高等代数第六章自测题.docx

合集下载

习题答案(第六章)

习题答案(第六章)

1、R n 中分量满足下列条件的全体向量1(,,)n x x 的集合,是否构成R n的子空间?①10n x x ++= ;②120n x x x ⋅⋅⋅= ;③2211n x x ++= 。

解:①是,设(){}111,,|0nnV x x x x=++= ,显然V 1≠∅,1,,,a b F V ξη∀∈∀∈,设1212(,,),(,,)x x y y ξη== ,则()()()1111,,,,,,n n n n a b a x x b y y ax by ax by ξη+=+=++ ,而 1111()()()()000n n n n ax by ax by a x x b y y a b ++++=+++++=+=所以1a b V ξη+∈,所以V 1是R n 的子空间;②不是,取(1,0,,0),(0,1,,1)αβ== ,则(){}11,,,|0nnV x x x xαβ∈=⋅⋅= ,但(1,1,,1)V αβ+=∉ ,所以V 不是R n 的子空间;③不是,取(1,0,,0),(0,1,0,,0)αβ== ,则(){}2211,,,|1nn V x x xx αβ∈=++= ,但(1,1,0,,0)V αβ+=∉ ,所以V 不是R n 的子空间。

2、子集{}1|,,V X AX XB A B n ==为已知的阶矩阵是否是()n M F 的子集?解:是()n M F 的子集;证:显然1V ≠∅,1,,,X Y V a b F ∀∈∈,有()()A aX bY aAX bAY aXB bYB aX bY B +=+=+=+,所以1aX bY V +∈,所以1V 是()n M F 的子集。

3、设12(1,0,1,0),(1,1,2,0)αα==-,求含12,αα的R 4的一组基。

解:因为101010101010112001100010⎛⎫⎛⎫⎛⎫→→⎪ ⎪⎪---⎝⎭⎝⎭⎝⎭, 取34(0,0,1,0),(0,0,0,1)αα==,所以{}1234,,,αααα为R 4的一组基。

第六章高等代数练习

第六章高等代数练习

第六章练习一、填空题 1、在3F 中,计算()()()112,0,11,1,20,1,1_____________32;-+---+= 2、若1234,α,α,αα线性无关,则12233441,,α+α,α+αα+αα+α的极大无关组是 ;()12233441dim ,,L α+α,α+αα+αα+α= ;3、若向量α关于基123,,ααα的坐标为()123,,x x x 则α关于基1232,,ααα-的坐标为 ;在向量空间()2M F 中,向量a b c d ⎛⎫⎪⎝⎭关于基1000⎛⎫ ⎪⎝⎭,0010⎛⎫ ⎪⎝⎭,0100⎛⎫⎪⎝⎭ ,0001⎛⎫⎪⎝⎭的坐标是 ; 4、向量组()()()()12340,1,13,1,2α=1,1,1,, α=2,1,0, α=, α=的一个极大无关组是 ;向量组1(1,1,0,0)α=,2(0,1,1,0)α=,3(1,0,1,0)α=,4(1,0,0,1)α=的极大无关组是 ;5、设0,a V a b R a b ⎧⎫⎛⎫=∈⎨⎬ ⎪-⎝⎭⎩⎭则dim V = ; 6、设(){}11220n n V xx x x nx =+++=,则dim V = ;7.由基123,,2ααα到基1232,,ααα-的过渡矩阵是 ;8、设A 为n 阶方阵,且()()r A s s n =≠则齐次线性方程组AX=0的解空间的维数为 ; 9、若1234,,,αααα线性无关,则123,,ααα线性 ;10、 向量空间没有基;含一个向量的向量空间是 空间;二、解答题1、检验下列集合对所规定的运算是否构成所给数域上的线性空间:1)设{},V a a b Q =+∈,对普通数的加法和乘法;2)V 为定义在数域P 上的一切n 阶方阵,对数与矩阵的乘法及以下定义的加法:,,n n X Y P X Y XY YX ⨯∀∈⊕=-;3)(){},|,V x y x y P =∈,加法按普通矩阵相加,并定义数乘为:()()2111,,,0,x y P k P k ky αα∀=∈∈∙=:2、设,F F 是数域,若F F ⊂,问对数的加法与乘法,F 是否构成F 上线性空间?F 是否构成F 上线性空间?3、实数域对于数的加法和乘法构成实数域上线性空间,问有理数集是否为实数集的子空间?又R +是否R 的子空间?若实数域对于数的加法和乘法构成有理数域上线性空间,问有理数集是否为实数集的子空间? 4、判断正误,并说明为什么? 1)如果12,,,r V ααα∈,则12,,,r ααα是()12,,,r L ααα的基; 2)若12,,,n ααα是n 维空间的一组生成元,则12,,,n ααα一定是V 的基;3)若()12,,,r L ααα中有某一向量关于12,,,r ααα的表示法唯一,则()12,,,r L ααα是r 维线性空间;4)设()()(){}1,1,0,1,1,0,0,0,0S =--,则S 是3P 的子空了间;5)任一线性空间都有基。

