圆周运动问题汇总
圆周运动的实例及临界问题

圆周运动的实例及临界问题一、汽车过拱形桥1.汽车在拱形桥最高点时,向心力:F 合=mg -N =m v 2R.支持力:N =mg -mv 2R<mg ,汽车处于失重状态. 2.汽车对桥的压力N ′与桥对汽车的支持N 是一对相互作用力,大小相等,所以汽车通过最高点时的速度越大,汽车对桥面的压力就越小.例1 一辆质量m =2 t 的轿车,驶过半径R=90 m 的一段凸形桥面,g =10 m/s 2,求:(1)轿车以10 m/s 的速度通过桥面最高点时,对桥面的压力是多大?(2)在最高点对桥面的压力等于轿车重力的一半时,车的速度大小是多少?解析 (1)轿车通过凸形桥面最高点时,受力分析如图所示:合力F =mg -N ,由向心力公式得mg -N =m v 2R,故桥面的支持力大小N =mg -m v2R=(2 000×10-2000×10290) N ≈×104 N 根据牛顿第三定律,轿车在桥面最高点时对桥面压力的大小为×104N. (2)对桥面的压力等于轿车重力的一半时,向心力F ′=mg -N ′=,而F ′=m v ′2R ,所以此时轿车的速度大小v ′=错误!=错误! m/s ≈21.2 m/s 答案 (1)×104N (2)21.2 m/s 二、圆锥摆模型 1.运动特点:人及其座椅在水平面内做匀速圆周运动,悬线旋转形成一个圆锥面. 图12.运动分析:将“旋转秋千”简化为圆锥摆模型(如图1所示) (1)向心力:F 合=mg tan_α(2)运动分析:F 合=mω2r =mω2l sin α(3)缆绳与中心轴的夹角α满足cos α=g ω2l. 图6例2 如图6所示,固定的锥形漏斗内壁是光滑的,内壁上有两个质量相等的小球A 和B ,在各自不同的水平面做匀速圆周运动,以下物理量大小关系正确的是( )A .速度v A >vB B .角速度ωA >ωBC .向心力F A >F BD .向心加速度a A >a B解析 设漏斗的顶角为2θ,则小球的合力为F 合=mgtan θ,由F =F 合=mgtan θ=mω2r =m v 2r=ma ,知向心力F A =F B ,向心加速度a A =a B ,选项C 、D错误;因r A >r B ,又由v = grtan θ和ω=gr tan θ知v A >v B 、ωA <ωB ,故A 对,B 错.答案 A三、火车转弯1.运动特点:火车转弯时做圆周运动,具有向心加速度,需要向心力. 2.铁路弯道的特点:转弯处外轨略高于内轨,铁轨对火车的支持力斜向弯道的内侧,此支持力与火车所受重力的合力指向圆心,为火车转弯提供了一部分向心力.例3 铁路在弯道处的内、外轨道高度是不同的,已知内、外轨道平面与水平面的夹角为θ,如图7所示,弯道处的圆弧半径为R ,若质量为m 的火车转弯时速度等于gR tan θ,则( ) A .内轨对内侧车轮轮缘有挤压 B .外轨对外侧车轮轮缘有挤压 C .这时铁轨对火车的支持力等于mgcos θD .这时铁轨对火车的支持力大于mgcos θ解析 由牛顿第二定律F 合=m v 2R,解得F 合=mg tanθ,此时火车受重力和铁路轨道的支持力作用,如图所示,N cos θ=mg ,则N =mg cos θ,内、外轨道对火车均无侧向压力,故C 正确,A 、B 、D 错误. 答案 C课后巩固训练2.(圆锥摆模型)两个质量相同的小球,在同一水平面内做匀速圆周运动,悬点相同,如图9所示,A 运动的半径比B 的大,则( )A .A 所需的向心力比B 的大 B .B 所需的向心力比A 的大C .A 的角速度比B 的大D .B 的角速度比A 的大解析 小球的重力和绳子的拉力的合力充当向心力,设悬线与竖直方向夹角为θ,则F =mg tanθ=mω2l sin θ,θ越大,向心力F 越大,所以A 对,B 错;而ω2=gl cos θ=gh.故两者的角速度相同,C 、D 错.答案 A3.半径为R 的光滑半圆球固定在水平面上(如图2所示),顶部有一小物体A ,今给它一个水平初速度v 0=Rg ,则物体将( )A .沿球面下滑至M 点B .沿球面下滑至某一点N ,便离开球面做斜下抛运动C .沿半径大于R 的新圆弧轨道做圆周运动D .立即离开半圆球做平抛运动答案 D解析 当v 0=gR 时,所需向心力F =m v 20R=mg ,此时,物体与半球面顶部接触但无弹力作用,物体只受重力作用,故做平抛运动.4.质量为m 的飞机,以速率v 在水平面内做半径为R 的匀速圆周运动,空气对飞机作用力的大小等于( )A .m g 2+v 4R 2 B .m v 2RC .mv 4R 2-g 2D .mg解析 空气对飞机的作用力有两个作用效果,其一:竖直方向的作用力使飞机克服重力作用而升空;其二:水平方向的作用力提供向心力,使飞机可在水平面内做匀速圆周运动.对飞机的受力情况进行分析,如图所示.飞机受到重力mg 、空气对飞机的作用力F 升,两力的合力为F ,方向沿水平方向指向圆心.由题意可知,重力mg 与F垂直,故F 升=m 2g 2+F 2,又F =m v 2R ,联立解得F升=m g 2+v 4R2. 图3答案 A5.质量不计的轻质弹性杆P 插在桌面上,杆端套有一个质量为m 的小球,今使小球沿水平方向做半径为R 的匀速圆周运动,角速度为ω,如图4所示,则杆的上端受到的作用力大小为( )A .m ω2RD .不能确定 答案 C解析 小球在重力和杆的作用力下做匀速圆周运动.这两个力的合力充当向心力必指向圆心,如图所示.用力的合成法可得杆对球的作用力:N =(mg )2+F 2=m 2g 2+m 2ω4R 2,根据牛顿第三定律,小球对杆的上端的作用力N ′=N ,C 正确.图56.火车轨道在转弯处外轨高于内轨,其高度差由转弯半径与火车速度确定.若在某转弯处规定行驶速度为v ,则下列说法中正确的是( )A .当以v 的速度通过此弯路时,火车重力与轨道面支持力的合力提供向心力B .当以v 的速度通过此弯路时,火车重力、轨道面支持力和外轨对轮缘弹力的合力提供向心力C .当速度大于v 时,轮缘挤压外轨D .