中考数学复习选择题解法1[人教版]
人教版九年级中考数学 考点复习 全等三角形 专题练习

人教版九年级中考数学考点复习全等三角形专题练习一.选择题(本大题共10道小题)1. 已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°2. 如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D3. 如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD4. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC5. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F.若∠BCE=65°,则∠CAF的度数为( )A.30°B.25°C.35°D.65°6. 在正方形网格中,∠AOB的位置如图所示,则下列各点中到∠AOB两边距离相等的点是( )A.点QB.点NC.点RD.点M7. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS8. 如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36o.连接AC、BD交于点M,连接OM.下列结论:①∠AMB=36o;②AC=BD;③OM平分∠AOD;④MO平分∠AMD其中正确的结论个数有( )个.A.4B.3C.2D.19. 下面是黑板上出示的尺规作图题需要回答横线上符号代表的内容.如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法:(1)以△为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,○长为半径画弧交EG于点D;(3)以点D为圆心,* 长为半径画弧交前弧于点F;(4)作⊕,则∠DEF即为所求作的角.A.△表示点EB.○表示PQC.*表示EDD.⊕表示射线EF10. 如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二.填空题(本大题共6道小题)11. 如图,点B 、F 、C 、E 在一条直线上,已知FB=CE,AC ∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF.12. 如图,四边形ABCD 中,∠BAC =∠DAC,请补充一个条件 ,使得△ABC ≌△ADC.13. 如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)14. 如图,AC=AD,∠1=∠2,要使ABC AED ≌△△,应添加的条件是______(只需写出一个条件即可)15. 如图,点P 为定角∠AOB 的平分线上的一个定点,点M,N 分别在射线OA,OB 上(都不与点O 重合),且∠MPN 与∠AOB 互补.若∠MPN 绕着点P 转动,那么以下四个结论:①P M =PN 恒成立;②MN 的长不变;③OM+ON 的值不变;④四边形PMON 的面积不变.其中正确的为_____.(填番号)16. 如图,在△ABC 中,AB =AC,点D 在BC 上(不与点B,C 重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是 (写出一个即可).三.解答题(本大题共6道小题)17. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.18. 如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.19. 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20. 如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21. 在Rt△ABC中,∠ACB=90°,CB=CA=22,点D是射线AB上一点,连接CD,在CD右侧作∠DCE =90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.22. 如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.。
人教版初中数学中考复习一轮复习——一元二次方程解法及其应用(1)

D 1.(2021·河南) 若方程 x2-2x+m=0没有实数根,则 m的值可以是( )
A.-1
B.0
C.1
D. 3
2.(2021•岳阳)已知关于x的一元二次方程x2+6x+k=0有两个相等 的实数根,则实数k的值为 k 9.
3.(2021•台州)关于x的方程x2﹣4x+m=0有两个不相等的实数根,
a 1,b 3, c 4
b2 4ac -3 2 41(- 4) 9 16 25 0
所以方程有两个不等实数根
x b 3 25 3 5
2a
2
2
x1 4, x2 1
考点二:一元二次方程的解法
1x2 3x 4
2x2 6x 7 0
32 x2 4x 5 0
解:a 1,b (k 3),c 1 k
b2 4ac (k 3)2 41 (1 k) k 2 2k 5 k 2 2k 1 4 (k 1)2 4
因为(k 1)2 4 0, 所以方程有两个不等实数根。
考点三:判别式和一元二次方程根的情况
5.(2021•烟台)已知关于x的一元二次方程x2﹣mnx+m+n=0,其中
考点二:一元二次方程的解法
2.配方法
对应练习: 1x2 4x 1 0
22x2 8x 3 0
12x2 1 3x
22x2 8x 3 0 x2 4x 3 0
2
x2 4x 3 2
x2 4x 4 3 4 2
x22 11 2
x 2 22 2
x1 2
22 ,x 2
变式2.若方程ax2+2x+1=0有两个不相等的实数根,则实数a的 取值范围是(a 1且a 0 )
人教版九年级数学中考复习:选择、填空综合训练1

选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.√(−8)33的立方根是( )A.8 B.-8 C.2 D.-22.下列计算结果是x5的为( C )A.x10÷x2B.x6-x1C.-x2·(-x)3D.(-x)3·(-x)2 3.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( )第3题图A.60π cm2B.48π cm2C.96π cm2D.80π cm2 4.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是( )A.平均数B.中位数C.方差D.众数5.满足下列条件的三条线段a,b,c能构成三角形的是( )A.a∶b∶c=1∶2∶3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a∶b∶c=1∶1∶26.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( )第6题图A.34B.13C.12D.147.如图所示,在正五边形ABCDE中,过顶点A作AF⊥CD,垂足为点F,连接对角线AC,则∠CAF的度数是( )第7题图A.16° B.18° C.24° D.28°8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( )第8题图A.