任意角与弧度制-知识点汇总

合集下载

任意角与弧度制知识点汇总

任意角与弧度制知识点汇总

任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB,就形成了角α,记作:角α或α∠ 可以简记成α; 2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了;可以将角分为正角、零角和负角;正角:按照逆时针方向转定的角; 零角:没有发生任何旋转的角; 负角:按照顺时针方向旋转的角; 3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴;角的终边落在第几象限,我们就说这个角是第几象限的角 角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角; 例1、1A={小于90°的角},B={第一象限的角},则A∩B= 填序号. ①{小于90°的角}②{0°~90°的角}③ {第一象限的角}④以上都不对2已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、 C 关系是A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C4、常用的角的集合表示方法 1、终边相同的角:1终边相同的角都可以表示成一个0到360的角与)(Z k k ∈个周角的和; 2所有与终边相同的角连同在内可以构成一个集合{}Z k k S ∈⋅+==,360| αββ即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和 注意:1、Z ∈k2、α是任意角3、终边相同的角不一定相等,但相等的角的终边一定相同;终边相同的角有无数个,它们相差360°的整数倍;4、一般的,终边相同的角的表达形式不唯一; 例1、1若θ角的终边与58π角的终边相同,则在[]π2,0上终边与4θ的角终边相同的角为 ;2若βα和是终边相同的角;那么βα-在例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角: 1 210-; 2731484'- .例3、求θ,使θ与 900-角的终边相同,且[]1260180,-∈θ. 2、终边在坐标轴上的点:终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ 终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ 3、终边共线且反向的角:终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ 4、终边互相对称的角:若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k 若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 例1、若θα+⋅= 360k ,),(360Z m k m ∈-⋅=θβ 则角α与角β的中变得位置关系是 ;A.重合B.关于原点对称C.关于x 轴对称D.有关于y 轴对称 二、弧度与弧度制 1、弧度与弧度制:弧度制—另一种度量角的单位制, 它的单位是rad 读作弧度 定义:长度等于 的弧所对的圆心角称为1弧度的角;如图:AOB=1rad ,AOC=2rad , 周角=2rad 注意:1、正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是02、角的弧度数的绝对值 rl=αl 为弧长,r 为半径 3、用角度制和弧度制来度量零角,单位不同,但数量相同都是0 用角度制和弧度制来度量任一非零角,单位不同,量数也不同;4、在同一个式子中角度、弧度不可以混用;2、角度制与弧度制的换算弧度定义:对应弧长等于半径所对应的圆心角大小叫一弧度 角度与弧度的互换关系:∵ 360= rad 180= rad∴ 1=rad rad 01745.0180≈π'185730.571801=≈⎪⎭⎫ ⎝⎛=πrad注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.例1、 把'3067 化成弧度例 例2、 把rad π53化成度例3、将下列各角从弧度化成角度 136πrad 2 rad3 rad π533、弧长公式和扇形面积公式orC 2rad1rad rl=2r oAABr l α= ; 22121r lR S α==练习题一、选择题1、下列角中终边与330°相同的角是A .30°B .-30°C .630°D .-630°2、把-1485°转化为α+k ·360°0°≤α<360°, k ∈Z 的形式是A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360° 3、终边在第二象限的角的集合可以表示为: A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }C .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z } 4、下列命题是真命题的是Α.三角形的内角必是一、二象限内的角 B .第一象限的角必是锐角 C .