+C13=5,∴P(B∪C|A)=59.∴所求的条件概率为59.注:当所求事件的概率相对较复杂时,往往把该事件分成两个(或多个)互不相容的较简单的事件之和,求出这些较简单事件的概率,再利用P(B∪C|A)=P(B|A)+P(C|A)便可求得所求事件的概率,但应注意这个公式在“B与C互斥”这一前提下才成立.2.有一批种子的发芽率为0.9,出芽后的幼苗成活率为0.8,在这批种子中,随机抽取一粒,则这粒种子能成长为幼苗的概率为()A.0.72B.0.8C.0.9D.0.5解析:选A在种子发芽的条件下,成长为幼苗,所以为条件概率问题.设“种子发芽”为事件A,“种子成长为幼苗(发芽,又成活为幼苗)”为事件AB,则发芽后的幼苗成活率为P(B|A)=0.8,P(A)=0.9.根据条件概率公式得P(AB)=P(B|A)·P(A)=0.9×0.8=0.72,即这粒种子能成长为幼苗的概率为0.72.3.某项射击游戏规定:选手先后对两个目标进行射击,只有两个目标都射中才能过关.某选手射中第一个目标的概率为0.8,继续射击,射中第二个目标的概率为0.5,则这个选手过关的概率为________.解析:记“射中第一个目标”为事件A,“射中第二个目标”为事件B,则P(A)=0.8,P(B|A)=0.5.所以P (AB)=P(B|A)·P(A)=0.8×0.5=0.4,即这个选手过关的概率为0.4.答案:0.44.从1,2,3,4,5中任取2个不同的数,事件A:“取到的2个数之和为偶数”,事件B:“取到的2个数均为偶数”,则P(B|A)等于()A.18 B.14 C.25 D.12解析:选B P(A)=C23+C22C25=25,P(AB)=C22C25=110,由条件概率的计算公式得P(B|A)=P(AB)P(A)=11025=14.故选B.5.从编号为1,2,…,10的10个大小、颜色、材质均相同的球中任取4个,在选出4号球的条件下,选出球的最大号码为6的概率为________.解析:令事件A={选出的4个球中含4号球},B={选出的4个球中最大号码为6}.依题意,知P(A)=C39C410,P(AB)=C24C410,∴P(B|A)=P(AB)P(A)=C24C39=114.答案:1 146.抛掷红、蓝两枚骰子,设事件A为“蓝色骰子的点数为3或6”,事件B为“两枚骰子的点数之和大于8”.(1)求P(A),P(B),P(AB);(2)当已知蓝色骰子的点数为3或6时,两枚骰子的点数之和大于8的概率为多少?解:(1)设x为掷红骰子得到的点数,y为掷蓝骰子得到的点数,则所有可能的事件与点(x,y)一一对应,由题意作图(如图).显然P(A)=1236=13,P(B)=1036=518,P(AB)=536.(2)法一:P(B|A)=n(AB)n(A)=512.法二:P(B|A)=P(AB)P(A)=53613=512.7.坛子里放着5个相同大小、相同形状的咸鸭蛋,其中有3个是绿皮的,2个是白皮的.如果不放回地依次拿出2个鸭蛋,求:(1)第1次拿出绿皮鸭蛋的概率;(2)第1次和第2次都拿出绿皮鸭蛋的概率;(3)在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率.解:设“第1次拿出绿皮鸭蛋”为事件A,“第2次拿出绿皮鸭蛋”为事件B,则第1次和第2次都拿出绿皮鸭蛋为事件AB.(1)从5个鸭蛋中不放回地依次拿出2个鸭蛋的基本事件数为n(Ω)=A25=20.又n(A)=A13×A14=12.于是P(A)=n(A)n(Ω)=1220=35.(2)因为n(AB)=A23=6,所以P(AB)=n(AB)n(Ω)=620=310.(3)由(1)(2)可得,在第1次拿出绿皮鸭蛋的条件下,第2次拿出绿皮鸭蛋的概率为P(B|A)=P(AB)P(A)=31035=12.三、事件相互独立性的判断1.下列每对事件中,哪些是互斥事件,哪些是相互独立事件?(1)1 000张有奖销售的奖券中某张奖券是一等奖与该张奖券是二等奖;(2)甲,乙两人同时购买同一期的双色球彩票各一张,甲中奖与乙中奖;(3)甲组3名男生、2名女生,乙组2名男生、3名女生,现从甲,乙两组中各选1名同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”;(4)容器内盛有5个白球和3个黄球,“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”.解:(1)一张奖券不可能既是一等奖又是二等奖,即这两个事件不可能同时发生,故它们是互斥事件.(2)由双色球的中奖规则可知,甲是否中奖对乙是否中奖没有影响,反之亦然,故它们是相互独立事件.(3)“从甲组中选出1名男生”这一事件是否发生对“从乙组中选出1名女生”这一事件发生的概率没有影响,反之亦然,所以它们是相互独立事件.(4)“从8个球中任意取出1个,取出的是白球”的概率为58,若前一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47;若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件,也不是互斥事件.