(62-x)(42-x)=2400 B.(62-x)(42-x)+x2=2400C.62×42-62x-42x=2400 D.62x+42x=24009.已知二次函数y=-14x2+bx+c的图象如图,则一次函数y=-14x-2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是( )第9题图10.如图1,点P为矩形ABCD边上的一个动点,运动路线是A→B→C→D→A.设点P运动的路径长为x,△ABP的面积S△ABP=y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是( )第10题图A.34B.41 C.8 D.10二、填空题:本大题共8小题,每小题3分,共24分.11.比较大小:-3-22(填“>”“<”或“=”).12.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为.13.如果在解关于x的分式方程xx-1+k1-x=2时出现了增根x=1,那么常数k的值为.14.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=8,AC=10,则△AMN的周长为.第14题图15.《九章算术》第九章“勾股”问题十九:“今有邑方(正方形小城)不知大小,各开中门.出北门三十步有木,出西门七百五十步见木.问:邑方几何(小城的边长)?”根据描述如图所示,其中E表示西门,F表示北门,G,H处是木(E,F 分别是所在边的中点).则邑的边长为步.第15题图16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,则图中阴影部分的面积为 .第16题图17.如图,点O是▱ABCD的对称中心,AD>AB,E,F是边AB上的点,且EF=12 AB,G,H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S 1与S2之间的等量关系是.第17题图18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;….按此规律继续旋转,直至得到点P2020为止,则AP2020=.第18题图选择、填空综合训练(时间:40分钟分值:54分)一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项.1.√(−8)33的立方根是( D )A.8 B.-8 C.2 D.-22.下列计算结果是x5的为( C )A.x10÷x2B.x6-x1C.-x2·(-x)3D.(-x)3·(-x)2 3.一个物体的三视图如图所示,根据图中的数据,可求这个物体的表面积为( C )第3题图A.60π cm2B.48π cm2C.96π cm2D.80π cm2 4.一组数据3,5,5,7,若添加一个数据5,则发生变化的统计量是( C )A.平均数B.中位数C.方差D.众数5.满足下列条件的三条线段a,b,c能构成三角形的是( C )A.a∶b∶c=1∶2∶3 B.a+b=4,a+b+c=9C.a=3,b=4,c=5 D.a∶b∶c=1∶1∶26.如图,小明随意向水平放置的大正方形内部区域抛一个小球,则小球停在小正方形内部(阴影)区域的概率为( C )第6题图A.34B.13C.12D.147.如图所示,在正五边形ABCDE中,过顶点A作AF⊥CD,垂足为点F,连接对角线AC,则∠CAF的度数是( B )第7题图A.16° B.18° C.24° D.28°8.如图,在长为62米、宽为42米的矩形草地上修同样宽的路,余下部分种植草坪.要使草坪的面积为2400平方米,设道路的宽为x米,则可列方程为( A )第8题图A.(62-x)(42-x)=2400 B.(62-x)(42-x)+x2=2400C.62×42-62x-42x=2400 D.62x+42x=24009.已知二次函数y=-14x2+bx+c的图象如图,则一次函数y=-14x-2b与反比例函数y=cx在同一平面直角坐标系中的图象大致是( C )第9题图10.如图1,点P为矩形ABCD边上的一个动点,运动路线是A→B→C→D→A.设点P运动的路径长为x,△ABP的面积S△ABP=y,图2是y随x变化的函数图象,则矩形ABCD的对角线BD的长是( B )第10题图A.34B.41 C.8 D.10二、填空题:本大题共8小题,每小题3分,共24分.11.比较大小:-3<-22(填“>”“<”或“=”).12.要使式子x+3x-1+(x-2)0有意义,则x的取值范围为 x≥-3且x≠1且x≠2.13.如果在解关于x的分式方程xx-1+k1-x=2时出现了增根x=1,那么常数k的值为 1 .14.如图,在△ABC中,∠B与∠C的平分线交于点O,过点O作MN∥BC,分别交AB,AC于点M,N.若AB=8,AC=10,则△AMN的周长为 18 .第14题图15.《九章算术》第九章“勾股”问题十九:“今有邑方(正方形小城)不知大小,各开中门.出北门三十步有木,出西门七百五十步见木.问:邑方几何(小城的边长)?”根据描述如图所示,其中E表示西门,F表示北门,G,H处是木(E,F 分别是所在边的中点).则邑的边长为 300 步.第15题图16.如图,在Rt△ABC中,∠B=90°,点O在边AB上,以点O为圆心,OA为半径的圆经过点C,过点C作直线MN,使∠BCM=2∠A.若OA=4,∠BCM=60°,则图中阴影部分的面积为16π3-4 3 .第16题图17.如图,点O是▱ABCD的对称中心,AD>AB,E,F是边AB上的点,且EF=12 AB,G,H是BC边上的点,且GH=13BC,若S1,S2分别表示△EOF和△GOH的面积,则S 1与S2之间的等量关系是 S1=32S2.第17题图18.如图,等腰Rt△ABC中,∠ACB=90°,AC=BC=1,且AC边在直线a上,将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=1+2;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=2+2;….按此规律继续旋转,直至得到点P2020为止,则AP2020= 1346+674 2 .第18题图。
中考数学选择题和填空题解题技巧

中考数学选择题和填空题解题技巧选择题解法大全方法一:排除选项法选择题因其答案是四选一,必然只有一个正确答案,那么我们就可以采用排除法,从四个选项中排除掉易于判断是错误的答案,那么留下的一个自然就是正确的答案。
方法二:赋予特殊值法即根据题目中的条件,选取某个符合条件的特殊值或作出特殊图形进行计算、推理的方法。
用特殊值法解题要注意所选取的值要符合条件,且易于计算。
方法三:通过猜想、测量的方法,直接观察或得出结果这类方法在近年来的初中题中常被运用于探索规律性的问题,此类题的主要解法是运用不完全归纳法,通过试验、猜想、试误验证、总结、归纳等过程使问题得解。
方法四:直接求解法有些选择题本身就是由一些填空题、判断题、解答题改编而来的,因此往往可采用直接法,直接由从题目的条件出发,通过正确的运算或推理,直接求得结论,再与选择项对照来确定选择项。
我们在做解答题时大部分都是采用这种方法。