不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360|αα={}Z k k ∈+⋅=,90180|αα5、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是 A .B=A ∩C B .B ∪C=C C .A ⊂C D .A=B=C6、在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限的角是A.①B.①②C.①②③D.①②③④ 7、若α是第一象限的角,则-2α是 A.第一象限的角 B.第一或第四象限的角 C.第二或第三象限的角 D.第二或第四象限的角 8、下列结论中正确的是A.小于90°的角是锐角B.第二象限的角是钝角C.相等的角终边一定相同D.终边相同的角一定相等 9、集合A={α|α=k ·90°,k ∈N +}中各角的终边都在轴的正半轴上 轴的正半轴上轴或y 轴上 轴的正半轴或y 轴的正半轴上 10、α是一个任意角,则α与-α的终边是A.关于坐标原点对称B.关于x 轴对称C.关于直线y=x 对称D.关于y 轴对称11、集合X={x |x=2n+1·180°,n ∈Z},与集合Y={y |y=4k ±1·180°,k ∈Z}之间的关系是C.X=Y ≠Y 12、设α、β满足-180°<α<β<180°,则α-β的范围是 °<α-β<0° °<α-β<180° °<α-β<0° °<α-β<360° 13、下列命题中的真命题是A .三角形的内角是第一象限角或第二象限角B .第一象限的角是锐角C .第二象限的角比第一象限的角大D .角α是第四象限角的充要条件是2k π-2π<α<2k πk ∈Z 14、设k ∈Z ,下列终边相同的角是A .2k +1·180°与4k ±1·180°B .k ·90°与k ·180°+90°C .k ·180°+30°与k ·360°±30°D .k ·180°+60°与k ·60°15、已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是A .2B .1sin 2 C .1sin 2 D .2sin 16、设α角的终边上一点P 的坐标是)5sin ,5(cos ππ,则α等于 A .5πB .5cotπC .)(1032Z k k ∈+ππ D .)(592Z k k ∈-ππ17、若90°<-α<180°,则180°-α与α的终边A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .以上都不对18、设集合M ={α|α=5-2ππk ,k ∈Z },N ={α|-π<α<π},则M ∩N 等于A .{-105ππ3,}B .{-510ππ4,7} C .{-5-105ππππ4,107,3,} D .{07,031-1ππ } 19、“21sin =A ”“A=30o”的A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件20、中心角为60°的扇形,它的弧长为2π,则它的内切圆半径为A .2B .3C .1D .23 21、设集合M ={α|α=k π±6π,k ∈Z },N ={α|α=k π+-1k6π,k ∈Z }那么下列结论中正确的是A .M =NB .M NC .N MD .M N 且N M二、填空题22、若角α是第三象限角,则2α角的终边在 . 23、与-1050°终边相同的最小正角是 . 24、已知α是第二象限角,且,4|2|≤+α则α的范围是 .任意角的三角函数练习题一、选择题1. 设α角属于第二象限,且2cos2cosαα-=,则2α角属于 A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tancos 107sinπππ. 其中符号为负的有 A. ① B. ② C. ③ D. ④3. 02120sin 等于 A. 23±B. 23C. 23-D. 214. 已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于 A. 43-B. 34- C. 43D.345.若θ∈错误!,错误!,则错误!等于θ-sin θ θ+cos θθ-cos θ D.-cos θ-sin θ6.若tan θ=错误!,则cos 2θ+sin θcos θ的值是A.-错误!B.-错误!C. 错误!D.错误!二、填空题1. 设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限. 2. 设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式:①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0,其中正确的是_____________________________.3.若角α的终边在直线y =-x 上,则ααααcos cos 1sin 1sin 22-+-= . 4.使tan x -xsin 1有意义的x 的集合为 . 5.已知α是第二象限的角,且cos 错误!=-错误!,则错误!是第 象限的角.三、解答题1. 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值.2. 设cos θ=错误!m >n >0,求θ的其他三角函数值.3.证明1 错误!=错误!2tan 2θ-sin 2θ=tan 2θsin 2θ4. 已知)1,2(,cos sin ≠≤=+m m m x x 且,求1x x 33cos sin +;2x x 44cos sin +的值.。