当速度小于v 时,轮缘挤压外轨解析 当以v 的速度通过此弯路时,向心力由火车的重力和轨道的支持力的合力提供,A 对,B 错;当速度大于v 时,火车的重力和轨道的支持力的合力小于向心力,外轨对轮缘有向内的弹力,轮缘挤压外轨,C 对,D 错.答案 AC解析 设赛车的质量为m ,赛车受力分析如图所示,可见:F 合=mg tan θ,而F 合=m v 2r,故v =gr tan θ.7.如图11,置于圆形水平转台边缘的小物块随转台加速转动,当转速达到某一数值时,物块恰好滑离转台开始做平抛运动.现测得转台半径R =0.5 m ,离水平地面的高度H =0.8 m ,物块平抛落地过程水平位移的大小x =0.4 m .设物块所受的最大静摩擦力等于滑动摩擦力,重力加速度g取10 m/s 2.求:图11(1)物块做平抛运动的初速度大小v 0; (2)物块与转台间的动摩擦因数μ. 答案 (1)1 m/s (2)解析 (1)物块做平抛运动,竖直方向有 H =12gt 2① 水平方向有x =v 0t ②联立①②两式得v 0=x g 2H =1 m/s ③ (2)物块离开转台时,最大静摩擦力提供向心力,有 μmg =m v 20R ④ 联立③④得μ=v 20gR = 8.(多选)如图5所示,质量为m 的物体,沿着半径为R 的半球形金属壳内壁滑下,半球形金属壳竖直固定放置,开口向上,滑到最低点时速度大小为v ,若物体与球壳之间的动摩擦因数为μ,则物体在最低点时,下列说法正确的是( )图5 A .受到的向心力为mg +m v 2RB .受到的摩擦力为μm v 2RC .受到的摩擦力为μ(mg +m v 2R)D .受到的合力方向斜向左上方解析 物体在最低点做圆周运动,则有F N -mg =m v 2R ,解得F N =mg +m v 2R,故物体受到的滑动摩擦力F f =μF N =μ(mg +m v 2R),A 、B 错误,C 正确.物体受到竖直向下的重力、水平向左的摩擦力和竖直向上的支持力(支持力大于重力),故物体所受的合力斜向左上方,D 正确. 答案 CD临界问题分析一:水平面内圆周运动的临界问题处理临界问题的解题步骤(1)判断临界状态:有些题目中有“刚好”“恰好”“正好”等字眼,明显表明题述的过程存在着临界点;若题目中有“取值范围”“多长时间”“多大距离”等词语,表明题述的过程存在着“起止点”,而这些起止点往往就对应着临界状态;若题目中有“最大”“最小”“至多”“至少”等字眼,表明题述的过程存在着极值,这个极值点也往往对应着临界状态.(2)确定临界条件:判断题述的过程存在临界状态之后,要通过分析弄清临界状态出现的条件,并以数学形式表达出来. (3)选择物理规律:当确定了物体运动的临界状态和临界条件后,要分别对不同的运动过程或现象,选择相对应的物理规律,然后列方程求解.例1 如图8所示,高速公路转弯处弯道圆半径R =100 m ,汽车轮胎与路面间的动摩擦因数μ=.最大静摩擦力与滑动摩擦力相等,若路面是水平的,问汽车转弯时不发生径向滑动(离心现象)所允许的最大速率v m 为多大?当超过v m 时,将会出现什么现象?(g =9.8 m/s 2)解析 在水平路面上转弯,向心力只能由静摩擦力提供,设汽车质量为m ,则f m =μmg ,则有m v 2m R=μmg ,v m =μgR ,代入数据可得v m ≈15 m/s =54 km/h.当汽车的速度超过54 km/h 时,需要的向心力m v 2R大于最大静摩擦力,也就是说提供的合外力不足以维持汽车做圆周运动所需的向心力,汽车将做离心运动,严重的将会出现翻车事故.答案 54 km/h 汽车做离心运动或出现翻车事故2.[相对滑动的临界问题](2014·新课标全国Ⅰ·20)(多选)如图6所示,两个质量均为m 的小木块a 和b (可视为质点)放在水平圆盘上,a 与转轴OO ′的距离为l ,b 与转轴的距离为2l ,木块与圆盘的最大静摩擦力为木块所受重力的k 倍,重力加速度大小为g .若圆盘从静止开始绕转轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是( )图6A.b一定比a先开始滑动B.a、b所受的摩擦力始终相等C.ω=kg2l是b开始滑动的临界角速度D.当ω=2kg3l时,a所受摩擦力的大小为kmg解析小木块a、b做圆周运动时,由静摩擦力提供向心力,即f=mω2R.当角速度增加时,静摩擦力增大,当增大到最大静摩擦力时,发生相对滑动,对木块a:f a=mω2a l,当f a=kmg时,kmg=mω2a l,ωa=kgl;对木块b:f b=mω2b·2l,当f b=kmg时,kmg=mω2b·2l,ωb=kg2l,所以b先达到最大静摩擦力,选项A正确;两木块滑动前转动的角速度相同,则f a=mω2l,f b=mω2·2l,f a<f b,选项B错误;当ω=kg2l时b刚开始滑动,选项C正确;当ω=2kg3l时,a没有滑动,则f a=mω2l=23kmg,选项D错误.答案AC3.[接触与脱离的临界问题]如图8所示,用一根长为l=1 m的细线,一端系一质量为m=1 kg 的小球(可视为质点),另一端固定在一光滑锥体顶端,锥面与竖直方向的夹角θ=37°,当小球在水平面内绕锥体的轴做匀速圆周运动的角速度为ω时,细线的张力为F T.(g取10 m/s2,结果可用根式表示)求:图8(1)若要小球刚好离开锥面,则小球的角速度ω0至少为多大?(2)若细线与竖直方向的夹角为60°,则小球的角速度ω′为多大?解析(1)若要小球刚好离开锥面,则小球只受到重力和细线的拉力,受力分析如图所示.小球做匀速圆周运动的轨迹圆在水平面上,故向心力水平,在水平方向运用牛顿第二定律及向心力公式得:mg tan θ=mω20l sin θ解得:ω20=gl cos θ即ω0=gl cos θ=522 rad/s.(2)同理,当细线与竖直方向成60°角时,由牛顿第二定律及向心力公式得:mg tan α=mω′2l sin α解得:ω′2=gl cos α,即ω′=gl cos α=2 5 rad/s.二:竖直面内圆周运动的临界问题1.