注:(1)利用相互独立事件的定义(即P(AB)=P(A)P(B))可以准确地判定两个事件是否相互独立;(2)判定两个事件是否为相互独立事件也可以从定性的角度进行分析,也就是看一个事件的发生对另一个事件的发生是否有影响,没有影响就是相互独立事件;有影响就不是相互独立事件.2.从一副扑克牌(52张)中任抽一张,记事件A为“抽得K”,记事件B为“抽得红牌”,记事件C为“抽到J”.判断下列每对事件是否相互独立?为什么?(1)A与B;(2)C与A.解:(1)P(A)=452=113,P(B)=2652=12,事件AB即为“既抽得K又抽得红牌”,亦即“抽得红桃K或方块K”,故P (AB )=252=126,从而有P (A )P (B )=P (AB ),因此事件A 与B 相互独立.(2) 事件A 与事件C 是互斥的,因此事件A 与C 不是相互独立事件.3.下列事件A ,B 是相互独立事件的是( )A .一枚硬币掷两次,A =“第一次为正面”,B =“第二次为反面”B .袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,A =“第一次摸到白球”,B =“第二次摸到白球”C .掷一枚骰子,A =“出现点数为奇数”,B =“出现点数为偶数”D .A =“一个灯泡能用1 000小时”,B =“一个灯泡能用2 000小时” 解析:选A 把一枚硬币掷两次,对于每次而言是相互独立的,其结果不受先后影响,故A 是相互独立事件;B 中是不放回地摸球,显然A 事件与B 事件不相互独立;对于C ,其结果具有唯一性,A ,B 应为互斥事件;D 中事件B 受事件A 的影响.故选A.4.坛子中放有3个白球,2个黑球,从中进行不放回地取球2次,每次取一球,用A 1表示第一次取得白球,A 2表示第二次取得白球,则A 1和A 2是( )A .互斥的事件B .相互独立的事件C .对立的事件D .不相互独立的事件解析:选D P (A 1)=35,若A 1发生,则P (A 2)=24=12;若A 1不发生,则P (A 2)=34,即A 1发生的结果对A 2发生的结果有影响,故A 1与A 2不是相互独立事件.故选D.四、相互独立事件同时发生的概率1.甲、乙两人破译一密码,他们能破译的概率分别为13和14.求:(1)两人都能破译的概率;(2)两人都不能破译的概率;(3)恰有一人能破译的概率;(4)至多有一人能够破译的概率.解:设“甲能破译”为事件A ,“乙能破译”为事件B ,则A 、B 相互独立,从而A 与B -、A -与B 、A -与B -均相互独立.(1)“两人都能破译”为事件AB ,则P (AB )=P (A )P (B )=13×14=112.(2)“两人都不能破译”为事件A -B -,则P (A -B -)=P (A -)P (B -)=[1-P (A )][1-P (B )]=⎝ ⎛⎭⎪⎫1-13×⎝ ⎛⎭⎪⎫1-14=12. (3)“恰有一人能破译”为事件(A B -)∪(A -B ),又A B -与A -B 互斥,所以P [(A B -)∪(A -B )]=P (A B -)+P (A -B )=P (A )P (B -)+P (A -)P (B )=13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-13×14=512. (4)“至多一人能破译”为事件(A B -)∪(A -B )∪(A -B -),且A B -、A -B 、A -B -互斥,故P [(A B -)∪(A -B )∪(A -B -)]=P (A B -)+P (A -B )+P (A -B -)=P (A )P (B -)+P (A -)P (B )+P (A -)P (B -)=13×⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫1-13×14+1-13×⎝ ⎛⎭⎪⎫1-14=1112.注:1.求相互独立事件同时发生的概率的步骤:(1)首先确定各事件是相互独立的;(2)再确定各事件会同时发生;(3)先求每个事件发生的概率,再求其积.2.公式P (AB )=P (A )P (B )可推广到一般情形,即如果事件A 1,A 2,…,A n 相互独立,那么这n 个事件同时发生的概率等于每个事件发生的概率的积,即P (A 1A 2…A n )=P (A 1)P (A 2)…P (A n ).2.要制造一种机器零件,甲机床的废品率是0.04,乙机床的废品率是0.05,从它们制造的产品中,各任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中恰有一件废品的概率; (3)其中至多有一件废品的概率; (4)其中没有废品的概率; (5)其中都是废品的概率.解:这两个机床的生产是相互独立的.设A =“从甲机床抽得的一件是废品”,B =“从乙机床抽得的一件是废品”,则P (A )=0.04,P (A -)=0.96,P (B )=0.05,P (B -)=0.95.