知识讲解_任意角和弧度制_基础

知识讲解_任意角和弧度制_基础

任意角和弧度制【学习目标】1.理解任意角的概念.掌握象限角、终边相同的角、终边在坐标轴上的角及区间角的表示方法。

2.了解弧度制的意义;掌握角的不同度量方法,能对弧度制和角度制进行正确的换算.3.掌握弧度制下扇形的弧长和面积的计算公式,并能结合具体问题进行正确地运算。

【要点梳理】 要点一:任意角的概念1.角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形. 正角:按逆时针方向旋转所形成的角. 负角:按顺时针方向旋转所形成的角.零角:如果一条射线没有做任何旋转,我们称它形成了一个零角. 要点诠释:角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.2.终边相同的角、象限角终边相同的角为{}|360k k Z βββα∈=+∈,角的顶点与原点重合,角的始边与x 轴的非负半轴重合.那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.要点诠释:(1)终边相同的前提是:原点,始边均相同;(2)终边相同的角不一定相等,但相等的角终边一定相同; (3)终边相同的角有无数多个,它们相差360︒的整数倍. 3.常用的象限角α是第一象限角,所以(){}|36036090,k k k Z αα<<+∈ α是第二象限角,所以(){}|36090360180,k k k Z αα+<<+∈ α是第三象限角,所以(){}|360180360270,k k k Z αα+<<+∈ α是第四象限角,所以(){}|360270360360,k k k Z αα+<<+∈要点二:弧度制 1.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1rad ,或1弧度,或1(单位可以省略不写). 2.角度与弧度的换算弧度与角度互换公式: 180rad π︒=1rad=0180π⎛⎫ ⎪⎝⎭≈57.30°=57°18′,1°=180π≈0.01745(rad) 3.弧长公式:r l ||α=(α是圆心角的弧度数), 扇形面积公式:2||2121r r l S α==. 要点诠释:(1)角有正负零角之分,它的弧度数也应该有正负零之分,如2ππ--,等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.(2)角α的弧度数的绝对值是:rl=α,其中,l 是圆心角所对的弧长,r 是半径. 【典型例题】类型一:角的概念的理解例1.下列结论:①第一象限角都是锐角;②锐角都是第一象限角;③第一象限角一定不是负角;④第二象限角是钝角;⑤小于180°的角是钝角、直角或锐角。

任意角和弧度制知识点

任意角和弧度制知识点

任意角和弧度制知识点
一、任意角
1. 角的概念
角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。

按旋转方向,角分为正角、负角和零角。

2. 象限角
使角的顶点与坐标原点重合,角的始边与 x 轴的非负半轴重合。

终边在第几象限,就说这个角是第几象限角。

终边在坐标轴上的角不属于任何象限,称为轴线角。

3. 终边相同的角
所有与角α终边相同的角(连同角α在内),可构成一个集合:{β | β = α+ k×360°,k∈Z}
二、弧度制
1. 弧度的定义
长度等于半径长的弧所对的圆心角叫做 1 弧度的角。

2. 弧度与角度的换算
180° = π弧度
1° = π / 180 弧度
1 弧度 = (180 / π)°
3. 扇形的弧长和面积公式
弧长公式:l = |α|×r (α是圆心角的弧度数,r 是半径)
面积公式:S = 1/2 × l × r = 1/2 × |α|×r²
掌握以上任意角和弧度制的知识点,有助于更好地理解和解决相关的数学问题。

高一任意角和弧度制及任意角的三角函数复习

高一任意角和弧度制及任意角的三角函数复习

y r x cos a = r y tan a = x 0 x sin a =
1.根据三角函数的定义,确定它们的定 三角函数 定义域 义域 (弧度制
cos a tan a
y + o ( ) ( ( x (
sin a
R
R
p a a kp (k Z ) 2
2.确定三角函数值在各象限的符号
使比值有意义的角的集合即为三 角函数的定义域.
定义推广:
设角a 是一个任意角, P ( x, y )是终边上任意一点,点P 与原点的距离是r= x 2 y 2 0
那么① ② ③ 任意角
y r x r y x
叫做
a
a
的正弦,即 的余弦,即 的正弦,即
叫做 叫做
a
a 的三角函数值仅与a 有关,而与点 P在角的终边上的位置无关.
那么:(1) 叫做 (2) 叫做 (3) 叫做 y x
y a 的正弦,记作
,即 ,即
sin a ;

sin a = y
x a 的余弦,记作
cosa
cos a = x
。 tan a =
y
a 的正切,记作
,即tana
y ( x 0) x
P( x, y)
1
a
o
x
M
正弦,余弦,正切都是以角为 自变量,以单位圆上点的坐标 或坐标的比值为函数值的函数 ,我们将他们称为三角函数.
1 1 S扇形 = r = a r 2 2 2 1 1 S弓 =S扇形 S = r r r sin a 2 2 扇形周长=2r
l a = r
r=
l
a
思考:扇形的弧长和面积共含几个变量,已 知几个量,才能求出另外的量呢?