在竖直平面内做圆周运动的物体,按运动到轨道最高点时的受力情况可分为两类:一是无支撑(如球与绳连接、沿内轨道运动的过山车等),称为“绳(环)约束模型”,二是有支撑(如球与杆连接、在弯管内的运动等),称为“杆(管)约束模型”.210.[过山车的分析](多选)如图9所示甲、乙、丙、丁是游乐场中比较常见的过山车,甲、乙两图的轨道车在轨道的外侧做圆周运动,丙、丁两图的轨道车在轨道的内侧做圆周运动,两种过山车都有安全锁(由上、下、侧三个轮子组成)把轨道车套在了轨道上,四个图中轨道的半径都为R,下列说法正确的是( )图9A.甲图中,当轨道车以一定的速度通过轨道最高点时,座椅一定给人向上的力B.乙图中,当轨道车以一定的速度通过轨道最低点时,安全带一定给人向上的力C.丙图中,当轨道车以一定的速度通过轨道最低点时,座椅一定给人向上的力D .丁图中,轨道车过最高点的最小速度为gR 解析 在甲图中,当速度比较小时,根据牛顿第二定律得,mg -F N =m v 2R,即座椅给人施加向上的力,当速度比较大时,根据牛顿第二定律得,mg+F N =m v 2R,即座椅给人施加向下的力,故A 错误;在乙图中,因为合力指向圆心,重力竖直向下,所以安全带给人一定是向上的力,故B 正确;在丙图中,当轨道车以一定的速度通过轨道最低点时,合力方向向上,重力竖直向下,则座椅给人的作用力一定竖直向上,故C 正确;在丁图中,由于轨道车有安全锁,可知轨道车在最高点的最小速度为零,故D 错误. 答案 BC11.[杆模型分析](2014·新课标Ⅱ·17)如图10所示,一质量为M 的光滑大圆环,用一细轻杆固定在竖直平面内;套在大环上质量为m 的小环(可视为质点),从大环的最高处由静止滑下.重力加速度大小为g .当小环滑到大环的最低点时,大环对轻杆拉力的大小为( )图10A .Mg -5mgB .Mg +mgC .Mg +5mgD .Mg +10mg解析 设大环半径为R ,质量为m 的小环下滑过程中遵守机械能守恒定律,所以12mv 2=mg ·2R .小环滑到大环的最低点时的速度为v =2gR ,根据牛顿第二定律得F N -mg =mv 2R ,所以在最低点时大环对小环的支持力F N =mg +mv 2R=5mg .根据牛顿第三定律知,小环对大环的压力F N ′=F N =5mg ,方向向下.对大环,据平衡条件轻杆对大环的拉力T =Mg +F N ′=Mg +5mg .根据牛顿第三定律,大环对轻杆拉力的大小为T ′=T =Mg +5mg ,故选项C正确,选项A 、B 、D 错误. 答案 C。
圆周运动易错题归纳总结

圆周运动易错题归纳总结圆周运动是物理学中一个重要的概念,理解和掌握圆周运动的规律对于学生来说是至关重要的。
然而,在学习过程中,我们常常会遇到一些易错的题目,这些题目往往涉及到一些细微的概念误解或者计算错误。
为了帮助大家更好地理解和掌握圆周运动,本文将对一些常见的易错题进行归纳总结,并提供解题的思路和方法。
一、加速度的方向在圆周运动中,物体的速度方向会不断改变,因此加速度是必不可少的。
然而,我们常常会出现对加速度方向的判断错误的情况。
一般来说,物体在圆周运动中的加速度的方向指向圆心。
这是由于物体受到一个向心的力的作用,向心力的方向恰好指向圆心。
例如,当一个物体以一定的速度绕着一个固定的圆周轨道运动时,我们需要判断其加速度的方向。
可以通过以下步骤进行判断:1.确定物体运动的方向:物体在圆周运动中的运动轨迹可以确定其运动的方向。
2.确定物体的速度方向:物体在某一刻的速度方向可以通过切线的方向确定,切线与轨迹的切点处相切。
3.确定向心力的方向:向心力的方向指向圆心。
4.确定加速度的方向:加速度的方向与向心力的方向相同。
二、向心力与重力的关系在一些题目中,我们需要比较圆周运动中的向心力与重力的大小或者判断向心力与重力的方向。
向心力与重力在圆周运动中起着不同的作用。
向心力是使物体保持圆周运动的力,它的方向指向圆心。
向心力的大小可以通过以下公式计算:向心力 = 质量 ×加速度其中,加速度为物体在圆周运动中的加速度,质量为物体的质量。
而重力则是物体受到的地球引力,它始终指向地心。
重力的大小可以通过以下公式计算:重力 = 质量 ×重力加速度其中,重力加速度为地球引力的大小。
在圆周运动中,向心力与重力往往会产生平衡。
当物体受到的向心力等于重力时,物体就能够保持稳定的圆周运动。
如果向心力大于重力,物体将会向内偏离轨道;如果向心力小于重力,物体将会向外偏离轨道。
三、速度与半径的关系速度与半径之间存在着一定的关系,这在一些题目中经常会考察到。
圆周运动的运动学问题

圆周运动的运动学问题
嘿,咱来聊聊圆周运动的那些事儿哈!
比如说,圆周运动的线速度问题,那可相当重要啊!就好像你骑着自行车绕着圆形操场转圈,不同地方的速度是不是不一样啊?这就是线速度的变化呀。
还有角速度呢!它就像时钟的指针一样,转一圈都是同样的快慢呀。
那为啥有了线速度还要角速度呢,这不是挺有意思的嘛。
向心力呢,那可是维持圆周运动的关键呀!想想看,要是没有向心力,物体还不得嗖一下飞出去啦!这就好比你玩旋转木马,要是没有中间的那根柱子提供向心力,那木马和人不都得飞出去呀!
还有周期和频率,这不就是圆周运动重复一次的时间和快慢嘛。
你看那秒钟滴答滴答地走,不就是一种有规律的周期和频率嘛。
怎么样,圆周运动的这些运动学问题是不是挺神奇的呀?别小瞧它们,生活里到处都有它们的影子呢!。
圆周运动典型例题50道

圆周运动典型例题50道
很抱歉,我不能提供50道典型例题,因为我的知识库有限。
但我可以为你提供一些圆周运动的典型例题示例:
1. 一个小车以10 m/s的速度绕半径为5 m的圆周运动,求其角速度。
2. 一个物体以10 m/s的速度在半径为2 m的圆周上运动,求其线速度和角速度。
3. 一个车轮的半径为1 m,当它以每分钟100转的角速度转动时,求其线速度。
4. 一个物体以10 m/s的速度做半径为3 m的圆周运动,求其加速度。
5. 一个小车以10 m/s的速度绕半径为5 m的圆周运动,求其向心加速度。
6. 一个小车绕半径为2 m的圆周做匀速圆周运动,它的周期是多少?
