二次根式
二次根式的定义和概念

二次根式1、定义:一般形如a (a≥0)的代数式叫做二次根式。
当a≥0时,a 表示a 的算术平方根;当a 小于0时,非二次根式。
其中,a 叫做被开方数。
2、√ā的简单性质和几何意义(1)双重非负性:a≥0 且a ≥0(2)(a )2=a (a≥0),任何一个非负数都可以写成一个数的平方的形式。
3、二次根式的性质和最简二次根式 如:不含有可化为平方数或平方式的因数或因式的有)0(,3,2≥x x ;含有可化为平方数或平方式的因数或因式的有31,9,4,2)(y x +最简二次根式同时满足下列三个条件:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含有能开得尽的因式;(3)被开方数不含分母。
4、二次根式的乘法和除法(1)积的算数平方根的性质b a ab ⋅=(a≥0,b ≥0)(2)乘法法则b a ⋅=ab (a≥0,b≥0)(3)除法法则b a ba =(a≥0,b>0) (4)根式有理化如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做有理化根式,也称有理化因式。
对根式进行有理化处理,其实就是进行根式分母有理化。
5、二次根式的加法和减法(1)同类二次根式概念一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。
(2)二次根式加减时,先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
如:25355=+6、二次根式的混合运算(1)确定运算顺序(2)灵活运用运算定律(3)正确使用乘法公式(4)大多数分母有理化要及时(5)在有些简便运算中也许可以约分,不要盲目有理化7.分母有理化分母有理化有两种方法I.分母是单项式,进行通分即可b ab bb b a b a =⨯⨯= II.分母是多项式,一般为根式的加减多数时间利用平方差公式形如b a b a b a b a b a b a --=-+-=+))((1根式中分母不能含有根号,且要变为最简,运算才会更加直接简便。
二次根式的运算

二次根式的运算二次根式是数学中常见的概念,它在代数学、几何学和物理学等领域都得到广泛应用。
本文将为您详细介绍二次根式的运算过程和相关概念。
一、定义与性质二次根式,顾名思义,就是一个数的根号形式,其中根号下是一个有理数。
一般形式为√a,其中a表示一个非负实数。
在二次根式中,根号下的数被称为被开方数。
二次根式的性质如下:1. 二次根式的运算结果是一个实数,要么是有理数,要么是无理数。
2. 二次根式的和差运算只有当根号下的被开方数相同时,才能进行。
3. 二次根式的乘法运算可以进行,即√a × √b= √(a × b)。
4. 二次根式的除法运算可以进行,即√a ÷ √b = √(a ÷ b),其中b不等于零。
二、二次根式的运算法则1. 化简当二次根式出现在分母中时,为了方便计算,我们通常会进行化简。
具体来说,如果根号下的被开方数可以被因式分解,我们就将其进行简化。
例如,对于√12,可以进行因式分解得到√(4 × 3),进而简化成2√3。
2. 相加相减当根号下的被开方数相同时,我们可以进行二次根式的相加与相减。
例如,√5 + √5 = 2√5,√7 - √7 = 0。
3. 乘法二次根式的乘法运算非常简单,只需要将根号下的被开方数相乘即可。
例如,√2 × √3 = √(2 × 3) = √6。
4. 除法二次根式的除法运算也很简单,只需要将根号下的被开方数相除即可。
例如,√8 ÷ √2 = √(8 ÷ 2) = √4 = 2。
三、例题解析为了更好地理解二次根式的运算过程,我们举几个例题进行解析。
例题1:化简下列二次根式。
(1) √72(2) √50 ÷ √2解析:(1) √72 = √(4 × 18) = √4 × √18 = 2√18。
由于18不能再进一步分解,所以2√18为最简形式的答案。
二次根式讲解大全