高中数学必修四任意角与弧度制知识点汇总

高中数学必修四任意角与弧度制知识点汇总

任意角与弧度制 知识梳理:一、任意角和弧度制 1、角的概念的推广定义:一条射线OA 由原来的位置,绕着它的端点O 按一定的方向旋转到另一位置OB ,就形成了角α,记作:角α或α∠ 可以简记成α。

注意:(1)“旋转”形成角,突出“旋转”(2)“顶点”“始边”“终边”“始边”往往合于x 轴正半轴 (3)“正角”与“负角”——这是由旋转的方向所决定的。

例1、若13590<<<αβ,求βα-和βα+的范围。

(0,45) (180,270)2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

例2、(1)时针走过2小时40分,则分针转过的角度是 -960(2)将分针拨快10分钟,则分针转过的弧度数是 3π .3、 “象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x 轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

例1、30? ;390? ;?330?是第 象限角 300? ; ?60?是第 象限角585? ; 1180?是第 象限角 ?2000?是第 象限角。

例2、(1)A={小于90°的角},B={第一象限的角},则A∩B= ④ (填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角}④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是(B )A .B=A∩CB .B∪C=CC .A ⊂CD .A=B=C例3、写出各个象限角的集合:例4、若α是第二象限的角,试分别确定2α,2α 的终边所在位置.解 ∵α是第二象限的角,∴k ·360°+90°<α<k ·360°+180°(k ∈Z ).(1)∵2k ·360°+180°<2α<2k ·360°+360°(k ∈Z ), ∴2α是第三或第四象限的角,或角的终边在y 轴的非正半轴上. (2)∵k ·180°+45°<2α<k ·180°+90°(k ∈Z ), 当k=2n (n ∈Z )时, n ·360°+45°<2α<n ·360°+90°; 当k=2n+1(n ∈Z )时, n ·360°+225°<2α<n ·360°+270°. ∴2α是第一或第三象限的角. 拓展:已知α是第三象限角,问3α是哪个象限的角∵α是第三象限角,∴180°+k ·360°<α<270°+k ·360°(k ∈Z ), 60°+k ·120°<3α<90°+k ·120°. ①当k=3m(m ∈Z )时,可得 60°+m ·360°<3α<90°+m ·360°(m ∈Z ). 故3α的终边在第一象限. ②当k=3m+1 (m ∈Z )时,可得 180°+m ·360°<3α<210°+m ·360°(m ∈Z ). 故3α的终边在第三象限. ③当k=3m+2 (m ∈Z )时,可得 300°+m ·360°<3α<330°+m ·360°(m ∈Z ).故3α的终边在第四象限. 综上可知,3α是第一、第三或第四象限的角. 4、常用的角的集合表示方法 1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)(Z k k ∈个周角的和。

三角函数任意角和弧度制知识点

三角函数任意角和弧度制知识点

三角函数任意角和弧度制知识点第一章三角函数任意角和弧度制知识点任意角知识点一、任意角b终边总结:任意角构成要素为顶点、始边、终边、旋转方向、旋转量大小。

α知识点二、直角坐标系则中角的分类始边o1、象限角与轴线角aβ2、终边相同的角与角α终边相同的角β子集为__________________c终边轴线角的表示:终边落到x轴非负半轴角的子集为_____________;终边落到x轴非正半轴角的子集为_______;终边落到x轴角的子集为____________________。

终边落在y轴非负半轴角的集合为_____________;终边落在y轴非正半轴角的集合为_______;终边落在y轴角的集合为____________________。

终边落在坐标轴角的集合为__________________。

象限角的则表示第一象限的角的子集为_________________第二象限的角的子集为_____________。

第三象限的角的集合为_________________;第四象限的角的集合为____________。

例题1、推论以下各角分别就是第几象限角:670°,480°,-150°,45°,405°,120°,-240°,210°,570°,310°,-50°,-315°例题2、以下角中与330°角终边相同的角是()a、30°b、-30°c、630°d-630°题型一、象限角的认定例1、已知角的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,指出他们是第几象限角,并指出在0°~360°范围内与其终边相同的角。

(1)420°(2)-75°(3)855°(4)1785°(5)-1785°(6)2021°(7)-2021°(8)1450°(9)361°(10)-361°例2、已知α是第二象限角,则180°-α是第_____象限角。