例如:商场促销活动中,将标价为200元的商品,在打8折的基础上,再打8折销售,现该商品的售价是( )A 、160元 B、128元 C 、120元 D、 88元方法五:数形结合法解决与图形或图像有关的选择题,常常要运用数形结合的思想方法,有时还要综合运用其他方法。
方法六:代入法将选择支代入题干或题代入选择支进行检验,然后作出判断。
方法七:观察法观察题干及选择支特点,区别各选择支差异及相互关系作出选择。
方法八:枚举法列举所有可能的情况,然后作出正确的判断。
例如:把一张面值10元的人民币换成零钱,现有足够面值为2元,1元的人民币,换法有( )A.5种B.6种C.8种D.10种分析:如果设面值2元的人民币x张,1元的人民币y元,不难列出方程,此方程的非负整数解有6对,故选B。
方法九:待定系数法要求某个函数关系式,可先假设待定系数,然后根据题意列出方程(组),通过解方程(组),求得待定系数,从而确定函数关系式,这种方法叫待定系数法。
方法十:不完全归纳法当某个数学问题涉及到相关多乃至无穷多的情形,头绪纷乱很难下手时,行之有效的方法是通过对若干简单情形进行考查,从中找出一般规律,求得问题的解决。
(人教版)2020年中考数学真题试题(含解析1) 人教新目标版

2019年中考数学真题试题一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B.C.D.62.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×1073.(3.00分)图中立体图形的主视图是()A.B. C.D.4.(3.00分)观察下列图形,是中心对称图形的是()A. B.C.D.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,106.(3.00分)下列运算正确的是()A.a2•a3=a6B.3a﹣a=2a C.a8÷a4=a2D.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B.C.D.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③ B.②③ C.②④ D.③④二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9= .14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC= .三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.18.(6.00分)先化简,再求值:,其中x=2.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:请根据上图完成下面题目:(1)总人数为人,a= ,b= .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.参考答案与试题解析一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(3.00分)6的相反数是()A.﹣6 B.C.D.6【分析】直接利用相反数的定义进而分析得出答案.【解答】解:6的相反数是:﹣6.故选:A.【点评】此题主要考查了相反数的定义,正确把握相关定义是解题关键.2.(3.00分)260000000用科学记数法表示为()A.0.26×109B.2.6×108C.2.6×109D.26×107【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:260000000用科学记数法表示为2.6×108.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3.00分)图中立体图形的主视图是()A.B. C.D.【分析】根据主视图是从正面看的图形解答.【解答】解:从正面看,共有两层,下面三个小正方体,上面有两个小正方体,在右边两个.故选:B.【点评】本题考查了三视图,关键是根据学生的思考能力和对几何体三种视图的空间想象能力进行解答.4.(3.00分)观察下列图形,是中心对称图形的是()A. B.C.D.【分析】根据中心对称图形的概念对各选项分析判断即可得解【解答】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项正确;D、是中心对称图形,故本选项错误.故选:D.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.(3.00分)下列数据:75,80,85,85,85,则这组数据的众数和极差是()A.85,10 B.85,5 C.80,85 D.80,10【分析】根据一组数据中出现次数最多的数据叫做众数,极差是指一组数据中最大数据与最小数据的差进行计算即可.【解答】解:众数为85,极差:85﹣75=10,故选:A.【点评】此题主要考查了众数和极差,关键是掌握众数定义,掌握极差的算法.6.(3.00分)下列运算正确的是()A.a2•a3=a6B.3a﹣a=2a C.a8÷a4=a2D.【分析】直接利用二次根式加减运算法则以及同底数幂的乘除运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、3a﹣a=2a,正确;C、a8÷a4=a4,故此选项错误;D、+无法计算,故此选项错误.故选:B.【点评】此题主要考查了二次根式加减运算以及同底数幂的乘除运算、合并同类项,正确掌握运算法则是解题关键.7.(3.00分)把函数y=x向上平移3个单位,下列在该平移后的直线上的点是()A.(2,2)B.(2,3)C.(2,4)D.(2,5)【分析】根据平移的性质得出解析式,进而解答即可.【解答】解:∵该直线向上平移3的单位,∴平移后所得直线的解析式为:y=x+3;把x=2代入解析式y=x+3=5,故选:D.【点评】本题考查的是一次函数的图象与几何变换,熟知一次函数图象平移的法则是解答此题的关键.8.(3.00分)如图,直线a,b被c,d所截,且a∥b,则下列结论中正确的是()A.∠1=∠2 B.∠3=∠4 C.∠2+∠4=180°D.∠1+∠4=180°【分析】依据两直线平行,同位角相等,即可得到正确结论.【解答】解:∵直线a,b被c,d所截,且a∥b,∴∠3=∠4,故选:B.【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.9.(3.00分)某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x个,小房间有y个.下列方程正确的是()A. B.C.D.【分析】根据题意可得等量关系:①大房间数+小房间数=70;②大房间住的学生数+小房间住的学生数=480,根据等量关系列出方程组即可.【解答】解:设大房间有x个,小房间有y个,由题意得:,故选:A.【点评】此题主要考查了由实际问题抽象出二元二一方程组,关键是正确理解题意,找出题目中的等量关系.10.(3.00分)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.【分析】设三角板与圆的切点为C,连接OA、OB,由切线长定理得出AB=AC=3、∠OAB=60°,根据OB=ABtan∠OAB 可得答案.