由题意可知A 与B ,A 与B -,A -与B ,A -与B -都是相互独立的. (1)1-P (A -B -)=1-P (A -)P (B -)=1-0.96×0.95=0.088.(2)P [(A -B )∪(A B -)]=P (A -B )+P (A B -)=P (A -)P (B )+P (A )P (B -)=0.96×0.05+0.04×0.95=0.048+0.038=0.086.(3)法一:P [(A B -)∪(A -B )∪(A -B -)]=P (A B -)+P (A -B )+P (A -B -)=P (A )P (B -)+P (A -)P (B )+P (A -)P (B -)=0.04×0.95+0.96×0.05+0.96×0.95=0.998.法二:1-P (AB )=1-P (A )P (B )=1-0.04×0.05=0.998. (4)P (A -B -)=P (A -)P (B -)=0.96×0.95=0.912. (5)P (AB )=P (A )P (B )=0.04×0.05=0.002.3.从甲袋中模出一个红球的概率是13,从乙袋中摸出一个红球的概率是12,从两袋各摸出一个球,则23等于( )A .2个球不都是红球的概率B .2个球都是红球的概率C .至少有1个红球的概率D .2个球中恰有1个红球的概率解析:选C 分别记从甲、乙袋中摸出一个红球为事件A ,B ,则P (A )=13,P (B )=12,由于A ,B 相互独立,所以1-P (A -)P (B -)=1-23×12=23.根据互斥事件可知C 正确.4.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是( )A.49B.29C.23D.13解析:选A “左边圆盘指针落在奇数区域”记为事件A ,则P (A )=46=23,“右边圆盘指针落在奇数区域”记为事件B ,则P (B )=46=23,事件A 、B 相互独立,所以两个指针同时落在奇数区域的概率为23×23=49,故选A.5.有一道数学难题,在半小时内,甲能解决的概率是12,乙能解决的概率是13,2人试图独立地在半小时内解决它,则2人都未解决的概率为________,问题得到解决的概率为________.解析:甲、乙两人都未能解决的概率为 ⎝ ⎛⎭⎪⎫1-12⎝ ⎛⎭⎪⎫1-13=12×23=13, 问题得到解决就是至少有1人能解决问题, ∴P =1-13=23. 答案:13 236.甲、乙、丙三人进行乒乓球练习赛,其中两人比赛,另一人当裁判,每局比赛结束时,负的一方在下一局当裁判.设各局中双方获胜的概率为12,各局比赛的结果相互独立,第1局甲当裁判.(1)求第4局甲当裁判的概率;(2)用X 表示前4局中乙当裁判的次数,求X 的分布列.解:(1)令A 1表示第2局结果为甲获胜,A 2表示第3局甲参加比赛时,结果为甲负,A表示第4局甲当裁判.则A=A1·A2,P(A)=P(A1·A2)=P(A1)P(A2)=1 4.(2)X的所有可能取值为0,1,2.B1表示第1局结果为乙获胜,B2表示第2局乙和甲比赛时,结果为乙胜,B3表示第3局乙参加比赛时,结果为乙负,则P(X=0)=P(B1B2B-3)=P(B1)P(B2)P(B-3)=1 8,P(X=2)=P(B-1B3)=P(B-1)P(B3)=1 4,P(X=1)=1-P(X=0)-P(X=2)=5 8.故X的分布列为五、相互独立事件的综合应用1.计算机考试分理论考试与实际操作两部分,每部分考试成绩只记“合格”与“不合格”,两部分考试都“合格”者,则计算机考试“合格”,并颁发合格证书.甲、乙、丙三人在理论考试中“合格”的概率依次为45,34,23,在实际操作考试中“合格”概率依次为12,23,56,所有考试是否合格相互之间没有影响.(1)假设甲、乙、丙三人同时进行理论与实际操作两项考试,谁获得合格证书的可能性最大?(2)这三人进行理论与实际操作两项考试后,求恰有两人获得合格证书的概率.(3)用X表示甲、乙、丙三人在计算机考试后获合格证书的人数,求X的分布列.解:(1)设“甲获得合格证书”为事件A,“乙获得合格证书”为事件B,“丙获得合格证书”为事件C,则P(A)=45×12=25,P(B)=34×23=12,P(C)=23×56=59.因为P (C )>P (B )>P (A ),所以丙获得合格证书的可能性最大. (2)设“三人考试后恰有两人获得合格证书”为事件D ,则 P (D )=P (AB C -)+P (A B -C )+P (A -BC ) =25×12×49+25×12×59+35×12×59=1130. (3)随机变量X 的所有可能取值为0,1,2,3. P (X =0)=35×12×49=215,P (X =2)=P (D )=1130, P (X =3)=25×12×59=19,P (X =1)=25×12×49+35×12×49+35×12×59=718. 