三角函数知识点归纳

三角函数知识点归纳
单调增区间可由2k - ≤x+≤2k + ,k∈z解得;
单调减区间可由2k + ≤x+≤2k + ,k∈z解得。
在求 的单调区间时,要特别注意A和 的符号,通过诱导公式先将 化正。
如函数 的递减区间是______
(答:
解析:y= ,所以求y的递减区间即是求 的递增区间,由 得
,所以y的递减区间是
四、函数 的图像和三角函数模型的简单应用
终边在 轴上的角的集合为
终边在 轴上的角的集合为
终边在坐标轴上的角的集合为
(2)终边与角α相同的角可写成α+k·360°(k∈Z).终边与角 相同的角的集合为
(3)弧度制
①1弧度的角:把长度等于半径长的弧所对的圆心角叫做1弧度的角.
②弧度与角度的换算:360°=2π弧度;180°=π弧度.
③半径为 的圆的圆心角 所对弧的长为 ,则角 的弧度数的绝对值是
公式二:sin(π+α)=-sin_α,cos(π+α)=-cos_α,tan(π+α)=tanα.
公式三:sin(π-α)=sinα,cos(π-α)=-cos_α, .
公式四:sin(-α)=-sin_α,cos(-α)=cos_α, .
公式五:sin =cos_α,cos =sinα.
公式六:sin =cos_α,cos =-sin_α.
(1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的异角,可根据角与角之间的和差,倍半,互补,互余的关系,寻找条件与结论中角的关系,运用角的变换,使问题获解,对角的变形如:
① 是 的二倍; 是 的二倍; 是 的二倍; 是 的二倍;
② ;问: ; ;
③ ;④ ;⑤ ;等等.
如[1] . (答案: )
④若扇形的圆心角为 ,半径为 ,弧长为 ,周长为 ,面积为 ,则 , , .

(完整版)任意角和弧度制知识点和练习

(完整版)任意角和弧度制知识点和练习

知识点一:任意角的表示⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角知识点二:象限角的范围2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z o o o 第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z o o o o 第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z o o o o 第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z o o o o终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z o终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z o o 终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z o知识点三:终边角的范围3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z o4、已知α是第几象限角,确定()*n n α∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象限对应的标号即为n α终边所落在的区域.知识点四:弧度制的转换5、长度等于半径长的弧所对的圆心角叫做1弧度.6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l r α=. 7、弧度制与角度制的换算公式:2360π=o ,1180π=o ,180157.3π⎛⎫=≈ ⎪⎝⎭oo . 知识点五:扇形8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.例题分析【例1】如果α角是第二象限的角,那么2α角是第几象限的角?说说你的理由。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1任意角与弧度制知识梳理:一、任意角和弧度制1、角的概念的推广定义:一条射线OA由原来的位置,绕着它的端点O按一定的方向旋转到另一位置OB,就形成了角α,记作:角α或α∠可以简记成α。

2、角的分类:由于用“旋转”定义角之后,角的范围大大地扩大了。

可以将角分为正角、零角和负角。

正角:按照逆时针方向转定的角。

零角:没有发生任何旋转的角。

负角:按照顺时针方向旋转的角。

3、“象限角”为了研究方便,我们往往在平面直角坐标系中来讨论角,角的顶点合于坐标原点,角的始边合于x轴的正半轴。

角的终边落在第几象限,我们就说这个角是第几象限的角角的终边落在坐标轴上,则此角不属于任何一个象限,称为轴线角。

例1、(1)A={小于90°的角},B={第一象限的角},则A∩B=(填序号).①{小于90°的角} ②{0°~90°的角}③ {第一象限的角} ④以上都不对(2)已知A={第一象限角},B={锐角},C={小于90°的角},那么A、B、 C关系是()A.B=A∩C B.B∪C=C C.A⊂C D.A=B=C4、常用的角的集合表示方法1、终边相同的角:(1)终边相同的角都可以表示成一个0?到360?的角与)k∈个周角的和。

k(Z(2)所有与?终边相同的角连同?在内可以构成一个集合即:任何一个与角?终边相同的角,都可以表示成角?与整数个周角的和注意:1、Z ∈k2、α是任意角3、终边相同的角不一定相等,但相等的角的终边一定相同。

