最优化方法一维搜索法C++程序
最优化方法归纳总结

最优化方法归纳总结最优化方法归纳总结篇一:最优化方法综述最优化方法综述1.引论1.1应用介绍最优化理论与算法是一个重要的数学分支,它所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。
这类问题普遍存在。
例如,工程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润;原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中,怎样安排工厂、机关、学校、商店、医院、住户和其他单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各个领域中,诸如此类,不胜枚举。
最优化这一数学分支,正是为这些问题的解决,提供理论基础和求解方法,它是一门应用广泛、实用性强的学科。
1.2优化的问题的基本概念工程设计问题一般都可以用数学模型来描述,即转化为数学模型。
优化设计的数学模型通常包括设计变量、目标函数和约束条件。
三个基本要素。
设计变量的个数决定了设计空间的维数。
确定设计变量的原则是:在满足设计基本要求的前提下,将那些对设计目标影响交大的而参数选为设计变量,而将那些对设计目标影响不大的参数作为设计变量,并根据具体情况,赋以定值,以减少设计变量的个数。
用来评价和追求最优化设计方案的函数就称为目标函数,目标函数的一般表达式为f?x??f?x1,x2,?xn?。
优化设计的目的,就是要求所选择的设计变量使目标函数达到最佳值。
所谓最佳值就是极大值或极小值。
在设计空间中,虽然有无数个设计点,即可能的设计方案,但是一般工程实际问题对设计变量的取值总是有一些限制的,这些限制条件显然是设计变量的函数,一般称之为优化设计问题的约束条件或约束函数。
最优化方法 第三章第二讲 一维搜索

第三次迭代
令 x1 0.538, f1 1.751,取 F3 x2 0.077 (1.462 0.077) 0.846, F4 f 2 1.870。
因为 f 1 f 2 ,所以新区间为 0.077,0.846。
第四次迭代
令 x 2 0.538, f 2 1.751,取 F1 x1 0.077 (0.846 0.077) 0.231, F3 则 f 1 1.822。
设其最优解为 k ,得到 xk 1 xk k pk ,
一维搜索是求解一元函数 ( ) 的最优化问题(也叫 一维最优化问题) ,仍表示为 min f ( x ) 或 min f ( x )。 1
xR
a xb
定义:若在 a, b内 f ( x )有唯一极小点 x* ,在 x* 的左边 f ( x )严格下降,在 x* 的右边 f ( x )严格上升, 则称 f ( x )在区间 a, b上是下单峰函数。
step 6 令 k k 1,若 k n 2,则转 step 5; 若 k n 2,则转 step 7。
step 7 若 f1 f 2 , 则令 b x2 ,x2 x1 ,f 2 f1 , 转 step 8; 若 f1 f 2 ,则令 a x1,转 step 8。 step 8 令 x1 x2 0.1(b a ) , f1 f ( x1 ) 1 * 若 f1 f 2 ,则 x (a x2 ), 2 1 * 若 f1 f 2 ,则 x ( x1 x2 ), 2 1 * 若 f1 f 2 ,则 x ( x1 b ) 。 2
ab step 3 若 b a ,则 x ,停。否则转 step 4。 2
最优化方法-一维搜索

按任务方式插入n个观测点后,剩下的搜索区间的长度不少于原初始长 度的1/ Fn
令缩短后的长度为S,有: S (b-a)/ Fn
• Fibonacci数列:
• =b- (b-a)=a+(1- )(b-a)
• =a+ (b-a)
•
• 2 0.618法算法
设
值
(t)是单谷函数,[ a
t
与精确极小点
t*
0的,最b大0 ]绝是对初误始差搜t索 区t * 间 , 要求精确极小点近似
记:a= a0,b= b0 , =0.618.
(1) =a+(1- )(b-a), 1 = ()
进退算法的基本步骤:
(((t01 2 3点 回)))及升:::,首若若t则0先[+tt任t00h0++选点,hh一t的点点n个函]的的初数就函 函始值是数 数点.一值 值个下 上t0搜降 升,索, ,初区继 则始间续 从步,前长t算进0h法点,,进停退直到止到到.t某0t个+0 -ht,h0点并点.计的算函数值
4= a4 +( F0 / F2
b4
)(
=
b4
3 /a4
=2.5 , 4= 3 = 1.625
)=0.75+1/2*1.75=1.625
这时,
=
4
,(因为已到k=3=n-2)
4
K=4, 因此
(5取5 =)a=0t5.41===410.,.6542((5=b,515).+5=6=02a.550,47b+6)50,.=1==2(1.b.05476)2255>=2(.55 )
机械优化设计第三章一维搜索方法