高数答案(全集)第六章参考答案

高数答案(全集)第六章参考答案

高数答案(全集)第六章参考答案第六章常微分方程1. (1) b,c,d (2) a,c (3) b,d2. (1) 二阶,线性 (2) 一阶,非线性 (3) 一阶,非线性 (4) 一阶,非线性3. (1)-(3)均为微分方程0222=+y dxy d ω的解,其中(2) (3)为通解 4. (1)将变量分离,得dx ydy cos 2= 两边积分得 c x y +=-sin 1通解为,sin 1c x y +-=此外,还有解0=y(2)分离变量,得dx x x y y d xx dx dy y y )111(1)1(2112222+-=+++=+或两边积分,得cx x y ln )1ln(ln )1ln(212++-=+即(1+ 2y )(1+ x)2=c 1 2x(3)将变量分离,得1122=-+-yydy xxdx积分得通解21x -+)20(12还有使因子21x -?012=-y 的四个解.x=(±)11 y -, y=(±)11 x - (4)将方程改写为(1+y 2)ex2dx-[]0)1( )e y +(1y=+-dy yex2dx=dy y y ??++-2y11 (e 积分得--=y e e y x arctan 212)1ln(212y +-21(5)令 z=x+y+1,z dx dz sin 1+=分解变量得到dx zdz=+sin 1………………(*) 为了便于积分,用1-sinz 乘上式左端的分子和分母,得到dz z z z se dz zzdz z z )tan sec (cos sin 1sin 1sin 1222-=-=-- 将(*)两端积分得到tanz-secz=x+c22z-∏)=x+c,将z 换为原变量,得到原方程的通解 X+c=-tan(214++-∏y x )6.令y=ux,则dy=udx+xdu 代入原方程得x 2( u 2-3)(udx+xdu)+2 x 2udx=0分离变量得du x dx 1)-u(u u 22-=,即得y 3=c(2y -2x ) 7. 令xy u =,则原方程化为dx x udu 1=,解得c x u ==ln 212,即,ln 2222cx x x y +=由定解条件得4=c ,故所求特解为,ln 4222x x x y +=8. 将方程化为x y xyy +-='2)(1,令x yu =,得,u u x y +'=代入得dx x du u 1112=- 得c x u ln ln arcsin +=,cx xyln arcsin= 9.化为x e x y dx dy x =+,解得)(1xe c xy +=,代入e y =)1(得0=c 特解x e y x = 10.由公式得1)()(-+=-x ce y x ??11.化为x y x y dx dy ln 2=+为贝努里方程令xyu =,则原方程化为dx dy y dx du 2--= 代入方程的x u x dx du ln 1-=-用公式求得])(ln 21[2x c x u -=解得12])(ln 21[1--=x c x y 另为,0=y 也是原方程的解 12.为贝努里方程令x yu =,则原方程化为322x xu dx du -=+用公式求得122+-=-x ce u x解得1122+-=-x cey x13.23x y yx dx dy =-将上式看成以y 为自变量的贝努里方程令x z 1=有3y yz dxdy-=- 22212+-=-y ce z y ,得通解1)2(2212=+--y cex y14.令x y N x y M +-=-=4,32有xNy M ??==??1,这是全微分方程0=duxy x y dy x y dx x y u y x +--=---=?32),()0,0(22)4()3(,即方程得通解为c y x xy =--232 15.化为0122=+-+xdx yx xdy ydx ,得通解为c x xy xy =+-+211ln 16.该方程有积分因子221y x +,)(arctan ))ln(21(2222x y d y x d y x ydx xdy xdy ydx ++=+-++ 17.1c e xe dx e xe e xd dx xe y xx x xx x+-=-==='?21211)2()(c x c x e c e xe x c e dx c e xe y x x x x x x ++-=+-++-=+-=?18.xx x dx x x y x1ln 32ln 12--=+=''? 2ln ln 213)1ln 3(21---=--='?x x x dx x x x y x 21ln 2223)2ln ln 213(2212+--=---=?x x x x dx x x x y x19.令y z '=,则xz z =-',xx x dxdx e c x c e x e c dx xe e z 111)1(])1([][++-=++-=+??=--?即x e c x y 1)1(++-='得2121c e c x y x ++--=20.令p y =',则dy dp p dx dy dy dp dx dp y =?==''所以0)(2323=+-=+-p p dy dp y p p p dy dp p y 则得p=0或02=+-p p dy dp y,前者对应解,后者对应方程y dy p p dp =-)1(积分得y c pp11=-即y c y c p dx dy 111+==两边积分得21||ln c x y c y '+='+,因此原方程的解是21||ln c x y c y '+='+及y=c 。