终边相同的角有无数个,它们相差360°的整数倍。

4、一般的,终边相同的角的表达形式不唯一。

例1、(1)若θ角的终边与58π角的终边相同,则在[]π2,0上终边与4θ的角终边相同的角为 。

(2)若βα和是终边相同的角。

那么βα-在例2、求所有与所给角终边相同的角的集合,并求出其中的最小正角,最大负角:(1) 210-; (2)731484'- .例3、求θ,使θ与 900-角的终边相同,且[] 1260180,-∈θ.2、终边在坐标轴上的点:终边在x 轴上的角的集合: {}Z k k ∈⨯=,180| ββ终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180| ββ终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ3、终边共线且反向的角:终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ4、终边互相对称的角:若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk例1、若θα+⋅= 360k ,),(360Z m k m ∈-⋅=θβ 则角α与角β的中变得位置关系是()。

A.重合 B.关于原点对称 C.关于x 轴对称 D.有关于y 轴对称二、弧度与弧度制1、弧度与弧度制:弧度制—另一种度量角的单位制, 它的单位是rad 读作弧度定义:长度等于 的弧所对的圆心角称为1弧度的角。

如图:?AOB=1rad ,?AOC=2rad , 周角=2?rad 注意: 1、正角的弧度数是正数,负角的弧度数是负数,零角的弧度数是02、角?的弧度数的绝对值 rl =α(l 为弧长,r 为半径) 3、用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)用角度制和弧度制来度量任一非零角,单位不同,量数也不同。