【解答】解:设三角板与圆的切点为C,连接OA、OB,由切线长定理知AB=AC=3,OA平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=ABtan∠OAB=3,∴光盘的直径为6,故选:D.【点评】本题主要考查切线的性质,解题的关键是掌握切线长定理和解直角三角形的应用.11.(3.00分)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论正确是()A.abc>0B.2a+b<0C.3a+c<0D.ax2+bx+c﹣3=0有两个不相等的实数根【分析】根据抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,进而解答即可.【解答】解:∵抛物线开口方向得a<0,由抛物线对称轴为直线x=﹣,得到b>0,由抛物线与y轴的交点位置得到c>0,A、abc<0,错误;B、2a+b>0,错误;C、3a+c<0,正确;D、ax2+bx+c﹣3=0无实数根,错误;故选:C.【点评】本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下;一次项系数b和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左侧;当a与b异号时(即ab<0),对称轴在y轴右侧;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2﹣4ac >0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x 轴没有交点.12.(3.00分)如图,A、B是函数y=上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是()①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16A.①③ B.②③ C.②④ D.③④【分析】由点P是动点,进而判断出①错误,设出点P的坐标,进而得出AP,BP,利用三角形面积公式计算即可判断出②正确,利用角平分线定理的逆定理判断出③正确,先求出矩形OMPN=4,进而得出mn=4,最后用三角形的面积公式即可得出结论.【解答】解:∵点P是动点,∴BP与AP不一定相等,∴△BOP与△AOP不一定全等,故①不正确;设P(m,n),∴BP∥y轴,∴B(m,),∴BP=|﹣n|,∴S△BOP=|﹣n|×m=|12﹣mn|∵PA∥x轴,∴A(,n),∴AP=|﹣m|,∴S△AOP=|﹣m|×n=|12﹣mn|,∴S△AOP=S△BOP,故②正确;如图,过点P作PF⊥OA于F,PE⊥OB于E,∴S△AOP=OA×PF,S△BOP=OB×PE,∵S△AOP=S△BOP,∴OB×PE=OA×PE,∵OA=OB,∴PE=PF,∵PE⊥OB,PF⊥OA,∴OP是∠AOB的平分线,故③正确;如图1,延长BP交x轴于N,延长AP交y轴于M,∴AM⊥y轴,BN⊥x轴,∴四边形OMPN是矩形,∵点A,B在双曲线y=上,∴S△AMO=S△BNO=6,∵S△BOP=4,∴S△PMO=S△PNO=2,∴S矩形OMPN=4,∴mn=4,∴m=,∴BP=|﹣n|=|3n﹣n|=2|n|,AP=|﹣m|=,∴S△APB=AP×BP=×2|n|×=8,故④错误;∴正确的有②③,故选:B.【点评】此题是反比例函数综合题,主要考查了反比例函数的性质,三角形面积公式,角平分线定理逆定理,矩形的判定和性质,正确作出辅助线是解本题的关键.二、填空题(每题3分,满分12分,将答案填在答题纸上)13.(3.00分)分解因式:a2﹣9= (a+3)(a﹣3).【分析】直接利用平方差公式分解因式进而得出答案.【解答】解:a2﹣9=(a+3)(a﹣3).故答案为:(a+3)(a﹣3).【点评】此题主要考查了公式法分解因式,熟练应用平方差公式是解题关键.14.(3.00分)一个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率:.【分析】根据题意可知正六面体的骰子六个面三个奇数、三个偶数,从而可以求得相应的概率.【解答】解:个正六面体的骰子投掷一次得到正面向上的数字为奇数的概率为:,故答案为:.【点评】本题考查概率公式,解答本题的关键是明确题意,求出相应的概率.15.(3.00分)如图,四边形ACDF是正方形,∠CEA和∠ABF都是直角且点E,A,B三点共线,AB=4,则阴影部分的面积是8 .【分析】根据正方形的性质得到AC=AF,∠CAF=90°,证明△CAE≌△AFB,根据全等三角形的性质得到EC=AB=4,根据三角形的面积公式计算即可.【解答】解:∵四边形ACDF是正方形,∴AC=AF,∠CAF=90°,∴∠EAC+∠FAB=90°,∵∠ABF=90°,∴∠AFB+∠FAB=90°,∴∠EAC=∠AFB,在△CAE和△AFB中,,∴△CAE≌△AFB,∴EC=AB=4,∴阴影部分的面积=×AB×CE=8,故答案为:8.【点评】本题考查的是正方形的性质、全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键.16.(3.00分)在Rt△ABC中,∠C=90°,AD平分∠CAB,BE平分∠ABC,AD、BE相交于点F,且AF=4,EF=,则AC= .【分析】先求出∠EFG=45°,进而利用勾股定理即可得出FG=EG=1,进而求出AE,最后判断出△AEF∽△AFC,即可得出结论.【解答】解:如图,∵AD,BE是分别是∠BAC和∠ABC的平分线,∴∠1=∠2,∠3=∠4,∵∠ACB=90°,∴2(∠2+∠4)=90°,∴∠2+∠4=45°,∴∠EFG=∠2+∠4=45°,过点E作EG⊥AD于G,在Rt△EFG中,EF=,∴FG=EG=1,∵AF=4,∴AG=AF﹣FG=3,根据勾股定理得,AE==,连接CF,∵AD平分∠CAB,BE平分∠ABC,∴CF是∠ACB的平分线,∴∠ACF=45°=∠AFE,∵∠CAF=∠FAE,∴△AEF∽△AFC,∴,∴AC===,故答案为.【点评】此题主要考查了角平分线定义,勾股定理,相似三角形的判定和性质,求出AE是解本题的关键.三、解答题(本大题共7小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(5.00分)计算:()﹣1﹣2sin45°+|﹣|+(2018﹣π)0.【分析】直接利用特殊角的三角函数值以及零指数幂的性质和负指数幂的性质分别化简得出答案.【解答】解:原式=2﹣2×++1=3.【点评】此题主要考查了实数运算,正确化简各数是解题关键.18.(6.00分)先化简,再求值:,其中x=2.【分析】根据分式的运算法则即可求出答案,【解答】解:原式=把x=2代入得:原式=【点评】本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.19.(7.00分)某学校为调查学生的兴趣爱好,抽查了部分学生,并制作了如下表格与条形统计图:请根据上图完成下面题目:(1)总人数为100 人,a= 0.25 ,b= 15 .(2)请你补全条形统计图.(3)若全校有600人,请你估算一下全校喜欢艺术类学生的人数有多少?【分析】(1)根据“频率=频数÷总数”求解可得;(2)根据频数分布表即可补全条形图;(3)用总人数乘以样本中“艺术”类频率即可得.