(b a),故
Fn
b
a 。由Fn即可从斐波那契数列表或按F0
F1
1, Fn
Fn1
Fn2 (n
2, 3,
)
推算出相应的n。
3)确定试点并计算相应的函数值,在区间a, b内的两个试点:
x2
a
Fn1 Fn
(b
a),
x1
b
Fn1 Fn
(b
a),
f1 f (x1),
f2 f (x2 )
第三章 一维搜索方法
1.若f (a1) f (b1),则取[a,b1]为缩短后的搜索区间; 2.若f (a1) f (b1),则取[a1,b]为缩短后的搜索区间。
第三章 一维搜索方法
第二节 搜索区间的确定与区间消去法原理
间 接
假定在搜索区间[a, b]内取一点x, 并计算它的导数值 f '(x),可能出现三种情况:
x2 a b x1, f2 f (x2 )
5)检查迭代终止条件:bn1 an1
,若满足,则输出最优解x*
1 (a b), 2
ห้องสมุดไป่ตู้
f*
f (x*),
若不满足,则转入(4),继续进行迭代。
1. f (a1) f (b1),由于函数的单峰性, 极小点一定在[a, b1 ]内; 2. f (a1) f (b1),极小点一定在[a1,b]内; 3. f (a1) f (b1),极小点一定在[a1,b1]内。
第三章 一维搜索方法
第二节 搜索区间的确定与区间消去法原理
直 接 法
假定在搜索区间[a,b]内任取两点a1和b1,且a1 b1, 并计算f (a1)和f (b1),可能出现三种情况:
f (x1) f (x) f (x2)
最优化理论与方法-第七章 一维搜索

7.1.2 黄金分割法基本原理与步骤
1. 在区间[a1, b1]上选择第一个试点 x1,并计算 f (x1).
第一个试点 x1 怎么选呢?我们希望试点 x1 将总长为 l 的区
间[a1, b1]分为两部分,令长的那一部分长度为 z,则短的那
一段的长度为 l-z,如图 7-2.要求满足 x1
lz z zl
令 新 的 区 间 端 点 ak1 ak ,bk1 xk .
(2) 判断精度.
若
bk 1 b1
ak1 a1
,则停止计算,可取
x*
1 2
(ak
1
bk1) 为 近 似 极 小
点, f (x*)为近似极小值.否则,转下一步.
(3) 进行保留试点的坐标的变换.
在新区间[ak+1,
bk+1]上,原 试点
13世纪的意大利数学家菲波那契发现了一个神奇数列:1,2, 3,5,8,13,21,34,55,89,144……这些数字的前 两项之和等于后一个数字。如:1+2=3; 2+3=5;……55+89=144…..神奇数列更神奇的是:
1.前一个数字与后一个数字之比,比值趋于0.618034……(无 理数)。如: 1/2=0.5;2/3=0.667;3/5=0.6;5/8=0.625;8/13=0.615;……89 /144=0.618……。
(7-7)
可 以 验 证 , 在 区 间 [a1, x1]上 , x1' 又 是 黄 金 分 割 点 , 在 区 间 [ x1' ,b1]上 ,x1 是 黄 金 分 割 点 的 对 称 点 .
再 计 算 出 f ( x1' ), 并 令 k = 1.
3. 比较计算 f (xk ) 和 f ( xk ' ).
第4章一维搜索优化方法PPT课件

例4-3 用二次插值法求一维函数f(α)=α2-10α+35的最优解。 初始单谷搜索区间[α1,α3]=[1.5,7.5],迭代精度ε=10-3。
while (abs(x4-x2)>=epsilon)
if x2<x4 if f2>f4
x1 x2 x4 x3 x1 x4 x2 x3
f1=f2;x1=x2;x2=x4;f2=f4;
1. 基本原理:
(1) 初始区间 [a, b], 两内点x1和 x2,区间长度为 L。 其中 ax2 和x1b 的长度分别为 λL。
(2) 求 f(x1) 和 f(x2)。若 f(x1)>f(x2),
则下一次迭代,保留区间为 [x1,b],重新命名为 [a1,b1]。
(3) x2 →保留至新区间→ 更名x1,
(1)function QIM(……)函数必须另存一个文件,取名为 QIM.m
(2)QIM.m必须和eg4_3.m在同一个子目录下。
(3)修改循环方式再编写程序。
本章练习
初始步长h需要给定。 每次迭代时,步长是翻倍的。 当连续三点的函数指出现大小大的情况,迭代终止。
二、算法框图
2. 流程图:
yes
h=?2h
c=b+h fc=f(c)
开始
h 2h 2(2h)
输入 h,a fa=f(a)
a ba bc c
hh
b=a+h,fb=f(b) no
fa>fb
ab cb a
约束条件: 0 ≤ x≤ 3
寻优方向:坐标轴方向
x≥0.5 设计变量:X=[ x] T
可行域
x
0 0.5
3
一、一维搜索方法的重要性
一维寻优法(0.618法)程序设计