4、在同一个式子中角度、弧度不可以混用。

2、角度制与弧度制的换算弧度定义:对应弧长等于半径所对应的圆心角大小叫一弧度角度与弧度的互换关系:∵ 360?= rad 180?= rad∴ 1?=rad rad 01745.0180≈π '185730.571801=≈⎪⎭⎫ ⎝⎛=πrad 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 例1、 把'3067 化成弧度例 例2、 把rad π53化成度 例3、将下列各角从弧度化成角度(1)36π rad (2)2.1 rad? (3) rad π53 3、弧长公式和扇形面积公式 r l α= ; 22121r lR S α==练习题一、选择题1、下列角中终边与330°相同的角是( )A .30°B .-30°C .630°D .-630°2、把-1485°转化为α+k ·360°(0°≤α<360°, k ∈Z )的形式是 ( )A .45°-4×360°B .-45°-4×360°C .-45°-5×360°D .315°-5×360°3、终边在第二象限的角的集合可以表示为: ( )A .{α∣90°<α<180°}B .{α∣90°+k ·180°<α<180°+k ·180°,k ∈Z }o r C 2rad 1rad rl=2r o ABC .{α∣-270°+k ·180°<α<-180°+k ·180°,k ∈Z }D .{α∣-270°+k ·360°<α<-180°+k ·360°,k ∈Z }4、下列命题是真命题的是( )Α.三角形的内角必是一、二象限内的角B .第一象限的角必是锐角C .不相等的角终边一定不同D .{}Z k k ∈±⋅=,90360| αα={}Z k k ∈+⋅=,90180| αα 5、已知A={第一象限角},B={锐角},C={小于90°的角},那么A 、B 、C 关系是( )A .B=A ∩CB .B ∪C=C C .A ⊂CD .A=B=C6、在“①160°②480°③-960°④-1600°”这四个角中,属于第二象限的角是( )A.①B.①②C.①②③D.①②③④7、若α是第一象限的角,则-2α是( )A.第一象限的角B.第一或第四象限的角C.第二或第三象限的角D.第二或第四象限的角8、下列结论中正确的是( )A.小于90°的角是锐角B.第二象限的角是钝角C.相等的角终边一定相同D.终边相同的角一定相等9、集合A={α|α=k ·90°,k ∈N +}中各角的终边都在( )A.x 轴的正半轴上B.y 轴的正半轴上C.x 轴或y 轴上D.x 轴的正半轴或y 轴的正半轴上10、α是一个任意角,则α与-α的终边是( )A.关于坐标原点对称B.关于x 轴对称C.关于直线y=x 对称D.关于y 轴对称11、集合X={x |x=(2n+1)·180°,n ∈Z},与集合Y={y |y=(4k ±1)·180°,k ∈Z}之间的关系是( )A.X YB.X YC.X=YD.X ≠Y12、设α、β满足-180°<α<β<180°,则α-β的范围是( )A.-360°<α-β<0°B.-180°<α-β<180°C.-180°<α-β<0°D.-360°<α-β<360°13、下列命题中的真命题是 ( )A .三角形的内角是第一象限角或第二象限角B .第一象限的角是锐角C .第二象限的角比第一象限的角大D .角α是第四象限角的充要条件是2k π-2π<α<2k π(k ∈Z )14、设k ∈Z ,下列终边相同的角是 ( )A .(2k +1)·180°与(4k ±1)·180°B .k ·90°与k ·180°+90°C .k ·180°+30°与k ·360°±30°D .k ·180°+60°与k ·60°15、已知弧度数为2的圆心角所对的弦长也是2,则这个圆心角所对的弧长是 ( )A .2B .1sin 2C .1sin 2D .2sin16、设α角的终边上一点P 的坐标是)5sin ,5(cos ππ,则α等于 ( )A .5πB .5cot πC .)(1032Z k k ∈+ππD .)(592Z k k ∈-ππ17、若90°<-α<180°,则180°-α与α的终边 ( )A .关于x 轴对称B .关于y 轴对称C .关于原点对称D .以上都不对 18、设集合M ={α|α=5-2ππk ,k ∈Z },N ={α|-π<α<π},则M ∩N 等于 ( ) A .{-105ππ3,} B .{-510ππ4,7} C .{-5-105ππππ4,107,3,} D .{07,031-1ππ } 19、“21sin =A ”“A=30o”的 ( ) A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件20、中心角为60°的扇形,它的弧长为2π,则它的内切圆半径为( ) A .2 B .3 C .1 D .23 21、设集合M ={α|α=k π±6π,k ∈Z },N ={α|α=k π+(-1)k 6π,k ∈Z }那么下列结论中正确的是( ) A .M =NB .M NC .N MD .M N 且N M二、填空题 22、若角α是第三象限角,则2α角的终边在 . 23、与-1050°终边相同的最小正角是 .24、已知α是第二象限角,且,4|2|≤+α则α的范围是 .任意角的三角函数练习题一、选择题1. 设α角属于第二象限,且2cos 2cos αα-=,则2α角属于( )A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 给出下列各函数值:①)1000sin(0-;②)2200cos(0-;③)10tan(-;④917tan cos 107sin πππ. 其中符号为负的有( )A. ① B. ② C. ③ D. ④3. 02120sin 等于( )A. 23±B. 23 C. 23- D. 214. 已知4sin 5α=,并且α是第二象限的角,那么tan α的值等于( )A . 43- B . 34- C . 43 D . 345.若θ∈(5π4 ,3π2 ),则1-2sin θcos θ 等于 A.cos θ-sin θ B.sin θ+cos θC.sin θ-cos θD.-cos θ-sin θ6.若tan θ=13,则cos 2θ+sin θcos θ的值是 A.-65 B.-45 C. 45 D. 65二、填空题1. 设θ分别是第二、三、四象限角,则点)cos ,(sin θθP 分别在第___、___、___象限.2. 设MP 和OM 分别是角1817π的正弦线和余弦线,则给出的以下不等式:①0<<OM MP ;②0OM MP <<; ③0<<MP OM ;④OM MP <<0,其中正确的是_____________________________.3.若角α的终边在直线y =-x 上,则ααααcos cos 1sin 1sin 22-+-= . 4.使tan x -xsin 1有意义的x 的集合为 . 5.已知α是第二象限的角,且cos α2 =-45 ,则α2是第 象限的角. 三、解答题1. 已知1tan tan αα,是关于x 的方程2230x kx k -+-=的两个实根,且παπ273<<,求ααsin cos +的值.2. 设cos θ=m -n m +n(m >n >0),求θ的其他三角函数值. 3.证明(1) 1+2sin θcos θcos 2θ-sin 2θ =1+tan θ1-tan θ(2)tan 2θ-sin 2θ=tan 2θsin 2θ4. 已知)1,2(,cos sin ≠≤=+m m m x x 且, 求(1)x x 33cos sin +;(2)x x 44cos sin +的值.。

相关文档
最新文档