【解答】解:(1)总人数为40÷0.4=100人,a=25÷100=0.25、b=100×0.15=15,故答案为:100、0.25、15;(2)补全条形图如下:(3)估算全校喜欢艺术类学生的人数有600×0.15=90人.【点评】此题主要考查了条形统计图的应用以及利用样本估计总体,根据题意求出样本总人数是解题关键.20.(8.00分)已知菱形的一个角与三角形的一个角重合,然后它的对角顶点在这个重合角的对边上,这个菱形称为这个三角形的亲密菱形,如图,在△CFE中,CF=6,CE=12,∠FCE=45°,以点C为圆心,以任意长为半径作AD,再分别以点A和点D为圆心,大于AD长为半径作弧,交EF于点B,AB∥CD.(1)求证:四边形ACDB为△FEC的亲密菱形;(2)求四边形ACDB的面积.【分析】(1)根据折叠和已知得出AC=CD,AB=DB,∠ACB=∠DCB,求出AC=AB,根据菱形的判定得出即可;(2)根据相似三角形的性质得出比例式,求出菱形的边长和高,根据菱形的面积公式求出即可.【解答】(1)证明:∵由已知得:AC=CD,AB=DB,由已知尺规作图痕迹得:BC是∠FCE的角平分线,∴∠ACB=∠DCB,又∵AB∥CD,∴∠ABC=∠DCB,∴∠ACB=∠ABC,∴AC=AB,又∵AC=CD,AB=DB,∴AC=CD=DB=BA∴四边形ACDB是菱形,∵∠ACD与△FCE中的∠FCE重合,它的对角∠ABD顶点在EF上,∴四边形ACDB为△FEC的亲密菱形;(2)解:设菱形ACDB的边长为x,∵四边形ABCD是菱形,∴AB∥CE,∴∠FAB=∠FCE,∠FBA=∠E,△EAB∽△FCE则:,即,解得:x=4,过A点作AH⊥CD于H点,∵在Rt△ACH中,∠ACH=45°,∴,∴四边形ACDB的面积为:.【点评】本题考查了菱形的性质和判定,解直角三角形,相似三角形的性质和判定等知识点,能求出四边形ABCD 是菱形是解此题的关键.21.(8.00分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?【分析】(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据单价=总价÷单价结合第二批饮料的数量是第一批的3倍,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设销售单价为m元,根据获利不少于1200元,即可得出关于m的一元一次不等式,解之取其最小值即可得出结论.【解答】解:(1)设第一批饮料进货单价为x元,则第二批饮料进货单价为(x+2)元,根据题意得:3•=,解得:x=8,经检验,x=8是分式方程的解.答:第一批饮料进货单价为8元.(2)设销售单价为m元,根据题意得:200(m﹣8)+600(m﹣10)≥1200,解得:m≥11.答:销售单价至少为11元.【点评】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,列出关于m的一元一次不等式.22.(9.00分)如图在⊙O中,BC=2,AB=AC,点D为AC上的动点,且cosB=.(1)求AB的长度;(2)求AD•AE的值;(3)过A点作AH⊥BD,求证:BH=CD+DH.【分析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN全等,由全等三角形对应边相等及等量代换即可得证.【解答】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=BC=1,∵cosB==,在Rt△AMB中,BM=1,∴AB==;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴=,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【点评】此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.23.(9.00分)已知顶点为A抛物线经过点,点.(1)求抛物线的解析式;(2)如图1,直线AB与x轴相交于点M,y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A﹣B﹣C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN1,若点N1落在x轴上,请直接写出Q点的坐标.【分析】(1)将点B坐标代入解析式求得a的值即可得;(2)由∠OPM=∠MAF知OP∥AF,据此证△OPE∽△FAE得,即OP=FA,设点P(t,﹣2t﹣1),列出关于t的方程解之可得;(3)分点Q在AB上运动、点Q在BC上运动且Q在y轴左侧、点Q在BC上运动且点Q在y轴右侧这三种情况分类讨论即可得.【解答】解:(1)把点代入,解得:a=1,∴抛物线的解析式为:;(2)由知A(,﹣2),设直线AB解析式为:y=kx+b,代入点A,B的坐标,得:,解得:,∴直线AB的解析式为:y=﹣2x﹣1,易求E(0,1),,,若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴,∴,设点P(t,﹣2t﹣1),则:解得,,由对称性知;当时,也满足∠OPM=∠MAF,∴,都满足条件,∵△POE的面积=,∴△POE的面积为或.(3)若点Q在AB上运动,如图1,设Q(a,﹣2a﹣1),则NE=﹣a、QN=﹣2a,由翻折知QN′=QN=﹣2a、N′E=NE=﹣a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴==,即===2,∴QR=2、ES=,由NE+ES=NS=QR可得﹣a+=2,解得:a=﹣,∴Q(﹣,);若点Q在BC上运动,且Q在y轴左侧,如图2,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(﹣,2);若点Q在BC上运动,且点Q在y轴右侧,如图3,设NE=a,则N′E=a,易知RN′=2、SN′=1、QN′=QN=3,∴QR=、SE=﹣a,在Rt△SEN′中,(﹣a)2+12=a2,解得:a=,∴Q(,2).综上,点Q的坐标为(﹣,)或(﹣,2)或(,2).【点评】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.。
人教版九年级数学中考一元一次方程及其应用专项练习及参考答案

人教版九年级数学中考一元一次方程及其应用专项练习专题知识回顾知识点1:一元一次方程的概念1.一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x是未知数,a,b是已知数,且a≠0)。
要点诠释:一元一次方程须满足下列三个条件:(1)只含有一个未知数;(2)未知数的次数是1次;(3)整式方程.注意:方程要化为最简形式,且一次项系数不能为零。
2.方程的解:判断一个数是否是某方程的解,将其代入方程两边,看两边是否相等.知识点2:一元一次方程的解法1.方程的同解原理(也叫等式的基本性质)性质1:等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式。
性质2:等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式。
要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。