所以X 的分布列为注:求某些事件的概率时,应首先确定事件之间的关系,即两事件是互斥事件或对立事件,还是相互独立事件,然后再判断事件发生的情况,最后确定是利用和事件概率公式还是积事件概率公式进行概率计算.2.甲、乙两名篮球运动员互不影响地在同一位置投球,命中率分别为12与p ,且乙投球2次均未命中的概率为116.(1)求乙投球的命中率p ;(2)求甲投球2次,至少命中1次的概率.解:(1)设“甲投一次球命中”为事件A ,“乙投一次球命中”为事件B .由题意得P (B -)P (B -)=116,解得P (B -)=14或P (B -)=-14(舍去),故p =1-P (B -)=34,所以乙投球的命中率为34.(2)法一:由题设知,P (A )=12,P (A -)=12,故甲投球2次,至少命中1次的概率为1-P (A -·A -)=1-P (A -)P (A -)=34. 法二:由题设知,P (A )=12,P (A -)=12,故甲投球2次,至少命中1次的概率为2P (A )P (A -)+P (A )P (A )=34. 3.如图,已知电路中4个开关闭合的概率都是12,且是相互独立的,灯亮的概率为( )A.316B.34C.1316D.14解析:选C 记A ,B ,C ,D 这4个开关闭合分别为事件A ,B ,C ,D ,又记A 与B 至少有一个不闭合为事件E -,则P (E -)=P (A B -)+P (A -B )+P (A -B -)=34,则灯亮的概率为P =1-P (E -C -D -)=1-P (E -)P (C -)P (D -)=1-316=1316.4.已知甲袋中有3个白球和4个黑球,乙袋中有5个白球和4个黑球.现从两袋中各取2个球,则取得的4个球中有3个白球和1个黑球的概率为________.解析:记“从甲袋中取得2个白球”为事件A ,“从乙袋中取得1个黑球和1个白球”为事件B ,则P (AB )=P (A )P (B )=C 23C 27·C 15C 14C 29=563.记“从甲袋中取得1个黑球和1个白球”为事件C ,“从乙袋中取得2个白球”为事件D ,则P (CD )=P (C )P (D )=C 13C 14C 27·C 25C 29=1063.所以取得的4个球中有3个白球和1个黑球的概率为563+1063=1563=521.答案:5215.设两个相互独立事件A 与B ,若事件A 发生的概率为p ,B 发生的概率为1-p ,则A 与B 同时发生的概率的最大值________.解析:事件A 与B 同时发生的概率为p (1-p )=p -p 2(p ∈[0,1]),当p =12时,最大值为14.答案:146.某同学参加科普知识竞赛,需回答三个问题.竞赛规则规定:答对第一、二、三个问题分别得100分、100分、200分,答错得零分.假设这名同学答对第一、二、三个问题的概率分别为0.8,0.7,0.6,且各题答对与否相互之间没有影响.(1)求这名同学得300分的概率; (2)求这名同学至少得300分的概率.解:记“这名同学答对第i 个问题”为事件A i (i =1,2,3),则P (A 1)=0.8,P (A 2)=0.7,P (A 3)=0.6.(1)这名同学得300分的概率P 1=P (A 1A -2A 3)+P (A -1A 2A 3)=P (A 1)P (A -2)P (A 3)+P (A -1)P (A 2)P (A 3)=0.8×0.3×0.6+0.2×0.7×0.6=0.228.(2)这名同学至少得300分的概率P 2=P 1+P (A 1A 2A 3)=0.228+P (A 1)P (A 2)P (A 3)=0.228+0.8×0.7×0.6=0.564.巩固练习:1.下列说法正确的是( ) A .P (B |A )<P (AB ) B .P (B |A )=P (B )P (A )是可能的 C .0<P (B |A )<1 D .P (A |A )=0 解析:选B 由条件概率公式P (B |A )=P (AB )P (A )及0<P (A )≤1知P (B |A )≥P (AB ),故A 错误;当事件A 包含事件B 时,有P (AB )=P (B ),此时P (B |A )=P (B )P (A ),故B 正确;由于0≤P (B |A )≤1,P (A |A )=1,故C ,D 错误,故选B.2.某个班级共有学生40人,其中有团员15人.全班共分成4个小组,第一小组有学生10人,其中团员x 人,如果要在班内选一人当学生代表,在已知该代表是团员的条件下,这个代表恰好在第一小组内的概率是415,则x 等于( )A .2B .3C .4D .5解析:选C 设A ={在班内任选一个学生,该学生属于第一小组},B ={在班内任选一个学生,该学生是团员}.则由已知P (AB )=x 40,P (B )=1540,P (A |B )=P (AB )P (B )=415.所以x401540=415.所以x =4.3.在区间(0,1)内随机投掷一个点M (其坐标为x ),若A =⎩⎨⎧⎭⎬⎫x |0<x <12,B =⎩⎨⎧⎭⎬⎫x |14<x <34,则P (B |A )等于( )A.12B.14C.13D.34解析:选A P (A )=121=12.