【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2) 5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,•变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.ab =a ·b (a≥0,b≥0); b ba a=(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,•乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.【典型例题】1、概念与性质 例1下列各式 1)22211,2)5,3)2,4)4,5)(),6)1,7)2153x a a a --+---+,其中是二次根式的是_________(填序号). 例2、求下列二次根式中字母的取值范围(1)x x --+315;(2)22)-(x例3、 在根式1)222;2);3);4)275xa b x xy abc +-,最简二次根式是( ) A .1) 2) B .3) 4) C .1) 3) D .1) 4)例4、已知:的值。
求代数式22,211881-+-+++-+-=x yy x x yy x x x ya (a >0) ==a a 2 a -(a <0)0 (a =0);例5、 (2009龙岩)已知数a ,b ,若2()a b -=b -a ,则 ( )A. a>bB. a<bC. a≥bD. a≤b 2、二次根式的化简与计算 例1. 将根号外的a 移到根号内,得 ( ) A.; B. -; C. -; D.例2. 把(a -b )-1a -b 化成最简二次根式例3、计算:例4、先化简,再求值:11()b a b b a a b ++++,其中a=512+,b=512-.例5、如图,实数a 、b 在数轴上的位置,化简 :222()a b a b ---3、在实数范围内分解因式 例. 在实数范围内分解因式。
二次根式知识点归纳

二次根式知识点归纳定义:一般的,式子a (a ≥0)叫做二次根式。
其中“”叫做二次根号,二次根号下的a 叫做被开方数。
性质:1、2≥0,等于a;a<0,等于-a3、45612789一.1.【05A.25 B.52 C.542.【05南京】9的算术平方根是(???).A.-3B.3C.±3D.813.【05南通】已知2x <,的结果是(???).A 、2x -B 、2x +C 、2x --D 、2x -4.【05泰州】下列运算正确的是(???).A .a 2+a 3=a 5B .(-2x)3=-2x 3C .(a -b)(-a +b)=-a 2-2ab -b 2D =5.【05无锡】下列各式中,与y x 2是同类项的是()A 、2xyB 、2xyC 、-y x 2D 、223y x6.【05武汉】若a ≤1,则化简后为(???). A.??B. C.???D.7.【05绵阳】化简时,甲的解法是:==,乙的解法是:,以下判断正确的是(???).A.甲的解法正确,乙的解法不正确B.甲的解法不正确,乙的解法正确C.甲、乙的解法都正确D.甲、乙的解法都不正确8.【05(A)a >9.【05A.8 10.【05A.2411.【05A.(-1)312.【05A 、x 213.【05A .114.【05 A 15.【05A .aa b ++b a b +=1B .1÷b a ×a b =1 C .21()a b +·22a b a b --=1a b +二、填空题1.【05连云港】计算:)13)(13(-+=.2.【05南京】10在两个连续整数a 和b 之间,a<10<b,那么a,b 的值分别是。
3.【05上海】计算:)11=4.【05嘉兴5.【05丽水】当a ≥0.6.【05南平=.7.【05漳州,2,(第n 个数).8.【05曲靖】在实数-2,31,0,-1.2,2中,无理数是. 9.【05黄石】若最简根式b a a +3与b a 2+是同类二次根式,则ab =.10.【05太原】将棱长分别为a cm 和bcm 的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为.(不计损耗)11.【05黄岗】立方等于–64的数是。
二次根式知识点归纳

二次根式知识点归纳二次根式是数学中的一个重要概念,也是我们在中学阶段学习的数学知识之一、学好二次根式的知识,不仅可以提高我们的数学实力,还能够帮助我们更好地理解和应用数学。
下面是对二次根式的知识点进行归纳总结。
一、二次根式的定义与性质1.二次根式的定义:如果一个数x的平方等于一个有理数a,那么称x是a的二次根,记作√a=x。
其中,a是被开方数,x是二次根。