7. 一个物体以10 m/s的速度在半径为4 m的圆周上运动,求它的周期。
8. 一个物体以每秒钟5转的角速度绕半径为2 m的圆周运动,求它的线速度。
9. 一个半径为3 m的圆从静止开始经历加速度为2 m/s^2的圆周运动,求它的角速度。
10. 一个线速度为10 m/s的物体在半径为2 m的圆周上运动,求它的角速度。
以上只是一些圆周运动例题的示例,如果你需要更多题目,可以参考物理教科书或在网上搜索相关题目。
考点01圆周运动的运动学问题

[考点01] 圆周运动的运动学问题1.描述圆周运动的物理量2.匀速圆周运动(1)定义:如果物体沿着圆周运动,并且线速度的大小处处相等,这种运动叫作匀速圆周运动.(2)特点:加速度大小不变,方向始终指向圆心,是变速运动. (3)条件:合外力大小不变、方向始终与速度方向垂直且指向圆心.1.对公式v =ωr 的理解 当ω一定时,v 与r 成正比. 当v 一定时,ω与r 成反比. 2.对a n =v 2r=ω2r 的理解在v 一定时,a n 与r 成反比;在ω一定时,a n 与r 成正比. 3.常见的传动方式及特点同轴转动皮带传动齿轮传动装置A 、B 两点在同轴的一个圆盘上两个轮子用皮带连接,A 、B 两点分别是两个轮子边缘的点两个齿轮轮齿啮合,A 、B 两点分别是两个齿轮边缘上的点角速度、周期相同线速度大小相等典例1(圆周运动物理量的分析和计算)(2023·罗平县·月考)小红同学在体验糕点制作“裱花”环节时,她在绕中心匀速转动的圆盘上放置一块直径8英寸(20 cm)的蛋糕,在蛋糕边缘每隔4 s 均匀“点”一次奶油,蛋糕转动一周正好均匀“点”上15点奶油.下列说法正确的是( )A .圆盘转动的转速为2π r/minB .圆盘转动的角速度大小为π30 rad/sC .蛋糕边缘的线速度大小为π3m/sD .蛋糕边缘的奶油半个周期内的平均速度为0 答案 B解析 由题意可知,圆盘转动的周期为T =15×4 s =60 s =1 min ,则圆盘转动的转速为1 r/min ,A 错误;圆盘转动的角速度为ω=2πT =2π60 rad/s =π30 rad/s ,B 正确;蛋糕边缘的线速度大小为v =rω=0.1×π30 m/s =π300 m/s ,C 错误;蛋糕边缘的奶油半个周期内的平均速度约为v=2r T 2=0.230 m/s =1150 m/s ,故D 错误. 典例2(圆周传动问题)(多选)如图所示的传动装置中,B 、C 两轮固定在一起绕同一轴转动,A 、B 两轮用皮带传动,三个轮的半径关系是r A =r C =2r B .若皮带不打滑,则A 、B 、C 三轮边缘上a 、b 、c 三点的( )A.角速度之比为2∶1∶2B.线速度大小之比为1∶1∶2C.周期之比为1∶2∶2D.转速之比为1∶2∶2 答案 BD解析 A 、B 两轮通过皮带传动,皮带不打滑,则A 、B 两轮边缘的线速度大小相等;B 、C 两轮固定在一起绕同一轴转动,则B 、C 两轮的角速度相等. a 、b 比较:v a =v b由v =ωr 得:ωa ∶ωb =r B ∶r A =1∶2 b 、c 比较:ωb =ωc由v =ωr 得:v b ∶v c =r B ∶r C =1∶2 所以ωa ∶ωb ∶ωc =1∶2∶2v a ∶v b ∶v c =1∶1∶2,A 错误,B 正确; 由ω=2πn 知,n a ∶n b ∶n c =1∶2∶2,D 正确; T =1n,故T a ∶T b ∶T c =2∶1∶1,C 错误.典例3(圆周运动的多解问题)如图所示,一位同学做飞镖游戏,已知圆盘的直径为d ,飞镖距圆盘L ,且对准圆盘上边缘的A 点水平抛出(不计空气阻力,重力加速度为g ),初速度为v 0,飞镖抛出的同时,圆盘绕垂直圆盘过盘心O 的水平轴匀速转动,角速度为ω.若飞镖恰好击中A 点,则下列关系正确的是( )A.d =L 2g v20B.ω=π(2n +1)v 0L (n =0,1,2,3…)C.v 0=ωd2D.ω2=g π2(2n +1)2d(n =0,1,2,3…)答案 B解析 依题意飞镖做平抛运动的同时,圆盘上A 点做匀速圆周运动,恰好击中A 点,说明A 正好在最低点被击中,平抛的时间t =Lv 0,可得ω=(2n +1)πt =π(2n +1)v 0L (n =0,1,2,3…),v 0=Lω(2n +1)π(n =0,1,2,3…),B 正确;平抛的竖直位移为d ,则d =12gt 2=12g (L v 0)2=gL 22v 20,故A 、C错误;ω2=π2(2n +1)2v 20L 2=π2(2n +1)2g2d (n =0,1,2,3…),故D 错误.1.火车以60 m/s 的速率驶过一段圆弧弯道,某乘客发现放在水平桌面上的指南针在10 s 内匀速转过了10°.在此10 s 时间内,火车( ) A .运动位移为600 m B .加速度为零 C .角速度约为1 rad/s D .转弯半径约为3.4 km 答案 D解析 由Δs =v Δt 知,弧长Δs =600 m 是路程而不是位移,A 错误;火车在弯道内做曲线运动,加速度不为零,B 错误;由10 s 内匀速转过10°知,角速度ω=ΔθΔt =10°360°×2π10 rad/s =π180 rad/s ≈0.017 rad/s ,C 错误;由v =rω知,r =v ω=60π180m ≈3.4 km ,D 正确. 2.如图所示为“南昌之星”摩天轮,它的转盘直径为153米,转一圈的时间大约是30分钟.乘客乘坐观光时,其线速度大约为( )A .5.0 m/sB .1.0 m/sC .0.50 m/sD .0.27 m/s答案 D解析 半径R =1532m ,周期T =30 min =1 800 s ,根据匀速圆周运动各物理量间的关系可得v =ωR =2πTR ,代入数据得v ≈0.27 m/s ,故选D.3.(2021·全国甲卷·15)“旋转纽扣”是一种传统游戏.