2.解一元一次方程的一般步骤:(1)去分母在方程两边都乘以各分母的最小公倍数,依据等式基本性质2,注意防止漏乘(尤其整数项),注意添括号。
(2)去括号一般先去小括号,再去中括号,最后去大括号,依据去括号法则、分配律,注意变号,防止漏乘。
(3)移项把含有未知数的项都移到方程的一边,其他项都移到方程的另一边(记住移项要变号),依据等式基本性质1,移项要变号,不移不变号。
(4)合并同类项把方程化成ax =b(a≠0)的形式,依据合并同类项法则,计算要仔细,不要出差错。
(5)系数化为1在方程两边都除以未知数的系数a ,得到方程的解x =b/a ,依据等式基本性质2,计算要仔细,分子分母勿颠倒。
要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用: ①a≠0时,方程有唯一解x =b/a ; ②a=0,b=0时,方程有无数个解; ③a=0,b≠0时,方程无解。
知识点3:列一元一次方程解应用题 1.列一元一次方程解应用题的一般步骤:(1)审—审题:认真审题,弄清题意,找出能够表示本题含义的相等关系。
2020人教版中考数学专题《一元一次不等式(组)的应用》含解答
2020中考数学专题《一元一次不等式(组)的应用》含解答第一批一、选择题1. (2019·怀化)为了落实精准扶贫政策,某单位针对某山区贫困村的实际情况,特向该村提供优质种羊若干只.在准备配发的过程中发现:公羊刚好每户1只;若每户发放母羊5只,则多出17只母羊,若每户发放母羊7只,则可有一户可分得母羊但不足3只.这批种羊共( )只.A.55B.72C.83D.89【答案】C.【解析】设该村有x 户,则这批种羊中母羊有(5x+17)只,根据题意可得()()517710517713x x x x +--⎧⎪⎨+--⎪⎩><,解得10.5<x <12.∵x 为正整数,∴x=11∴这批种羊共有11+5×11+17=83只.故选C.2. (2019·无锡)某工厂为了要在规定期限内完成2160个零件的任务,于是安排15名工人每人每天加工a 个零件(a 为整数),开工若干天后,其中3人外出培训,若剩下的工人每人每天多加工2个零件,则不能按期完成这次任务,由此可知a 的值至少为 ( )A. 10B. 9C. 8D. 7【答案】B 【解析】设原计划 m 天完成,开工 n 天后有人外出,则 15am=2160,am=144,15an+12(a+2)(m-n)<2160,化简可得:an+4am+8m-8n<720,将am=144 代入得 an+8m-8n<144,an+8m-8n<am ,a(n-m)<8(n-m),其中 n-m<0,a>8, 至少为 9 ,故选 B.三、解答题23.(2019浙江省温州市,23,10分)(本题满分10分)某旅行团32人在景区A 游玩,他们由成人、少年和儿童组成.已知儿童10人,成人比少年多12人.(1)求该旅行团中成人与少年分别是多少人?(2)因时间充裕,该团准备让成人和少年(至少各1名)带领10名儿童去另一景区B 游玩.景区B 的门票价格为100元/张,成人全票,少年8折,儿童6折,一名成人可以免费携带一名儿童.①若由成人8人和少年5人带队,则所需门票的总费用是多少元?②若剩余经费只有1200元可用于购票,在不超额的前提下,最多可以安排成人和少年共多少人带队?求所有满足条件的方案,并指出哪种方案购票费用最少.【解题过程】(1)该旅行团中成人有x 人,少年有y 人,根据题意,得:103212x y x y ++=⎧⎨=+⎩,解得175x y =⎧⎨=⎩.答:该旅行团中成人有17人,少年有5人; (2)①∵成人8人可免费带8名儿童,∴所需门票的总费用为:100×8+100×0.8×5+100×0.6×(10-8)=1320(元).②设可以安排成人a 人、少年b 人带队,则1≤a ≤17,1≤b ≤5.设10≤a ≤17时,(i) 当a=10时,100×10+80b ≤1200,∴b ≤52,∴ b 最大值=2,此时 a+b=12,费用为1160元;(ii) 当a=11时,100×11+80b ≤1200,∴b ≤54,∴ b 最大值=1,此时 a+b=12,费用为1180元;(iii) 当a ≥12时,100a ≥1200,即成人门票至少需要1200元,不符合题意,舍去.设1≤a <10时,(i) 当a=9时,100×9+80b+60≤1200,∴b ≤3,∴ b 最大值=3,此时 a+b=12,费用为1200元;(ii) 当a=8时,100×8+80b+60×2≤1200,∴b ≤72,∴ b 最大值=3,此时 a+b=11<12,不符合题意,舍去;(iii) 同理,当a <8时,a+b <12,不符合题意,舍去.综上所述,最多可以安排成人和少年共12人带队,有三个方案:成人10人、少年2人;成人11人、少年1人;成人9人、少年3人.其中当成人10人、少年2人时购票费用最少.22.(2019山东滨州,22,12分)有甲、乙两种客车,2辆甲种客车与3辆乙种客车的总载客量为180人,1辆甲种客车与2辆乙种客车的总载客量为105人.(1)请问1辆甲种客车与1辆乙种客车的载客量分别为多少人?(2)某学校组织240名师生集体外出活动,拟租用甲、乙两种客车共6辆,一次将全部师生送到指定地点.若每辆甲种客车的租金为400元,每辆乙种客车的租金为280元,请给出最节省费用的租车方案,并求出最低费用.【解题过程】解:(1)设辆甲种客车与1辆乙种客车的载客量分别为a 人,b 人,23=1802=105a b a b ,ì+ïïíï+ïî,………………………………………………………………………3分 解得=45=30.a b ,ìïïíïïî 答:1辆甲种客车与1辆乙种客车的载客量分别为45人和30人.………………5分(2)设租用甲种客车x 辆,租车费用为y 元,根据题意,得y=400x+280(6-x )=120x+1680.………………………………8分由45x+30(6-x )≥240,得x≥4.………………………………………………10分∵120>0,∴y 随x 的增大而增大,∴当x 为最小值4时,y 值最小.即租用甲种客车4辆,乙种客车2辆,费用最低,………………………………11分此时,最低费用y=120×4+1680=2160(元).……………………………………12分第二批一、选择题9.(2019·绵阳)红星商店计划用不超过4200元的资金,购进甲、乙两种单价分别为60元、100元的商品共50件,据市场行情,销售甲、乙商品各一件分别可获利10元、20元,两种商品均售完.若所获利润大于750元,则该店进货方案有( )A .3种B .4种C .5种D .6种【答案】C【解析】设该店购进甲种商品x 件,则购进乙种商品(50﹣x )件,根据题意,得:{60x +100(50−x)≤420010x +20(50−x)>750, 解得:20≤x <25,∵x 为整数,∴x =20、21、22、23、24,∴该店进货方案有5种,故选C .【知识点】一元一次不等式组的应用二、填空题三、解答题21.(2019·遵义) 某校计划组织240名师生到红色教育基地开展革命传统教育活动,旅游公司有A,B 两种客车可供租用,A 型客车每辆载客量45人,B 型客车每辆载客量30人,若租用4辆A 型客车和3辆B 型客车共需费用10700元;若租用3辆A 型客车和4辆B 型客车共需费用10300元(1)求租用A,B 两型客车,每辆费用分别是多少元;(2)为使240名师生有车坐,且租车总费用不超过1万元,你有几种租车方案?哪种方案最省钱?