2.二次根式的性质:二次根式具有以下基本性质:-非负性:对于所有的a≥0,√a≥0。
-唯一性:对于任意一个正数a,二次根√a是唯一确定的。
-传递性:对于任意的a≥0和b≥0,如果√a=√b,那么a=b。
-加减性:对于任意的a≥0和b≥0,有√a±√b=√(a±b)。
-乘除性:对于任意的a≥0和b≥0,有√(a×b)=√a×√b,√(a/b)=√a/√b(其中,b不为零)。
二、二次根式的化简1.因式分解法:将二次根式的被开方数进行因式分解,然后利用乘除性质化简。
2.合并同类项法:将二次根式中相同的根号项合并,然后根据加减性质化简。
三、二次根式的比较大小1.当被开方数相同时,二次根式相等,即√a=√b,当且仅当a=b。
2.当被开方数不同时,可以通过平方的方式来比较大小。
即对于a≥b≥0,有√a≥√b。
四、二次根式的运算1.加减运算:对于任意的a≥0和b≥0,可以进行二次根式的加减运算。
-加法:√a+√b=√(a+b)。
-减法:√a-√b=√(a-b)(需要满足a≥b)。
2.乘法运算:对于任意的a≥0和b≥0,可以进行二次根式的乘法运算。
-乘法:√a×√b=√(a×b)。
3.除法运算:对于任意的a≥0和b>0,可以进行二次根式的除法运算。
-除法:√a/√b=√(a/b)(需要满足b≠0)。
五、二次根式的应用二次根式在实际问题中的应用非常广泛1.几何问题:二次根式可以用来表示长度、面积、体积等物理量,例如计算一个正方形的对角线长度、一个圆的半径等等。
二次根式的概念

二次根式的概念二次根式是数学中重要的概念之一,它涉及到平方根的运算和性质。
在本文中,我们将详细介绍二次根式的定义、性质以及在实际问题中的应用。
1. 定义二次根式是指形如√a的数,其中a为非负实数。
√a表示a的平方根,即一个数的平方等于a。
例如,√9等于3,因为3的平方等于9。
2. 性质(1)对于任意非负实数a和b,有以下性质:a) √a * √b = √(a * b)b) √(a / b) = √a / √bc) (√a)^2 = a(2)二次根式与有理数的关系:a) 如果a是一个完全平方数,即a = b^2,其中b为有理数,则√a是一个有理数。
b) 如果a不是一个完全平方数,则√a是一个无理数。
(3)二次根式的化简:a) 如果a可以因式分解为完全平方数的乘积,则可以将二次根式化简为一个有理数。
b) 如果a不可因式分解为完全平方数的乘积,则二次根式无法化简。
3. 应用二次根式在实际问题中具有广泛的应用。
以下是一些常见的应用示例:(1)几何问题:二次根式可以用于计算直角三角形的斜边长度。
例如,在一个边长为a的正方形中,对角线的长度可以表示为√(2a^2)。
(2)物理问题:二次根式可以用于计算物体的速度、加速度等。
例如,在自由落体运动中,物体下落的距离可以表示为h = 1/2 * g * t^2,其中h为下落距离,g为重力加速度,t为时间。
(3)金融问题:二次根式可以用于计算利息、久期等金融指标。
例如,复利计算公式中涉及到年利率的开平方运算。
总结:二次根式作为数学的一个重要概念,涉及到平方根的运算和性质。
通过了解二次根式的定义和性质,我们可以更好地理解和应用它们。
在几何、物理、金融等实际问题中,二次根式都有广泛的应用,帮助我们解决复杂的计算和分析。
因此,对于二次根式的学习和掌握是数学学习的关键之一。
以上是对二次根式概念的详细介绍,希望对您有所帮助。
通过深入学习和练习,相信您会更加熟练地运用二次根式,并在解决实际问题中发挥其重要作用。
二次根式 公式
二次根式是数学中的一个重要概念,它涉及到平方根和根式的运算。
二次根式的一般形式为:
ax2+bx+c其中a,b,c是常数,且a=0。
为了简化二次根式,我们通常会尝试将其转化为最简形式。
这通常涉及到完成平方或使用公式来化简。
1. 完成平方
如果二次根式可以写成完全平方的形式,那么我们可以直接开方。
例如:
x2=∣x∣
2. 使用公式
对于一般的二次根式,我们可以使用公式来化简。
例如,对于形如ax2+bx+c的二次根式,如果b2−4ac≥0,则可以使用求根公式来化简。
求根公式为:
x=2a−b±b2−4ac
3. 二次根式的乘法
当需要计算两个二次根式的乘积时,可以使用以下公式:
a×b=ab
4. 二次根式的除法
当需要计算两个二次根式的商时,可以使用以下公式:
ba=ba
5. 二次根式的加减