一维寻优法(0.618法)程序设计一维寻优法,又叫作黄金分割法或者0.618法,是一种基于比较大小的优化算法,能够在一维搜索空间中找到最优解或者一定程度上接近最优解。
这是一种简单而经典的算法,在实际应用中有很多的应用场景。
接下来我们将介绍一下如何设计一维寻优法的程序,包括算法原理、代码实现和测试结果。
### 1. 算法原理一维寻优法的核心思想是找到一段区间,通过不断缩小这个区间的范围来逼近最优解。
具体来讲,我们首先需要给出一个初始的搜索区间,假设这个区间是[a, b]。
我们可以通过计算出0.618的值(记为c),将这个区间划分为两个子区间[a, c]和[c, b]。
对于这两个子区间中的一个,我们可以进一步将其划分为两个子区间,之后对于这两个子区间分别计算其函数值,保留其中更小的一个(因为我们是要找最小值),并更新原始的搜索区间。
如此往复进行下去,直到搜索区间的长度小于一定的阈值或者我们已经满足了一定的精度要求为止。
### 2. 代码实现下面是一维寻优法的Python示例代码:```pythondef golden_section(func, a, b, epsilon=1e-5):""":param func: 要进行最优化的函数:param a: 搜索区间左边界:param b: 搜索区间右边界:param epsilon: 精度控制参数:return: 函数极小值所在的x值"""c = 0.618 # 黄金分割点x1 = a + (1 - c) * (b - a) # 初始化搜索区间x2 = a + c * (b - a)y1 = func(x1)y2 = func(x2)while abs(b - a) > epsilon:if y1 <= y2:b = x2x2 = x1y2 = y1x1 = a + b - x2y1 = func(x1)else:a = x1x1 = x2y1 = y2x2 = a + b - x1y2 = func(x2)return (a + b) / 2```代码中,我们首先计算出黄金分割点,并初始化搜索区间。
一维搜索-最优化方法