如图,先将纽扣绕几圈,使穿过纽扣的两股细绳拧在一起,然后用力反复拉绳的两端,纽扣正转和反转会交替出现.拉动多次后,纽扣绕其中心的转速可达50 r/s ,此时纽扣上距离中心 1 cm 处的点向心加速度大小约为( )A .10 m/s 2B .100 m/s 2C .1 000 m/s 2D .10 000 m/s 2答案 C解析 根据匀速圆周运动的规律,此时ω=2πn =100π rad/s ,向心加速度a =ω2r ≈1 000 m/s 2,故选C.4.(2023·泰州市·期中)甲、乙两物体都做匀速圆周运动,甲的转动半径为乙的一半,当甲转过60°时,乙在这段时间内正好转过45°,则甲、乙两物体的线速度大小之比为( ) A .1∶4 B .4∶9 C .2∶3 D .9∶16 答案 C解析 当甲转过60°时,乙在这段时间内正好转过45°,由角速度的定义式ω=ΔθΔt 有:ω1ω2=60°45°=43,甲的转动半径为乙的一半,根据线速度与角速度的关系式v =rω可得:v 1v 2=ω1r 1ω2r 2=43×12=23,故选项C 正确,A 、B 、D 错误. 5.如图所示的皮带传动装置中,皮带与轮之间不打滑,两轮半径分别为R 和r ,且R =3r ,A 、B 分别为两轮边缘上的点,则皮带运动过程中,关于A 、B 两点,下列说法正确的是( )A .向心加速度大小之比a A ∶aB =1∶3 B .角速度大小之比ωA ∶ωB =3∶1C .线速度大小之比v A ∶v B =1∶3D .在相同的时间内通过的路程之比为s A ∶s B =3∶1 答案 A解析由于两轮为皮带传动,A、B线速度大小相等,由a n=v2r可知,a n与r成反比,所以向心加速度大小之比a A∶a B=1∶3,故A正确,C错误;由ω=vr可知,ω与r成反比,所以角速度大小之比ωA∶ωB=1∶3,故B错误;由于A、B的线速度大小相等,在相同的时间内通过的路程相等,所以s A∶s B=1∶1,故D错误.6.(多选)(2023·辽宁省·质检)在如图所示的齿轮传动中,三个齿轮的半径之比为2∶3∶6,当齿轮转动的时候,关于小齿轮边缘的A点和大齿轮边缘的B点,()A.A点和B点的线速度大小之比为1∶1B.A点和B点的角速度之比为1∶1C.A点和B点的角速度之比为3∶1D.以上三个选项只有一个是正确的答案AC解析题图中三个齿轮边缘线速度相等,A点和B点的线速度大小之比为1∶1,由v=ωr 可得,线速度一定时,角速度与半径成反比,A点和B点角速度之比为3∶1,选项A、C 正确,选项B、D错误.7.如图所示是一辆自行车,A、B、C三点分别为自行车轮胎和前后两齿轮外沿上的点,其中R A=2R B=5R C,下列说法中正确的是()A.ωB=ωCB.v C=v AC.2ωA=5ωBD.v A=2v B答案C解析B轮和C轮是链条传动,v B=v C,根据v=ωR,得5ωB=2ωC,故A错误;由于A轮和C轮同轴,故两轮角速度相同,根据v=ωR,得v A=5v C,故B错误;因v A=5v C,v A=ωA R A,v C=v B=ωB R B,故v A=5v B,2ωA=5ωB,故C正确,D错误.8.某新型自行车,采用如图甲所示的无链传动系统,利用圆锥齿轮90°轴交,将动力传至后轴,驱动后轮转动,杜绝了传统自行车“掉链子”问题.如图乙所示是圆锥齿轮90°轴交示意图,其中A 是圆锥齿轮转轴上的点,B 、C 分别是两个圆锥齿轮边缘上的点,两个圆锥齿轮中心轴到A 、B 、C 三点的距离分别记为r A 、r B 和r C (r A ≠r B ≠r C ).下列有关物理量大小关系正确的是( )A.B 点与C 点的角速度:ωB =ωCB.C 点与A 点的线速度:v C =r Br A v AC.B 点与A 点的线速度:v B =r Ar B v AD.B 点和C 点的线速度:v B >v C 答案 B解析 B 点与C 点的线速度相等,由于r B ≠r C ,所以ωB ≠ωC ,故A 、D 错误;B 点的角速度与A 点的角速度相等,所以v B r B =v A r A ,即v B =r Br A v A ,故C 错误;B 点与C 点的线速度相等,所以v C =v B =r Br Av A ,故B 正确.9.(2022·南通市高一期末)如图所示为旋转脱水拖把,拖把杆内有一段长度为25 cm 的螺杆通过拖把杆下段与拖把头接在一起,螺杆的螺距(相邻螺纹之间的距离)d =5 cm ,拖把头的半径为10 cm ,拖把杆上段相对螺杆向下运动时拖把头就会旋转,把拖把头上的水甩出去. 某次脱水时,拖把杆上段1 s 内匀速下压了25 cm ,该过程中拖把头匀速转动,则( )A .拖把杆向下运动的速度为0.1π m/sB .拖把头边缘的线速度为π m/sC .拖把头转动的角速度为5π rad/sD .拖把头的转速为1 r/s 答案 B解析 拖把杆向下运动的速度v 2=lt=0.25 m/s ,故A 错误;拖把杆上段1 s 内匀速下压了25 cm ,则螺杆转动5圈,即拖把头的转速为n =5 r/s ,则拖把头转动的角速度ω=2πn =10π rad/s 拖把头边缘的线速度v 1=ωR =π m/s ,故B 正确,C 、D 错误.10.(2023·嘉兴市·期中)如图为车牌自动识别系统的直杆道闸,离地面高为1 m 的细直杆可绕O 在竖直面内匀速转动.汽车从自动识别线ab 处到达直杆处的时间为3.3 s ,自动识别系统的反应时间为0.3 s ;汽车可看成高1.6 m 的长方体,其左侧面底边在aa ′直线上,且O 到汽车左侧面的距离为0.6 m ,要使汽车安全通过道闸,直杆转动的角速度至少为( )A.π4 rad/sB.3π4 rad/sC.π6 rad/sD.π12 rad/s 答案 D解析 由题意可知,在汽车行驶至a ′b ′时,横杆上a ′上方的点至少要抬高1.6 m -1 m =0.6 m ,即横杆至少转过π4,所用时间为t =3.3 s -0.3 s =3 s ,则角速度ω=θt =π12 rad/s ,故选D.11.