【思路分析】(1)设租用A 型客车的费用是x 元,B 型客车的费用是y 元,根据题意列出二元一次方程组,可求每辆车的费用;(2)设租用A 型客车a 辆,B 型客车b 辆,由师生240人都有车坐,根据座位列出不等式;再由租车费用列出不等式,组成不等式组,根据a,b 的值为正整数,可求出方案【解题过程】解:(1)设租用A 型客车的费用是x 元,B 型客车的费用是y 元,根据题意得4x+3y=10700;3x+4y=10300,解得,x=1700,y=1300;答:租用A 型客车的费用1700元,B 型客车的费用是1300元.(2)设租用A 型客车a 辆,B 型客车b 辆,根据题意得45a+30b ≥240;1700a+1300b ≤10000; ∴17b 13-1003b 2-16≤≤a ∵a,b 均为正整数,∴a=2,b=5;a=4,b=2两种方案当a=2,b=5时,费用为99005130021700=⨯+⨯(元)当a=4,b=2时,费用为94002130041700=⨯+⨯(元)答:租用A 型客车4辆,B 型客车2辆时费用最低,最低费用为9400元【知识点】二元一次方程组,不等式组22.(2019 ·福建)某工厂为贯彻落实“绿水青山就是金山银山“的发展理念,投资组建了日废水处理量为m吨的废水处理车间,对该厂工业废水进行无害化处理. 但随着工厂生产规模的扩大,该车间经常无法完成当天工业废水的处理任务,需要将超出日废水处理量的废水交给第三方企业处理. 已知该车间处理废水,每天需固定成本30元,并且每处理一吨废水还需其他费用8元;将废水交给第三方企业处理,每吨需支付12元.根据记录,5月21日,该厂产生工业废水35吨,共花费废水处理费370元.(1)求该车间的日废水处理量m ;(2)为实现可持续发展,走绿色发展之路,工厂合理控制了生产规模,使得每天废水处理的平均费用不超过10元/吨,试计算该厂一天产生的工业废水量的范围.【思路分析】(1)根据每天花费废水处理费370元,判断每天处理废水量是否8元,若超过则需要交给第三方企业处理,然后列式求出m 的值;(2)分为该车间每天自己处理废水,和将废水交给第三方企业处理,两种情况列不等式分别讨论,然后取其公共部分,即可求得该厂一天产生的工业废水量的范围.【解题过程】解:(1)因为工厂产生工业废水35吨,共花费废水处理费370元,又3530370-=768>8,所以m <35,依题意得,30+8m +12(35-m)=370,解得m =20,故该车间的日废水处理量为20吨.(2)设一天生产废水x 吨.①当0<x ≤20时,依题意得,8x+30≤10x ,解得x ≥15,所以15≤x ≤20.②当x >20时,依题意得,12(x -20)+20×8+30≤10x ,解得x ≤25,所以20<x ≤25.综上所述,15≤x ≤25.故该厂一天产生的工业废水量的范围在15吨到25吨之间.【知识点】一元一次方程;一元一次不等式;反比例函数21.(2019·广东) 某校为了开展“阳光体育运动”,计划购买篮球、足球共60个,已知每个篮球的价格为70元,每个足球的价格为80元.(1)若购买这两类球的总金额为4600元,求篮球、足球各买了多少个?(2)若购买篮球的总金额不超过购买足球的总金额,求最多可购买多少个篮球?【思路分析】(1)根据题意列二元一次方程组求解;(2)根据题意列出不等式求解。
中考数学专题复习卷 三角形(含解析)-人教版初中九年级全册数学试题
三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。
2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。
3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。
4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。
中考数学总复习《第1课时 选择题解题方法》
第1课时选择题解题方法第一部分讲解部分一.专题诠释选择题是各地中考必考题型之一,各地命题设置上,选择题的数目稳定在8~12题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养.二.解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做.解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略. 具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三.考点精讲考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础.例1.(2011•广西省柳州市)九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人,则这两种实验都做对的有()A.17人 B.21人 C.25人 D.37人分析:设这两种实验都做对的有x人,根据九(3)班的50名同学进行物理、化学两种实验测试,经最后统计知:物理实验做对的有40人,化学实验做对的有31人,两种实验都做错的有4人可列方程求解.解:设这两种实验都做对的有x人,(40﹣x)+(31﹣x)+x+4=50,x=25.故都做对的有25人.故选C.评注:本题考查理解题意的能力,关键是以人数做为等量关系构造方程直接求解.考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
中考数学专题复习卷 数据的整理与分析(含解析)-人教版初中九年级全册数学试题
数据的整理与分析一、选择题1.一组数据2,1,2,5,3,2的众数是()A. 1B. 2C. 3D. 5【答案】B【解析】:“2”出现3次,出现次数最多,∴众数是2.故答案为:B.【分析】一组数据中出现次数最多的数据是众数.这组数据中一共有6个数,数据“2”出现次数最多.2.为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是()A. 企业男员工B. 企业年满50岁及以上的员工C. 用企业人员名册,随机抽取三分之一的员工D. 企业新进员工【答案】C【解析】A、调查对象只涉及到男性员工,选取的样本不具有代表性质;B、调查对象只涉及到即将退休的员工,选取的样本不具有代表性质;C、用企业人员名册,随机抽取三分之一的员工,选取的样本具有代表性;D调查对象只涉及到新进员工,选取的样本不具有代表性,故答案为:C.【分析】为调查某大型企业员工对企业的满意程度,那么做抽样调查的对象必须具有代表性而且调查对象的数量必须要达到一定的量,一个企业的所有员工中,它是包括男女老少,故可得出最具代表性样本。
3.若一组数据3、4、5、x、6、7的平均数是5,则x的值是()。