因为A ∩B =⎩⎨⎧⎭⎬⎫x |14<x <12,所以P (AB )=141=14,P (B |A )=P (AB )P (A )=1412=12. 4.设A ,B 为两个事件,若事件A 和B 同时发生的概率为15,在事件A 发生的条件下,事件B 发生的概率为13,则事件A 发生的概率为________.解析:∵P (AB )=15,P (B |A )=13,∴P (A )=P (AB )P (B |A )=1513=35.答案:355.高三毕业时,小红、小鑫、小芸等五位同学站成一排合影留念,已知小红、小鑫二人相邻,则小鑫、小芸相邻的概率是________.解析:设“小红、小鑫二人相邻”为事件A ,“小鑫、小芸二人相邻”为事件B ,则所求概率为P (B |A ),而P (A )=2A 44A 55=25,AB 表示事件“小鑫与小红、小芸都相邻”,故P (AB )=2A 33A 55=110,于是P (B |A )=11025=14.答案:146.将三颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个2点”,则P (A |B )=________.解析:由题意,得P (B )=1-5×5×56×6×6=91216,P (AB )=5×4×C 136×6×6=518,∴P (A |B )=P (AB )P (B )=6091. 答案:60917.一袋中装有10个大小相同的黑球和白球.若从袋中任意摸出2个球,至少有1个白球的概率为79.(1)求白球的个数;(2)现从中不放回地取球,每次取1个球,取2次,已知第1次取得白球,求第2次取得黑球的概率.解:(1)记“从袋中任意摸出2个球,至少有1个白球”为事件A ,记袋中白球个数为x .则P (A )=1-C 210-xC 210=79,解得x =5,即白球的个数为5.(2)记“第1次取得白球”为事件B ,“第2次取得黑球”为事件C ,则P (BC )=C 15C 110×C 15C 19=2590=518,P (B )=C 15C 15+C 15C 14C 110C 19=25+2090=12.P (C |B )=P (BC )P (B )=51812=59.8.任意向x 轴上(0,1)这一区间内掷一个点. (1)该点落在区间⎝ ⎛⎭⎪⎫0,13内的概率是多少? (2)在(1)的条件下,求该点落在区间⎝ ⎛⎭⎪⎫15,1内的概率.解:(1)记“该点落在区间⎝ ⎛⎭⎪⎫0,13内”为事件A ,由几何概型的概率计算公式,可知P (A )=131=13.(2)记“该点落在区间⎝ ⎛⎭⎪⎫15,1内”为事件B ,则P (AB )=13-151=215, P (B |A )=P (AB )P (A )=21513=25,故在(1)的条件下,该点落在区间⎝ ⎛⎭⎪⎫15,1内的概率为25.9.如图所示,用K ,A 1,A 2三类不同的元件连接成一个系统.当K 正常工作且A 1,A 2至少有一个正常工作时,系统正常工作.已知K ,A 1,A 2正常工作的概率依次为0.9,0.8,0.8,则系统正常工作的概率为( )A .0.960B .0.864C .0.720D .0.576解析:选B 法一:由题意知,K ,A 1,A 2正常工作的概率分别为P (K )=0.9,P (A 1)=0.8,P (A 2)=0.8.因为K ,A 1,A 2相互独立,所以A 1,A 2至少有一个正常工作的概率为P (A -1A 2)+P (A 1A -2)+P (A 1A 2)=(1-0.8)×0.8+0.8×(1-0.8)+0.8×0.8=0.96,所以系统正常工作的概率为P (K )[P (A -1A 2)+P (A 1A -2)+P (A 1A 2)]=0.9×0.96=0.864.故选B. 法二:A 1,A 2至少有一个正常工作的概率为 1-P (A -1A -2)=1-(1-0.8)×(1-0.8)=0.96.所以系统正常工作的概率为P (K )[1-P (A -1A -2)]=0.9×0.96=0.864.故选B. 10.某人忘记了电话号码的最后一个数字,因而他随意地拨号,假设拨过了的号码不再重复,则他第3次拨号才接通电话的概率为( )A.114B.79C.110D.29解析:选C 设A i ={第i 次拨号接通电话},i =1,2,3,第3次拨号才接通电话可表示为A -1A -2A 3,显然,A -1,A -2,A 3相互独立,所以P (A -1A -2A 3)=910×89×18=110.11.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别是13,12,23,则汽车在这三处因遇红灯而停车一次的概率为( )A.19B.16C.13D.718解析:选D 设汽车在甲、乙、丙三处通行分别为事件A ,B ,C ,则P (A )=13,P (B )=12,P (C )=23.