高等代数真题答案

高等代数真题答案

⎜⎝ 5 ⎟⎠
⎛1 5 8 1⎞
⎛0 2 3 4⎞
15.
设 AP = PB,
其中
P
=
⎜ ⎜ ⎜
0 0
2 0
6 3
9 7
⎟ ⎟ ⎟
,
B
=
⎜ ⎜ ⎜
0 0
0 0
2 0
3 2

⎟ ⎟
,
求 A10
⎜⎜⎝ 0 0 0 4⎟⎟⎠
⎜⎜⎝ 0 0 0 0 ⎟⎟⎠
16. 若 A 可逆, 证明 AB 与 BA 相似.
姓名
15. R4 中, 求由基 (α1, α2, α3, α4 ) 到基 (β1,β2,β3,β4 ) 的过渡矩阵, 并求向量 ξ 在指定基 (α1, α2, α3, α4 ) 下的坐 标 . 其 中 α1 = (1,1,1,1), α2 = (1,1, −1, −1), α3 = (1, −1,1, −1), α4 = (1, −1, −1,1); β1 = (1,1, 0,1), β2 = (2,1,3,1), β3 = (1,1, 0, 0), β4 = (0,1, −1, −1). ξ = (1, 0, 0, −1) .
(b) V = { f ( A) | f (x) ∈ R[x]}, 这里 A∈ M n (R) 是一个固定方阵.
4. 叙述并证明线性空间V 的子空间W1 与W2 的并W1 ∪W2 仍为V 的子空间的充分必要条件.
5. 设 S1 与 S2 是线性空间V 的两个非空子集, 证明: (a) 当 S1 ⊆ S2 时, Span(S1) ⊆ Span(S2 ) .
证明V1 ≅ V2
14. 设 g1 = 2x3 − 2x + 2, g2 = x3 − 3x2 − x + 3, g3 = 2x3 + 2x2 − 2x, 是 F[x] 的 子 空 间 V 一 个 基 , f1 = x3 + 2x +1, f2 = x3 − x + 2, f3 = 2x2 + x . 请问 f1, f2, f3 中哪些是属于V , 哪些是不属于V , 如果属于请给 出它在基 (g1, g2, g3) 下的坐标.