对于二次根式的加减,首先需要判断它们是否可以合并。
如果根号下的表达式相同,那么可以进行合并。
例如:
2+2=22
6. 二次根式的有理化
有时,为了简化二次根式,我们可能需要将其有理化。
这通常涉及到乘以共轭式。
例如:21=21×22=22
以上是关于二次根式的一些基本公式和化简方法。
在实际应用中,需要根据具体的问题选择合适的公式和方法进行化简和计算。
二次根式
二次根式【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
满足两个条件:一、有二次根号;二、被开方数是非负实数 2.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a23.二次根式的四则运算:(1)乘法:a ·b =ab (a ≥0,b ≥0) (2)除法:ba b a=(a ≥0,b ≥0) 若除得的商的被开方数中含有完全平方数(式),应对其进行化简成最简二次根式,即1、被开方数中不含分母;2、被开方数中不含能开得尽方的因数或因式(3)加减:先将二次根式化成最简二次根式,对被开方数相同的的二次根式进行相加减(合并同类项)4、常见考点:求平方根、立方根;二次根式的定义;二次根式的性质;二次根式的运算法则;二次根式的化简;二次根式的运算考点1: 平方根、立方根 相关知识:1.任何非负数都有平方根:正数有两个平方根,它们互为相反数,正数a 的平方根表示为a ±;0的平方根为0;负数没有平方根.2.非负数a 的非负平方根叫做算术平方根,表示为a .3.正数有一个正的立方根,负数有一个负的立方根,0的立方根为0. 任何数a 的立方根表示为3a .相关试题1. (2011内蒙古乌兰察布,1,3分)4 的平方根是( ) A . 2 B . 16 C. ±2 D .±16 【答案】C2 .(2011湖南怀化,1,3分)49的平方根为A .7 B.-7 C.±7 D.±7 【答案】Ca (a >0)a -(a <0)0 (a =0);3 (2011山东日照,1,3分)(-2)2的算术平方根是( )(A )2 (B ) ±2 (C )-2 (D )2 【答案】A4. (2011江苏泰州,9,3分)16的算术平方根是 . 【答案】45. (2011江苏盐城,9,3分)27的立方根为 ▲ . 【答案】36. (2011江苏南京,1,2分)9的值等于A .3B .-3C .±3D .3【答案】A7 .(2011江苏南通,3,3分)计算327的结果是 A .±33 B. 33 C. ±3 D. 3【答案】D.8. (2011江苏无锡,11,2分)计算:38 = ____________. 【答案】29 .(2011浙江杭州,1,3)下列各式中,正确的是( )A . 2(3)3-=-B .233-=-C .2(3)3±=±D .233=± 【答案】B10. (2011广东茂名,12,3分)已知:一个正数的两个平方根分别是22-a 和4-a ,则a 的值是 .【答案】2考点2: 二次根式的定义相关知识:一般地,形如a (a ≥0)的代数式叫做二次根式。
二次根式
3、二次根式的双重非负性
例7 已知实数 x、y、a 满足:
x y 8 8 x y 3x y a x 2 y a 3
x、y、a .问:
以 为三边长的线段能否组成一个三角形?如果能,请 求出三角形的周长;如果不能,请说明理由.
3、二次根式的双重非负性
1 x 2 x
的图像上,
变式:如果代数式 m
有意义,那么在平面直角坐
象限.
x2 6 x m
标系中,点 P m, n 的位置在第 例4 无论x取任何实数,代数式 取值范围为 .
都有意义,则m的
2、二次根式有意义的条件
例5 设 a 8 x , b 3x 4, c x .2 a、b、c 都有意义? (1)当x取什么实数时, (2)若a、b、c 为Rt△ABC的三边长,求x的值.
a a a 0, b 0 b b
n
3、二次根式的加减: 先化简,再求值 4、根式运算法则: a b ab ,
n n n
a na n b b
最简二次根式:
0.2 x ,
12 x 12 y ,
x2 y2 ,
5ab 2
同类二次根式:
在
ab b 1 b , , , 3 中,与 a3b是同类二次根式的是 2 a ab a
a、b、c ,且 a、b、c 例8 已知△ABC的三边长分别为 满足a 2 6a 9 a b 1 c 2 5 0 .试判断△ABC的形 状.