停车一次即为事件A -BC +A B -C +AB C -,故其概率为P =⎝ ⎛⎭⎪⎫1-13×12×23+13×⎝ ⎛⎭⎪⎫1-12×23+13×12×⎝ ⎛⎭⎪⎫1-23=718.12.在荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片跳到另一片),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A 片上,则跳三次之后停在A 片上的概率是( )A.13B.29C.49D.827解析:选A 由题意知逆时针方向跳的概率为23,顺时针方向跳的概率为13,青蛙跳三次要回到A 只有两条途径:第一条,按A →B →C →A ,P 1=23×23×23=827;第二条,按A →C →B →A ,P 2=13×13×13=127,所以跳三次之后停在A 上的概率为P 1+P 2=827+127=13.13.台风在危害人类的同时,也在保护人类.台风给人类送来了淡水资源,大大缓解了全球水荒,另外还使世界各地冷热保持相对均衡.甲、乙、丙三颗卫星同时监测台风,在同一时刻,甲、乙、丙三颗卫星准确预报台风的概率分别为0.8,0.7,0.9,各卫星间相互独立,则在同一时刻至少有两颗卫星预报准确的概率是________.解析:设甲、乙、丙预报准确依次记为事件A ,B ,C ,不准确记为事件A -,B -,C -,则P (A )=0.8,P (B )=0.7,P (C )=0.9,P (A -)=0.2,P (B -)=0.3,P (C -)=0.1,至少两颗卫星预报准确的事件有AB C -,A B -C ,A -BC ,ABC ,这四个事件两两互斥.∴至少两颗卫星预报准确的概率为P =P (AB C -)+P (A B -C )+P (A -BC )+P (ABC )=0.8×0.7×0.1+0.8×0.3×0.9+0.2×0.7×0.9+0.8×0.7×0.9=0.056+0.216+0.126+0.504=0.902.答案:0.90214.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出2个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率为________.解析:由已知条件知,第2个问题答错,第3、4个问题答对,记“问题回答正确”事件为A ,则P (A )=0.8,故P =P [(A +A -)A -AA ]=[1-P (A )]·P (A )P (A )=0.128.答案:0.12815.已知A ,B 是治疗同一种疾病的两种药,用若干试验组进行对比试验,每个试验组由4只小白鼠组成,其中2只服用A ,另2只服用B ,然后观察疗效,若在一个试验组中,服用A 有效的白鼠的只数比服用B 有效的多,就称该试验组为甲类组,设每只小白鼠服用A 有效的概率为23,服用B 有效的概率为12.(1)求一个试验组为甲类组的概率;(2)观察3个试验组,求这3个试验组中至少有一个甲类组的概率.解:(1)设A i 表示事件“一个试验组中,服用A 有效的小白鼠有i 只”,i =0,1,2.B i 表示事件“一个试验组中,服用B 有效的小白鼠有i 只”,i =0,1,2.据题意有:P (A 1)=2×13×23=49,P (A 2)=23×23=49,P (B 0)=12×12=14,P (B 1)=2×12×12=12.所求概率为P (B 0A 1)+P (B 0A 2)+P (B 1A 2)=14×49+14×49+12×49=49.(2)所求概率为1-⎝ ⎛⎭⎪⎫1-493=604729. 16.某大学开设甲、乙、丙三门选修课,学生选修哪门课互不影响.已知学生小张只选甲的概率为0.08,只选甲和乙的概率为0.12,至少选一门课的概率为0.88,用ξ表示小张选修的课程门数和没有选修的课程门数的乘积.(1)求学生小张选修甲的概率;(2)记“函数f (x )=x 2+ξx 为R 上偶函数”为事件A ,求事件A 的概率;(3)求ξ的分布列.解:(1)设学生小张选修甲、乙、丙的概率分别为x ,y ,z ,则⎩⎨⎧ x (1-y )(1-z )=0.08,xy (1-z )=0.12,(1-x )(1-y )(1-z )=0.12,解得⎩⎨⎧ x =0.4,y =0.6,z =0.5.所以学生小张选修甲的概率为0.4.(2)若函数f (x )=x 2+ξx 为R 上的偶函数,则ξ=0.当ξ=0时,表示小张选修三门课或三门课都不选,所以P (A )=P (ξ=0)=xzy +(1-x )(1-y )(1-z )=0.4×0.6×0.5+(1-0.4)(1-0.6)(1-0.5)=0.24,即事件A 的概率为0.24.(3)根据题意,知ξ可能的取值为0,2,P (ξ=0)=0.24.根据分布列的性质,知P (ξ=2)=1-P (ξ=0)=0.76.所以ξ的分布列为。
7.1.1条件概率公式-【新教材】人教A版高中数学选择性必修第三册课件

产生(积事件AB)的概率的问题.当事件A与B相互独立时,有
P(AB)=P(A)P(B).