(多选)如图所示,B 和C 是一组塔轮,即B 和C 半径不同,但固定在同一转动轴上,其半径之比为R B ∶R C =3∶2,A 轮的半径大小与C 轮相同,它与B 轮紧靠在一起,当A 轮绕过其中心的竖直轴转动时,由于摩擦作用,B 轮也随之无滑动地转动起来.a 、b 、c 分别为三轮边缘的三个点,则a 、b 、c 三点在运动过程中的( )A.线速度大小之比为3∶3∶2B.角速度之比为3∶3∶2C.转速之比为2∶3∶2D.周期之比为2∶3∶3 答案 AD解析 A 轮、B 轮靠摩擦传动,边缘点线速度相等,故v a ∶v b =1∶1,根据公式v =rω,有ωa ∶ωb =3∶2,根据ω=2πn ,有n a ∶n b =3∶2,根据T =2πω,有T a ∶T b =2∶3;B 轮、C轮是同轴转动,角速度相等,故ωb ∶ωc =1∶1,根据v =rω,有v b ∶v c =3∶2,根据ω=2πn ,有n b ∶n c =1∶1,根据T =2πω,有T b ∶T c =1∶1,联立可得v a ∶v b ∶v c =3∶3∶2,ωa ∶ωb ∶ωc=3∶2∶2,n a ∶n b ∶n c =3∶2∶2,T a ∶T b ∶T c =2∶3∶3,故A 、D 正确,B 、C 错误. 12.两个小球固定在一根长为L 的杆的两端,绕杆上的O 点做圆周运动,如图所示.当小球1的速度大小为v 1时,小球2的速度大小为v 2,则O 点到小球2的距离是( )A.L v 1v 1+v 2B.L v 2v 1+v 2C.L (v 1+v 2)v 1D.L (v 1+v 2)v 2答案 B解析 两球在同一杆上,旋转的角速度相等,均为ω,设两球的转动半径分别为r 1、r 2,则r 1+r 2=L .又知v 1=ωr 1,v 2=ωr 2,联立得r 2=L v 2v 1+v 2,B 正确.13.(多选)如图所示,直径为d 的纸筒以角速度ω绕中心轴匀速转动,将枪口垂直指向圆筒轴线,使子弹穿过圆筒,结果发现圆筒上只有一个弹孔,若忽略空气阻力及子弹自身重力的影响,则子弹的速度可能是( )A.dωπB.dω2πC.dω3π D.dω4π答案 AC解析 由题意知圆筒上只有一个弹孔,说明子弹穿过圆筒时,圆筒转过的角度应满足θ=(2k +1)π(k =0,1,2…),子弹穿过圆筒所用的时间t =d v =θω,则子弹的速度v =dω(2k +1)π(k =0,1,2…),故选项A 、C 正确.14.如图所示,半径为R 的圆盘绕垂直于盘面的中心轴匀速转动,其正上方h 处沿OB 方向水平抛出一小球,不计空气阻力,重力加速度为g ,要使球与盘只碰一次,且落点为B ,求小球的初速度v 及圆盘转动的角速度ω的大小.答案 Rg2h2n πg2h(n =1,2,3…) 解析 设球在空中运动时间为t ,此圆盘转过θ角,则 R =v t ,h =12gt 2故初速度大小v =R g 2hθ=n ·2π(n =1,2,3…) 又因为θ=ωt则圆盘角速度ω=n ·2πt=2n πg2h(n =1,2,3…).15.(多选)(2023·江西南昌·校考)如图所示,靠在一起的M 、N 两转盘靠摩擦传动,两盘均绕过圆心的竖直轴转动,M 盘的半径为r ,N 盘的半径R=2r ,A 为M 盘边缘上的一点,B 、C 为N 盘直径的两个端点,当O '、A 、B 、C 共线时(如图所示的位置),从O '的正上方P 点以初速度v 0地沿O O '方向水平抛出一小球,小球落至圆盘C 点,重力加速度为g ,则下列5r0,1,2),可以落0,1,2),可知当的角速度为M ω=.若小球抛出时到O 下落的时间2t =1,2,3),可以落在2,3)可知当的角速度为''M 2ωω==。
与圆周运动相关的受力问题

一、分类:
二、水平匀速圆:可能会涉及到动力学内容(牛二 率,甚至整体牛二),有时甚至出现竖直圆。 1.绳拉球:
2.一般题型:(出现摩擦力也可以)
三、融入竖直圆:
例题:框内小球在最高点时,整体框架对地面恰好 无压力,求经过半个圆周到达最低点时,对地面压 力是多少?
分析:有两个物体,是个系统牛二律的问题。 1.最高点时: (M+m)g-0=ma1+0 2.最低点时: N-(M+m)g=ma2+0 3.半个圆周:mg2R=1/2mv22-1/2mv12
4.关联:a=v2/R 代入后化简得:4g=v22/R-v12/R 代入a2得N=(2M+6m)g
技巧做法:无论何种模型,只有没有摩擦,最高最 低的向心力差就是固定值4mg. 由整体法可知:
在最高点向心力=(M+m)g 那么在在最低点向心力=(M+5m)g 于是m)g=(M+5m)g
A. Mg-5mg B. Mg+mg C. Mg+5mg D. Mg+10mg
分析:在最高点向心力为零。 那么在最低点向心力为4mg
于是:在最低点列系统牛二律得: 拉力T-(M+m)g=4mg
(16新课标)16.小球P和Q用不可伸长的轻绳悬挂在 天花板上,P球的质量大于Q球的质量,悬挂P球的 绳比悬挂Q球的绳短.将两球拉起,使两绳均被水 平拉直,如图所示,将两球由静止释放,在各自轨 迹的最低点()
分析: 1.基本方法: 把握分离时N=0,另外利用动能定理(考虑电场力 也会做功)。 2.另外方法:等效重力场(在该题目中没有优势)。
变形:在上述叠加电场的情况下,再叠加磁场。问小球在何 处脱离轨道?
(完整版)圆周运动典型例题及答案详解

解题过程中,物理过程示意图,是常用的方法,它可以使抽象的物理过程具体形象化,便于从图中找出各物理量之间关系,以帮助建立物理方程,最后求出答案。
典型例题答案
【例1】【分析】皮带不打滑,表示轮子边缘在某段时间内转过的弧长总是跟皮带移动的距离相等,也就是说,用皮带直接相连的两轮边缘各处的线速度大小相等.根据这个特点,结合线速度、角速度、向心加速度的公式即可得解.