高等数学第六章习题及答案

高等数学第六章习题及答案

微分方程习题课基本概念基本概念一阶方程一阶方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程类型1.直接积分法2.可分离变量3.齐次方程4.可化为齐次方程5.线性方程7.伯努利方程7.伯努利方程可降阶方程可降阶方程线性方程解的结构定理1;定理2定理3;定理4线性方程解的结构定理1;定理2定理3;定理4欧拉方程欧拉方程二阶常系数线性方程解的结构二阶常系数线性方程解的结构特征方程的根及其对应项特征方程的根及其对应项f(x)的形式及其特解形式f(x)的形式及其特解形式高阶方程高阶方程待定系数法特征方程法一、主要内容微分方程解题思路一阶方程一阶方程高阶方程高阶方程分离变量法分离变量法全微分方程全微分方程常数变易法常数变易法特征方程法特征方程法待定系数法待定系数法非全微分方程非变量可分离非全微分方程非变量可分离幂级数解法幂级数解法降阶作变换作变换积分因子1、基本概念微分方程凡含有未知函数的导数或微分的方程叫微分方程.微分方程的阶微分方程中出现的未知函数的最高阶导数的阶数称为微分方程的阶.微分方程的解代入微分方程能使方程成为恒等式的函数称为微分方程的解.通解如果微分方程的解中含有任意常数,并且任意常数的个数与微分方程的阶数相同,这样的解叫做微分方程的通解.特解确定了通解中的任意常数以后得到的解,叫做微分方程的特解.初始条件用来确定任意常数的条件.初值问题求微分方程满足初始条件的解的问题,叫初值问题.dxx f dy y g )()(=形如(1) 可分离变量的微分方程解法∫∫=dx x f dy y g )()(分离变量法2、一阶微分方程的解法)(x yf dx dy =形如(2) 齐次方程解法xyu =作变量代换)(111c y b x a c by ax f dxdy++++=形如齐次方程.,01时当==c c ,令k Y y h X x +=+=,(其中h 和k 是待定的常数)否则为非齐次方程.(3) 可化为齐次的方程解法化为齐次方程.)()(x Q y x P dxdy=+形如(4) 一阶线性微分方程,0)(≡x Q 当上方程称为齐次的.上方程称为非齐次的.,0)(≡x Q 当齐次方程的通解为.)(∫=−dxx P Cey (使用分离变量法)解法非齐次微分方程的通解为∫+∫=−∫dx x P dx x P eC dx e x Q y )()(])([(常数变易法)(5) 伯努利(Bernoulli)方程nyx Q y x P dxdy )()(=+形如)1,0(≠n 方程为线性微分方程.时,当1,0=n 方程为非线性微分方程.时,当1,0≠n解法需经过变量代换化为线性微分方程.,1nyz −=令.))1)((()()1()()1(1∫+∫−∫==−−−−c dx e n x Q ez ydxx P n dxx P n n),(),(=+dy y x Q dx y x P 其中dyy x Q dx y x P y x du ),(),(),(+=形如(6) 全微分方程xQ y P ∂∂=∂∂⇔全微分方程注意:解法¦应用曲线积分与路径无关.∫∫+=yy xx dyy x Q x d y x P y x u 0),(),(),(0,),(),(00x d y x P dy y x Q xx yy ∫∫+=.),(c y x u =§用直接凑全微分的方法.通解为3、可降阶的高阶微分方程的解法解法),(x P y =′令特点.y 不显含未知函数),()2(y x f y ′=′′型)()1()(x f yn =接连积分n 次,得通解.型解法代入原方程, 得)).(,(x P x f P =′,P y ′=′′),(x P y =′令特点.x 不显含自变量),()3(y y f y ′=′′型解法代入原方程, 得).,(P y f dydpP =,dydp P y =′′4、线性微分方程解的结构(1)二阶齐次方程解的结构:)1(0)()(=+′+′′y x Q y x P y 形如定理1 如果函数)(1x y 与)(2x y 是方程(1)的两个解,那末2211y C y C y +=也是(1)的解.(21,C C 是常数)定理2:如果)(1x y 与)(2x y 是方程(1)的两个线性无关的特解, 那么2211y C y C y +=就是方程(1)的通解.(2)二阶非齐次线性方程的解的结构:)2()()()(x f y x Q y x P y =+′+′′形如定理 3 设*y 是)2(的一个特解, Y 是与(2)对应的齐次方程(1)的通解, 那么*y Y y +=是二阶非齐次线性微分方程(2)的通解.