如果事件A与B不独立,如何表示积事件AB的概率呢?
• 结合古典概型,了解条件概率与概率的乘法公式,了解条件概率与独立性的关
系;能计算简单随机事件的条件概率。
例3: 银行储蓄卡的密码由6位数字组成.某人在银行自助取款机上取钱时,忘记了码
的最后1位数字.求:
(1)任意按最后1位数字,不超过2次就按对的概率;
(2)如果记得密码的最后1位是偶数,不超过2次就按对的概率。
(2)设B=“最后1位密码为偶数”,则
P(A|B)=P(A1|B)+P(A2|B)= +
ഥ =
=
× =
× =
因为P(A)= P(B)= P(C),所以中奖的概率与抽奖的次序无关。
例3: 银行储蓄卡的密码由6位数字组成.某人在银行自助取款机上取钱时,忘记了码
的最后1位数字.求:
(1)任意按最后1位数字,不超过2次就按对的概率;
(2)如果记得密码的最后1位是偶数,不超过2次就按对的概率。
重点:条件概率的概念及计算,概率的乘法公式及其应用。
难点:对条件概率中“条件”的正确理解,条件概率与无条件概率的比较。
问题1:某个班级有45名学生,其中男生、女生的人数及团员的人数如下表所示:
团员
非团员
合计
男生
16
9
25
女生
14
6
20
合计
30
15
45
在班级里随机选择一人做代表:
新人教版高中数学选择性必修第三册7.1 条件概率与全概率公式

.
解析 (1)从这批产品中随便地取一件,则这件产品恰好是次品的概率是 81 = 27 .
1 200 400
(2)设A:取出的产品是甲厂生产的,B:取出的产品为次品,
则由已知可得P(A)= 500 ,P(AB)= 25 ,所以这件产品恰好是甲厂生产的次品的概
1 200
1 200
率是P(B|A)= P(AB) = 1 .
第七章 随机变量及其散布
1 |利用定义求条件概率 农历五月初五是我国的传统节日——端午节,这一天,馨馨的妈妈煮了9个粽子,其 中4个大枣馅、3个腊肉馅、2个豆沙馅,馨馨随机选取两个粽子.
第七章 随机变量及其散布
1.若已知馨馨取到的两个粽子的馅不同,则取到的两个粽子分别是大枣馅和豆沙馅
的概率是多少?
P(A) P(D)
+
P(B) P(D)
=
C620 12 180
+
C620 12 180
=
13 58
.
C620
C620
所以他获得优秀的概率是 13 .
58
第七章 随机变量及其散布
4 |乘法公式及其应用 乘法公式的特点及注意事项 1.知二求一:若P(A)>0,则已知P(A),P(B|A),P(AB)中的两个值就可以求得第三个值; 若P(B)>0,则已知P(B),P(A|B),P(AB)中的两个值就可以求得第三个值. 2.P(B)与P(B|A)的区分在于两者产生的条件不同,它们是两个不同的概念,在数值上 一般也不同.
多少?