止 ; 否则 , ������0 = ������1 ,转(2) 。
例题:用切线法求Ψ(t) =������2-5t+2 , 在定义域 t ∈ ( 0 , 10 ) 上的极小点 , 要求 ε = 0.2 。
切线法(Newton法)
设Ψ(t)是区间(a , b)上的二次可微的单谷函数,������∗ 是 Ψ(t) 在 (a , b)上的极小值点, ������������ 是 ������∗ 的一个近似点。 目标 函数Ψ(t) 的一阶导数为������ = Ψ’(t) ,过点 (������������, Ψ’(������������) ) 作导函数 Ψ’(t) 的图像的切线,则此切线的方程为
在实践工作中,应根据问题的具体特点以及工作条 件来选用相应的合适算法。不过,从以往的实践中 来看,0.618法和对分法使用的更多一些。
可望达到上述的最小值,
所以有 c-a = b-c , 即 c = 0.5(b-a)
对分法的步骤
设单谷函数 Ψ(t)存在导函数Ψ’(t),极小值点的初始搜索 区间为(a。,b。),要求极小值点的近似值 ������ҧ 与精确极小值 点 t* 的最大绝对误差 ������ − ������ ∗ ҧ 不超过 ε 。
⑴ 令 a=a。 , b=b。;
⑵ 令 c = 0.5(b-a),计算Ψ’(c);
⑶ 若 Ψ’(c)ຫໍສະໝຸດ <0 ,令 a=c , 转到⑷
若 Ψ’(c)>0 ,令 b=c ,转到⑷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
加步探索法
#include<iostream>
#include<math.h>
using namespace std;
double fun(double t)
{
return (t*t*t-2*t+1);
}
double max(double a,double b)
{
if(a>b)return a;
else return b;
}
double min(double a,double b)
{
if(a>b)return b;
else return a;
}
double Addstep(double(*pfun)(double t))
{
int k=0;
double t0=0,h=1,r=2,t,a=0,b=0;
t=t0+h;
do{
if(fun(t)<fun(t0)){h=r*h;t0=t;t=t0+h;k++;}
else{if(k=0){h=-h;k++;}
else{a=min(t0,t);b=max(t0,t);return a;return b;}}
}while(a=b);
cout<<" 探索区间为:"<<"["<<min(t0,t)<<","<<max(t0,t)<<"]"<<endl; }
int main()
{
Addstep(fun);
return 0;
}
对分法
#include<iostream>
#include<math.h>
using namespace std;
double fun(double t)
{
return (t*t-3*t);
}
double dfun(double t)
{
return (2*t-3);
}
void Dichotomous(double(*pfun)(double t),double (*pdfun)(double t)) {
int maxflag=1000,k=1;
double a=-3,b=5,c,err=0.1,t;
do
{
c=(a+b)/2;
if(dfun(c)<0){a=c;}
else {if(dfun(c)>0){b=c;}
else{a=c;b=c;}}
k++;
}while(fabs(a-b)>err&&k<maxflag);
if(k>=maxflag)
cout<<endl<<"对分法迭代失败!迭代次数为k="<<k<<endl;
else
{
cout<<endl<<" 对分法迭代成功!迭代次数为k="<<k-1<<endl; cout<<"迭代结果:近似根为root="<<t<<endl;
cout<<" 函数值近似为:f(root)="<<fun(t)<<endl;
}
}
int main()
{
Dichotomous(fun,dfun);
return 0;
}
Newton切线法
#include<iostream>
#include<math.h>
using namespace std;
double fun(double t)
{
return (t*t*t-2*t+1);
}
double dfun(double t)
{
return (3*t*t-2);
}
void NewtonIterative(double(*pfun)(double t),double (*pdfun)(double t)) {
int maxflag=1000,k=1;
double t0=1,err=0.01,t;
do
{
t0=t;
t=t0-pfun(t0)/pdfun(t0);
k++;
}while(fabs(t-t0)>err&&k<maxflag);
if(k>=maxflag)
cout<<endl<<" 牛顿迭代失败!迭代次数为k="<<k<<endl;
else
{
cout<<endl<<" 牛顿迭代成功!迭代次数为k="<<k-1<<endl;
cout<<" 迭代结果:近似根为root="<<t<<endl;
cout<<" 函数值近似为:f(root)="<<fun(t)<<endl;
}
}
int main()
{
NewtonIterative(fun,dfun);
return 0;
}
黄金分割法
#include<iostream>
#include<math.h>
using namespace std;
double fun(double t)
{
return (t*t+2*t);
}
void Goldensection(double(*pfun)(double t))
{
int maxflag=1000,k=1;
double a=-3,b=5,err=0.001,t,t1,t2;
do
{
t1=a+0.618*(b-a);
t2=b-0.618*(b-a);
if(t1=t2){a=t2;b=t1;}
else {if(t1<t2){a=t2;}
else{b=t1;}}
k++;
}while(fabs(a-b)>err&&k<maxflag);
if(k>=maxflag)
cout<<endl<<"黄金分割法迭代失败!迭代次数为k="<<k<<endl; else
{
t=(a+b)/2;
cout<<endl<<" 黄金分割法迭代成功!迭代次数为k="<<k-1<<endl;
cout<<" 迭代结果:近似根为root="<<t<<endl; cout<<" 函数值近似为:f(root)="<<fun(t)<<endl; }
}
int main()
{
Goldensection(fun);
return 0;
}
抛物线插值法
#include<iostream>
#include<math.h>
using namespace std;
double fun(double x)
{
return (8*x*x*x-2*x*x-7*x+3);
}
double max(double a,double b)
{
if(a>b)return a;
else return b;
}
double min(double a,double b)
{
if(a>b)return b;
else return a;
}
void Parainterpolation(double(*pfun)(double x)) {
double a=0,b=2,err=0.001,x=0,x0=1,f,f0;
do
{
x=((x0*x0-b*b)*fun(a)+(b*b-a*a)*fun(x0)+(a*a-x0*x0)*fun(b))/(2*((x0-b)*fun(a)+(b-a)*fun(x0) +(a-x0)*fun(b)));
f0=fun(x0);
f=fun(x);
if(f=f0){a=min(x,x0);b=max(x,x0);x0=(a+b)/2;}
else {
if((fun(x)-f0)*(x-x0)>0)
{
b=max(x,x0);x0=min(x,x0);
}
else
{
a=min(x,x0);x0=max(x,x0);
}
}
}while(fabs(x-x0)>err);
x=(x+x0)/2;
cout<<" 迭代结果:近似根为root="<<x<<endl;
cout<<" 函数值近似为:f(root)="<<fun(x)<<endl;
}
int main()
{
Parainterpolation(fun);
return 0;
}。