.5【答案】B【解析】:∵一组数据3、4、5、x、6、7的平均数是5,∴3+4+5+x+6+7=6×5,∴x=5.故答案为:B.【分析】根据平均数的定义和公式即可得出答案.4.下列说法正确的是()A. 了解“某某市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查 B. 甲乙两人跳绳各10次,其成绩的平均数相等,,则甲的成绩比乙稳定C. 三X分别画有菱形,等边三角形,圆的卡片,从中随机抽取一X,恰好抽到中心对称图形卡片的概率是 D. “任意画一个三角形,其内角和是”这一事件是不可能事件【答案】D【解析】:A、了解“某某市初中生每天课外阅读书籍时间的情况”最适合的调查方式是抽样调查,不符合题意;B、甲乙两人跳绳各10次,其成绩的平均数相等,S甲2>S乙2,则乙的成绩比甲稳定,不符合题意;C、三X分别画有菱形,等边三角形,圆的卡片,从中随机抽取一X,恰好抽到中心对称图形卡片的概率是,不符合题意;D、“任意画一个三角形,其内角和是360°”这一事件是不可能事件,符合题意.故答案为:D.【分析】根据全面调查及抽样调查适用的条件;根据方差越大数据的波动越大;根据中心对称图形,轴对称图形的概念,三角形的内角和;一一判断即可。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16、点A为数轴上表示-2的动点,当A 沿数轴移动4个单位到点B时,点B所 表示的实数是( ) A 2 B -6 C -6或2 D 以上都不对
分类法
17、AB是⊙O的直径,M是⊙ O上一点, MNAB,P、Q分别是弧AB、弧BM上 的点(不与端点重合),如果∠MNP= ∠MNQ,下面结论: ①∠1=∠2 ②∠P+∠Q=180° ③∠Q=∠PMN ④PM=PN ⑤MN2=PNQN M Q 其中正确的是( ) P B A ①②③ B ①③⑤ A 1 N 2 O C ④⑤ D ①②⑤
8、如图,PA切⊙O于点A,割线PBC 过圆心,若PA=4,PB=2,则 tan∠P的值为( ) 4 3 A A B
3 4 4
C
5
D
5 3
C
O
B
P
排除法直觉排除Fra bibliotek9、E、F、G、H分别是四边形ABCD 的中点,阴影部分需甲布料30匹,则 空白部分需移布料( ) A A 15匹 E H B 20匹 B D C 30匹 D 60匹 F G 特殊法
金属瓦是指以其代替了琉璃瓦、陶土瓦、水泥瓦、沥青瓦、树脂瓦等。金属瓦按制作工艺分为石面金属瓦、漆面金属瓦、金属本色瓦。 中文名金属瓦 定 义 金属为基础材料制作的屋面 分 类 石面金属瓦漆面金属瓦金属本色瓦 功 能 别墅、住宅屋面。目录1 石面金属瓦2 漆面金属瓦3 金属本色瓦4 金属瓦的特点 ; / 金属瓦 jdh60lcg 石面金属瓦编辑以镀铝锌钢板为基材模压成各种瓦型,再以水性丙烯酸树脂为粘合剂,粘合天然玄武岩颗粒做为表面的石面金属瓦;又 称为彩石金属瓦。
2 x 3 x 1 8 2x
的最小
整数解是 ( A -1
B C 0 2
)
D
3
代入法
选项代入
4、当 m 1时,点P(3m-2, m-1)在 3 ( ) A 第一象限 B 第二象限 C 第三象限 D 第四象限
2
代入法
特殊值代入
5、如图,在同一平面直角坐标系中, 一次函数y=ax+c和二次函数y=ax2+c 的图象大致为( )
y o x y y y
o
x
o
x
o
x
A
B
C
D
排除法
矛盾排除
6、若 x 2,则 的值为( x2 A -1 B 0 C 1 D 2
x2
)
排除法
分析排除
7、下列命题正确的是( ) A 所有的等腰三角形都相似 B 所有的直角三角形都相似 C 所有的等边三角形都相似 D 所有的矩形都相似 排除法 反例排除
选择题的解法
1、商场促销活动中,将标价为200 元的商品,在打8折的基础上,再打8 折销售,现该商品的售价是( ) A 160元 B 128元 C 120元 D 88元
直接法
2、当a=-1时,代数式(a+1)2+a(a-3) 的值是( ) A -4 B 4 C -2 D 2
代入法
已知代入
3、不等式组
)
选项变形
11、用配方法解一元二次方程x2+8x+7 =0,则方程可变形为( ) A (x-4)2=9 B (x+4)2=9 C (x-8)2=19 D (x+8)2=57
变形法 已知变形
12、边长12米的正方形池塘的周围是草 地,池塘边A、B、C、D各有一棵树, 且AB=BC=CD=3米,现用一根长4米的 绳子将一头羊拴在其中一棵树上,为了 使羊在草地的活动面积最大,应将绳子 拴在( ) A A处 B B处 A C C处 B C D D D处 观察法
C 图形特殊
10、a、b为实数,切ab=1,设
M a a 1 b b 1 N a a 1 b b 1
则M、N的大小关系是( A M>N B M=N C M<N D 不能确定 特殊法
)
数据特殊
10、下列与 A 8 B 10 C 12 D 27 变形法
2 是同类二次根式的是(
就猴过去了:“娘!母亲!我的妈呀!你怎么还这么小孩子脾气。”“你才小孩子呢!”老太太白她一眼。“不然怎么跟我使气呢?” 苏含萩无奈道,“我来是正事,又是急事,娘啊——”“你还带我两个孙女儿来!逼宫呢这是?”“娘,四姑娘韩姑娘是自己要来的, 她们也跟我想一块儿去了。”老太太骨突着嘴:“我知道你们想哪块儿去了。”“娘,”苏含萩软语道,“缩着,不是个事儿呀,人家 看笑话呢!”“出去,是把笑话捅给人家看。”老太太立刻反驳。“娘,你还记得有一次,我还小,说娘啊,我们家好富贵,人家都看 着我们呢!你回答说,”苏含萩一字字道,“富贵人家,不仅是荣华时看的人多,崩坍时,看的人更多,作个好样儿的世家儿女,荣华 时经得起,崩坍时受得住,这才是有肩骨的人,否则不过是暴发土员外罢了。这句话,我刻在心里。”老太太动容:“萩儿。”“娘, 如今是我们挺肩骨的时候了!苏家荣华到如今,不是柯小子的功劳。凭他,也败不了苏家!”苏含萩一发铿锵。老太太感念:“萩儿, 你已嫁出去,还一心为娘家。娘没白养你!”“没有苏家就没有萩儿,作人怎能忘本?”苏含萩说了这句,脸色作起难来,附耳问老太 太,“倒是七姑娘,怎么回事?外头传的是真的?”老太太嗟叹道:“因七丫头的舅亲与五小子谋划着私开货栈,五小子经营不善,赔 了本,七丫头急了,对她舅亲怕没交代,往外偷跑是有的,并无外头传的不堪。然而姑娘的名声,洗也洗不清,我送她到庙里避避风, 谁知……”“娘?”“我也不知底里,怎么忽报她跌井里了?竟不知是失足,还是想不开!刘姨娘要捞她,额头磕在井沿上,也死了。” 老太太细声道,“你说怎会这样?怎会这样……”“娘唉娘,您千万别气!”苏含萩替老太太拍抚着,“我知道了,刘家人不忿折了本 钱,借他们家姑娘的死,传播流言,想讹我们呢!准是这样!娘不急,萩儿去替娘分驳。”第一百零一章 卖身进京纵强贼(7) “你 一人如何抵得众口?”老太太皱眉。苏含萩哼哼冷笑:“这娘就别担心了,交给女儿便是!”她从小是孩子头,哪怕说一根棒槌细得像 针,同伴们也肯信,会替她传开去。她要编一套新的说辞盖过刘家的谣言,那还是有办法的呢!“交给你,交给你。”老太太道,“你 这次出来,你婆婆准你呆多久?”说到这个,苏含萩脸一红:“急了,先出来一下,也没说什么?”“你没辞准你夫婿公婆?”老太太 拧起眉毛来。“辞了辞了!就是有点急……反正先出来一下。”苏含萩含糊道。“你给我现在就回去。”老太太指着门。“是啦是啦! 好啦好啦!”苏含萩果然就走,回头不放心加一句,“娘你别气坏啊!”老太太叹了口气:“有你在,我怎么会气坏?”这倒也
13、二次函数的图象如图所示, c 则(a, )在( )
b
A 第一象限
B 第二象限 C 第三象限
c b
Y
D 第四象限 观察法
O
X
14、如图表示了某个不等式的解集,该 解集中所有自然数解的个数是( ) A 4个 B 5个 C 6个 -2 -1 0 1 2 3 4 D 7个
定义法
15、下列命题正确的是( ) A 对角线互相平分的四边形是菱形 B 对角线互相平分且相等的四边形 是菱形 C 对角线互相垂直的四边形是菱形 D 对角线互相垂直平分的四边形是 菱形 定义法