提示:用C表示事件“取到的两个粽子为同一种馅”,D表示事件“取到的两个粽子
都为腊肉馅”,
则P(C)=
C24
C32 C92
高三条件概率知识点总结

高三条件概率知识点总结高中数学中的概率是一个重要的章节,而条件概率是其中的一个核心知识点。
在高三阶段,学生们需要对条件概率进行全面的学习和理解。
本文将从条件概率的定义和性质、条件概率的计算方法、条件概率的应用等方面对这一知识点进行总结和归纳。
一、条件概率的定义和性质条件概率是指在事件B已经发生的条件下,事件A发生的概率。
用数学符号表示为P(A|B)。
条件概率的定义和性质需要我们对概率的基本概念有一定的了解。
条件概率的定义可以表示为:P(A|B) = P(AB) / P(B)。
其中,P(B) ≠ 0。
条件概率的性质有以下几个方面:互斥性、非互斥性、独立性和非独立性。
互斥性是指在两个事件的发生过程中,其中一个事件的发生将排除另一个事件的发生。
非互斥性则相反。
独立性是指两个事件的发生与否不会相互影响,而非独立性则表示相反的情况。
二、条件概率的计算方法条件概率的计算主要有两种方法:频率法和几何法。
频率法是根据历史数据或实验结果来计算条件概率。
几何法则是通过几何图形进行计算。
在使用频率法计算条件概率时,我们需要先进行事件的分类和计数,然后使用P(A|B) = N(A∩B) / N(B)的公式进行计算。
其中,N(A∩B)表示A和B同时发生的次数,N(B)表示事件B发生的总次数。
几何法则是通过事件发生的几何图形进行计算。
可以通过画出事件A和B在样本空间中的区域,来计算两个事件之间的重叠面积。
通过求出重叠面积与事件B的面积之比,即可得到条件概率。
三、条件概率的应用条件概率在实际生活中有着广泛的应用。
其中一个经典的应用是贝叶斯定理。
贝叶斯定理是一种根据已知的结果来推断事件的概率的方法。
在实际应用中,我们通常会通过贝叶斯定理来进行医学诊断、市场预测等方面的分析。
另一个应用是在赌博游戏中的运用。
比如,在扑克牌游戏中,根据已知的手牌和公共牌,可以通过条件概率来计算自己手中牌型的概率,从而根据概率来做出合理的决策。
此外,条件概率还可以应用于信息论和统计学等领域。
高中数学公式大全概率计算与统计分析的公式推导

高中数学公式大全概率计算与统计分析的公式推导高中数学公式大全——概率计算与统计分析的公式推导概率计算是数学中一个重要的分支,而统计分析则是应用数学在实际问题中进行数据处理和推断的过程。
本文将介绍一些在高中数学中常用的概率计算与统计分析的公式,并给出其推导过程。
一、概率计算公式1.1 事件的概率计算公式在概率论中,我们用P(A)表示事件A发生的概率,事件A的概率可以通过以下公式计算:P(A) = 事件A的发生数 / 样本空间的元素数1.2 条件概率公式条件概率是指在已知事件B发生的条件下,事件A发生的概率。
条件概率可以通过以下公式计算:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A与事件B同时发生的概率,P(B)表示事件B发生的概率。
1.3 独立事件的乘法公式当两个事件A和B相互独立时,事件A与事件B同时发生的概率等于事件A发生的概率乘以事件B发生的概率。
数学上可以表示为:P(A∩B) = P(A) * P(B)二、统计分析公式2.1 样本均值的计算公式在统计学中,样本均值是用来度量一组数据的集中程度的重要指标。
对于n个样本数据X₁, X₂, ... , Xn,样本均值可以通过以下公式计算:x = (X₁ + X₂ + ... + Xn) / n其中,x表示样本均值。
2.2 样本方差的计算公式样本方差是用来度量一组数据的离散程度的指标。
对于n个样本数据X₁, X₂, ... , Xn,样本方差可以通过以下公式计算:S² = [(X₁ - x)² + (X₂ - x)² + ... + (Xn - x)²] / (n-1)其中,S²表示样本方差,x表示样本均值。
2.3 假设检验中的t检验公式t检验是一种常用的假设检验方法,用于判断两组或多组数据之间差异的显著性。
对于两个独立样本的t检验,可以使用以下公式计算t 值:t = (x₁ - x₂) / sqrt(S₁²/n₁ + S₂²/n₂)其中,x₁和x₂分别表示两个样本的均值,S₁²和S₂²分别表示两个样本的方差,n₁和n₂分别表示两个样本的样本容量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例2、 一张储蓄卡的密码共有6位数字,每位数字都可从
0—9中任选一个。某人在银行自动取款机上取钱时,忘记 了密码的最后一位数字,求:
(1)任意按最后一位数字和事件B,在已知事件A发生的 条件下事件B发生的概率”,叫做条件概率。 记作P(B |A).
2.条件概率计算公式:
P ( AB ) P( A | B ) P( A )
如果 B和C 互斥, 那么 P ( B C ) | A P( B | A) P(C | A)
例1、在6道题中有4道理科题和2道文科题,如果
(2)如果他记得密码的最后一位是偶数,不超过2次就按 对的概率。
条件概率
探究:
三张奖券中只有一张能中奖,现分别由三名同学 无放回的抽取,问最后一名同学抽到中奖奖券的概率 是否比前两名同学小?
思考?
如果已经知道第一名同学没有抽到中奖奖券,那 么最后一名同学抽到中奖奖券的概率又是多少? 已知第一名同学的抽奖结果为什么会影响最 后一名同学抽到中奖奖券的概率呢?
1.条件概率