D.当转台转速继续增加时,A比B先滑动
【例4】如图,光滑的水平桌面上钉有两枚铁钉A、B,相距L0=0.1m.长L=1m的柔软细线一端拴在A上,另一端拴住一个质量为500g的小球.小球的初始位置在AB连线上A的一侧.把细线拉直,给小球以2m/s的垂直细线方向的水平速度,使它做圆周运动.由于钉子B的存在,使细线逐步缠在A、B上.
【解】由于皮带不打滑,因此,B、C两轮边缘线速度大小相等,设vB=vC=v.由v=ωR得两轮角速度大小的关系
ωB∶ωC=RC∶RB=2∶1.
因A、B两轮同轴转动,角速度相等,即ωA=ωB,所以A、B、C三轮角速度之比
ωA∶ωB∶ωC=2∶2∶1.
因A轮边缘的线速度
vA=ωARA=2ωBRB=2vB,
y方向上应有
N·sinθ+T·cosθ-G=0②
∵r = L·sinθ③
由①、②、③式可得
T = mgcosθ+mω2Lsinθ
当小球刚好离开锥面时N=0(临界条件)
则有Tsinθ=mω2r④
T·cosθ-G=0⑤
【例6】【分析】水和杯子一起在竖直面内做圆周运动,需要提供一个向心力。当水杯在最低点时,水做圆周运动的向心力由杯底的支持力提供,当水杯在最高点时,水做圆周运动的向心力由重力和杯底的压力共同提供。只要做圆周运动的速度足够快,所需向心力足够大,水杯在最高点时,水就不会流下来。
(完整版)圆周运动题型总结

一.角速度 线速度 周期之间的关系1.做匀速圆周运动的物体,10s 内沿半径是20m 的圆周运动了100m ,试求物体做匀速圆周运动时:(1)线速度的大小; (2)角速度的大小; (3)周期的大小.【答案】(1);(2);(3)10/m s 0.5/rad s 12.56s2.如图所示,两个小球固定在一根长为l 的杆的两端,绕杆上的O 点做圆周运动,当小球A 的速度为v A 时,小球B 的速度为v B .则轴心O 到小球B 的距离是( )A .B A B v l v v + B .A A Bv l v v + C . D .A B A v v L v +A BB v v Lv +【答案】A 3.转笔(Pen Spinning )是一项用不同的方法与技巧、以手指来转动笔的休闲活动,如图所示.转笔深受广大中学生的喜爱,其中也包含了许多的物理知识,假设某转笔高手能让笔绕其上的某一点O 做匀速圆周运动,下列有关该同学转笔中涉及到的物理知识的叙述正确的是( )A .笔杆上的点离O 点越近的,角速度越大B .笔杆上的点离O 点越近的,做圆周运动的向心加速度越大C .笔杆上的各点做圆周运动的向心力是由万有引力提供的D .若该同学使用中性笔,笔尖上的小钢珠有可能因快速的转动做离心运动被甩走【答案】D 二.传动装置4.如图所示,A 、B 是两个靠摩擦传动且接触面没有相对滑动的靠背轮,A 是主动轮,B 是从动轮,它们的半径RA =2R B , a 和b 两点在轮的边缘,c 和d 分别是A 、B 两轮半径的中点,下列判断正确的有 A .v a = 2 v b B .ωb = 2ωaC .v c = v aD .a c =a d【答案】B5.某变速箱中有甲、乙、丙三个齿轮,如图所示,其半径分别为r 1、r 2、r 3,若甲轮的角速度为ω,则丙轮边缘上某点的向心加速度为A .B.C.D.3221r r ω12223r r ω22223r r ω3221r r r ω【答案】A6.如图所示的皮带传动装置中,轮A 和B 同轴,A 、B 、C 分别是三个轮边缘的质点,且RA=RC=2RB ,若传动过程中皮带不打滑,则下列说法正确的是( )A .A 点与C 点的线速度大小相同B .B 点与C 点的角速度相同C .A 点的向心加速度大小是B 点的2倍D .B 点的运行周期大于C 点的运行周期【答案】C7.一部机器由电动机带动,机器皮带轮的半径是电动机皮带轮半径的3倍(如图),皮带与两轮之间不发生滑动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆周运动问题汇总
一.传动装置问题
1.同轴传动的各点角速度相同
2.当皮带不打滑时,传动皮带、用皮带连接的两轮边沿上的各点线速度大小相等
例1:如图所示的传动装置中,B、C两轮固定在
一起绕同一轴转动,A、B两轮用皮带传动,三
轮半径关系,若皮带不打滑,求A、
B、C轮边缘的a、b、c三质点的角速度,线速
度和向心加速度之比。
解析:由于b、c 是同轴的物体,所以,由于a、b是轮子边缘上的点,
所以,线速度与角速度的关系,
则可以得到
,
二.转弯问题
1.水平路面转弯由静摩擦力提供向心力
2.倾斜路面转弯由重力和支持力的合力提供向心力
例2:汽车甲和汽车乙质量相等,以相等的速率沿同一水平弯道做匀速圆周运动,甲车在乙车的外侧,两车沿半径方向受到的摩擦力分别为和,以下说法正确的是
A.小于
B.等于
C.大于
D.和均与速率无关
解析:因为在水平路面上转弯由静摩擦力提供向心力,根据向心力公式可得小于,所以选A项
例3:高速行驶的竞赛汽车依靠摩擦力转弯是有困难的,所以竞赛场地的弯道处做成侧向斜坡,如果弯道半径为r,斜坡和水平方向成θ角,则汽车完全不依靠摩擦力转弯折速度大小为
A. B. C. D.
解析:高速行驶的竞赛汽车完全不依靠摩擦力转弯时所需的向心力
由重力和路面的支持力的合力提供,力图如图.根据牛顿第二定律
得??,可得,所以选C项
三.圆锥摆问题
圆锥摆问题中物体所受的重力与弹力提供向心力
例4:如图所示,两个质量不同的小球用长度不等的细线拴在同
一点,并在同一水平面内做匀速圆周运动,则它们的
A.运动周期相同
B.运动线速度大小相同
C.运动角速度相同
D.向心加速度大小相同
解析:对其中一个小球受力分析,如图,受重力,绳子的拉力,由于小球
做匀速圆周运动,故细线的拉力与重力的合力提供向心力;将重力与拉力
合成,合力指向圆心,由几何关系得,细线的拉力
,因θ不同,故T不同,故A错误.B、C、D合力F=mgtanθ ①;由向心力公式得到,F=mω2r ②;设绳子与悬挂点间的高度差为h,由几何关系,得:r=htanθ ③;由①②③三
式得,,
与绳子的长度和转动半径无关,故C正确;由v=wr,两球转动半径不等,故B错误;由a=ω2r,两球转动半径不等,故D错误;故选:C.