几个非负数的和为0,则每个非负数都为0. 初中常见的三大非负数: (1)绝对值; (2)偶次方; (3)算术平方根.
变式1:若 a b+1 与 a 2b 4 互为相反数
二次根式的知识点汇总
二次根式的知识点汇总二次根式是指含有平方根(开方)的代数式。
学习和掌握二次根式的知识点,对于进一步理解和应用高等数学和物理学等学科内容至关重要。
以下是二次根式的知识点汇总:一、基本概念与性质:1.平方根与二次根式的概念:平方根的定义及其在代数中的性质,二次根式的定义与示例。
2.约分与化简:二次根式的约分、化简及约分规则。
3. 同类二次根式的合并与分解:同类二次根式的合并与分解法则,如$\sqrt{a} \pm \sqrt{b} = \sqrt{(\pm \sqrt{a})^2 + (\pm\sqrt{b})^2}$。
二、四则运算:1. 加减法:同类二次根式的加减法规则,如$\sqrt{a} \pm \sqrt{b} = \sqrt{(\pm \sqrt{a})^2 + (\pm \sqrt{b})^2}$。
2. 乘法:二次根式的乘法规则,如$(a+b)(c+d)=ac+ad+bc+bd$。
3. 除法:二次根式的除法规则,如$\frac{a+b}{c+d}=\frac{(a+b)(c-d)}{(c+d)(c-d)}$。
4.有理化方法:如分子、分母都有二次根式时的有理化方法,分别是乘以共轭式和有理化因式。
三、二次根式的化简与证明:1.合并同类项:在二次根式的化简中,将同类项合并为一个二次根式。
2.分解因式:在二次根式的化简中,将二次根式分解为若干个二次根式相乘的形式。
3.公因式提取:在二次根式的化简中,提取公因式使其化简为整数或其他形式。
四、二次根式的应用:1.代数方程的解:使用二次根式求解一元二次方程。
2.几何意义:二次根式在几何中的应用,例如计算三角形的边长、面积等。
3.物理问题:通过建立代数模型和运用二次根式,解决物理问题,如自由落体、速度、力等。
五、常见的二次根式:1. $\sqrt{a^2}=,a,$,其中$a$表示任意实数。
2. $\sqrt{a}\sqrt{b}=\sqrt{ab}$,其中$a$和$b$分别表示任意非负实数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式(A 卷)
一、选择题(每题3分,共18分)
1.下列各式中,是二次根式的为( ) A .π B .12 C 2.下列判断正确的是( )
A .带根号的式子一定是二次根式;
B 一定是二次根式
C ;
D .二次根式的值必定是无理数
3 ) A .x 是非负数 B .x 是实数 C .x 是正实数 D .x 是不等于零的实数
4.当x=5时,在实数范围内没有意义的式子是( )
A B
52
=a-1成立的条件是( ) A .a<1 B .a ≠1 C .a ≥1 D .a ≤1
6有意义的实数x 的值有( )
A .0个
B .1个
C .2个
D .无数个
二、填空题(每题3分,共12分)
7.________. 8.当______时,代数式
2x -有意义.
9.计算:(2=______,(2=________. 10.把919
写成一个正数的平方形式是________.
三、计算题(8分)
11.(22-0
.
四、解答题(每题11分,共22分)
12.若0<x<1,试化简:│x │+2.
13.已知,求(xy-64)2的算术平方根.
参考答案
一、
1.C
2.B
3.C
4.C
5.C
6.B
二、7.a≤3 2
8.x≥1且x≠2
9.175;4x
10.2
三、11.解:原式=322+8-1=9×2-9+8-1=16.
四、12.解:原式=│x│+(1-x)-│x-1│-1,
13.解:依题意,得
70,
70.
x
x
-≥
⎧
⎨
-≥
⎩
解得7≤x≤7,
所以x=7.代入解得x=9.
.。