四、汽车过拱桥问题
汽车过拱桥问题中物体所受的重力与弹力提供向心力
例5:有一辆质量为1.2 t的小汽车驶上半径为50 m的圆弧形拱桥,如图所
示。
求:
(1)汽车到达桥顶的速度为10m/s时对桥的压力有多大
(2)汽车以多大的速度经过桥顶时恰好对桥没有压力作用而腾空
解析:如图所示,汽车到达桥顶时,竖直方向受到重力G和桥对它的支持力N的作用.
根据牛顿第二定律得,解得:
根据牛顿第三定律知,汽车对桥的压力为9600N.
(2)当汽车对桥没有压力时,重力提供向心力,则解得:
当小车经过凹桥时,得到N-mg=mv2/r
五、临界问题
1. 水平面内的临界问题
时,物体有远离或向着圆心运动(半在水平面内圆周运动的物体,当角速度变
化
径有变化)的趋势。
这时,要根据物体的受力情况,判断物体受某个力是否存在以及这个力存在时的方向如何(特别是一些接触力如静摩擦力,绳的拉力等)例6:如图,两个质量均为m的小木块a和b(可视为质点)放在水平圆盘上,a 与转轴OO'的距离为L,b与转轴的距离为2L。
木块与圆盘的最大静摩擦力为木块所受重力的k倍,重力加速度大小为g。
若圆盘从静止开始绕轴缓慢地加速转动,用ω表示圆盘转动的角速度,下列说法正确的是
A.b一定比a先开始滑动
B.a、b所受的摩擦力始终相等
C.ω=是b开始滑动的临界角速度
D.当ω=时,a所受摩擦力的大小为kmg
解析:小木块都随水平转盘做匀速圆周运动时,在发生相对滑动之前,角速度相等,静摩擦力提供向心力即,由于木块b的半径大,所以发生相对滑动前木块b的静摩擦力大,选项B错。
随着角速度的增大,当静摩擦力等于滑动摩擦力时木块开始滑动,则有
,代入两个木块的半径,小木块a开始滑动时的角速度,木块b 开始滑动时的角速度,选项C对。
根据,所以木块b先开始滑动,选项A 对。
当角速度,木块b已经滑动,但是,所以木块a未达到临界状态,摩擦力还没有达到最大静摩擦力,所以选项D错。
故选AC项
2.竖直面内的临界问题
(1)、线球模型(高中阶段只要求分析特殊位置最高点、最低点)
如图所示,没有物体支撑的小球,在竖直平面做圆周运动过最高点
的情况:
注意:绳对小球只能产生沿绳收缩方向的拉力
①临界条件:绳子或轨道对小球没有力的
作用:mg=mv 2
/R →v 临界=Rg (可理解为恰好转过或恰好转不过的速度) ②能过最高点的条件:v ≥Rg ,当V >Rg
③不能过最高点的条件:V
<V 临界
(实际上球还没到最高点时就脱离了轨道)。
(2)、杆球模型
注意:杆与绳不同,杆对球既能产生拉力,也能对球产生支持力。
①当v =0时,N =mg (N 为支持力)
②当 0<v <Rg 时, N 随v 增大而减小,且mg >N >0,N 为支持力.
③当v=Rg 时,N =0 例7:游乐场的过山车的运行过程可以抽象为如图所示的模型.弧形轨道的下端与圆轨道相接,使小球从弧形轨道上端A 点静止滑下,进入圆轨道后沿圆轨道运动,最后离开.试分析A 点离地面的高度h 至少要多大,小球才可以顺利通过圆轨道最高点(已知圆轨道的半径为R ,不考虑摩擦等阻力).
解析:设在圆轨道最高处的速度为v ,则在圆轨道最高处
?
由机械能守恒定律得:
?
联立以上各式得 例8:长L=0.5m 质量可忽略的细杆,其一端可绕O 点在竖直平面内转动,另一端固定着一个物体A.A 的质量为m=2kg ,当A 通过最高点时,如图所示,求在下列两种情况下杆对小球的力:
(1) A 在最低点的速率为m/s ;(2)A 在最低点的速率为6m/s
解析:(1)设杆对小球为竖直向上的力F 1
从最低点到最高点过程中由机械能守恒得
在最低点牛顿第二定律得
联立解得
(2)设杆对小球为竖直向上的力F2
从最低点到最高点过程中由机械能守恒得
在最低点牛顿第二定律得
联立解得负号代表方向竖直向下
3.斜面内的圆周运动
例9:如图所示,一倾斜的匀质圆盘绕垂直于盘面的固定对称轴以恒定的角速度ω转动,盘面上离转轴距离2.5m处有一小物体与圆盘始终保持相对静止。
物体
与盘面间的动摩擦因数为(设最大静摩擦力等于滑动摩擦
力),盘面与水平面的夹角为300,g取10m/s2。
则ω的最大
值是
A. B.
C.1.0rad/s D.0.5rad/s
解析:本题考查受力分析、应用牛顿第二定律、向心力分析解决匀速圆周运动问题的能力.物体在最低点最可能出现相对滑动,对物体进行受力分析,应用牛顿第二
定律,有,解得ω=1.0 rad/s,选项C正确。
4.松驰临界和分离临界
松驰临界和分离临界问题关键是弹力为0时对应的临界速度或角速度
例10. 如图所示,直角架ABC的AB在竖直方向上,B点和C点各系一根细绳,两绳共吊着一个质量为1kg的小球D,且BD垂直CD,θ=300,BD=40cm,当直角架以ω=10rad/s的角速度绕AB转动时,绳BD和CD的张力各为多大
解析:设CD绳恰好没有拉力时的角速度为
解得:rad/s
5.一光滑的圆锥体固定在水平桌面上,其轴线沿竖直方向,其顶角为60°,如图所示,一条长为L的轻绳,一端固定在锥顶O点,另一端拴一质量为m的小球,小球以速率v绕圆锥的轴线做水平面内的匀速圆周运动。
(1)时,绳上的拉力多大
(2)时,绳上的拉力多大
解析:设小球刚好对圆锥没有压力时的速度为
mgtan30°=m解得:
(1)当v<v
0时,小球受三个力,F
T
cos30°+F
N
=mg
F
T 30°-F
N =m
解得F
T
=1.033mg
(2)当v>v
时,小球受二个力,mgtanφ=m
解得φ=60°
F
T
==2mg 3.火车转弯问题
4.
L
O
60°。