定理4 设非齐次方程(2)的右端)(x f 是几个函数之和, 如)()()()(21x f x f y x Q y x P y +=+′+′′而*1y 与*2y 分别是方程,)()()(1x f y x Q y x P y =+′+′′ )()()(2x f y x Q y x P y =+′+′′的特解, 那么*2*1y y +就是原方程的特解.5、二阶常系数齐次线性方程解法)(1)1(1)(x f y P y P yP yn n n n =+′+++−−L 形如n 阶常系数线性微分方程=+′+′′qy y p y 二阶常系数齐次线性方程)(x f qy y p y =+′+′′二阶常系数非齐次线性方程解法由常系数齐次线性方程的特征方程的根确定其通解的方法称为特征方程法.2=++q pr r 0=+′+′′qy y p y 特征根的情况通解的表达式实根21r r ≠实根21r r =复根βαi r±=2,1xr x r eC e C y 2121+=xr ex C C y 2)(21+=)sin cos (21x C x C e y xββα+=特征方程为1)1(1)(=+′+++−−y P y P yP yn n n n L 特征方程为0111=++++−−n n n nP r P r P r L 特征方程的根通解中的对应项rk 重根若是rxk k exC x C C )(1110−−+++L β±αj k 复根重共轭若是xk k k k ex xD x D D x xC x C C α−−−−β++++β+++]sin )(cos )[(11101110L L 推广:阶常系数齐次线性方程解法n6、二阶常系数非齐次线性微分方程解法)(x f qy y p y =+′+′′二阶常系数非齐次线性方程型)()()1(x P e x f m xλ=解法待定系数法.,)(x Q e x y m xkλ=设⎪⎩⎪⎨⎧=是重根是单根不是根λλλ2,10k型]sin )(cos )([)()2(x x P x x P e x f n l xωωλ+=],sin )(cos )([)2()1(x x R x x R e x y mmxkωωλ+=设次多项式,是其中m x R x R mm)(),()2()1({}n l m ,max =⎩⎨⎧±±=.1;0是特征方程的单根时不是特征方程的根时ωλωλj j k7、欧拉方程欧拉方程是特殊的变系数方程,通过变量代换可化为常系数微分方程.x t e x tln ==或)(1)1(11)(x f y p y x p yxp yx n n n n n n =+′+++−−−L 的方程(其中n p p p L 21,形如叫欧拉方程.为常数),二、典型例题.)cos sin ()sin cos (dy x yx x y y x dx x y y x y x y −=+求通解例1解原方程可化为),cos sin sin cos (xyx y x y x yx y x y x y dx dy −+=,xyu =令.,u x u y ux y ′+=′=代入原方程得),cos sin sin cos (uu u uu u u u x u −+=′+,cos 2cos sin x dx du u u uu u =−分离变量两边积分,ln ln )cos ln(2C x u u +=−,cos 2xCu u =∴,cos 2x C x y x y =∴所求通解为.cos C xy xy =.32343y x y y x =+′求通解例2解原式可化为,32342y x y xy =+′,3223134x y x y y =+′−−即,31−=y z 令原式变为,3232x z xz =+′−,322x z x z −=−′即对应齐方通解为,32Cx z =一阶线性非齐方程伯努利方程,)(32x x C z =设代入非齐方程得,)(232x x x C −=′,73)(37C x x C ′+−=∴原方程的通解为.73323731x C x y ′+−=−利用常数变易法.212yy y ′+=′′求通解例3解.x 方程不显含,,dy dPP y P y =′′=′令代入方程,得,212y P dydP P +=,112y C P =+解得,,11−±=∴y C P ,11−±=y C dxdy即故方程的通解为.12211C x y C C +±=−.1)1()1(,2=′=−=+′−′′y y e xe y y y xx 求特解例4解特征方程,0122=+−r r 特征根,121==r r 对应的齐次方程的通解为.)(21xe x C C Y +=设原方程的特解为,)(2*xe b ax x y +=,]2)3([)(23*xe bx x b a ax y +++=′则,]2)46()6([)(23*xe b x b a x b a ax y +++++=′′代入原方程比较系数得将)(,)(,***′′′y y y ,21,61−==b a 原方程的一个特解为,2623*xx e x e x y −=故原方程的通解为.26)(2321x x xe x e x e x C C y −++=,1)1(=y Q ,1)31(21=−+∴e C C ,]6)1()([3221xe x x C C C y +−++=′,1)1(=′y Q ,1)652(21=−+∴e C C ,31121+=+e C C ,651221+=+e C C 由解得⎪⎩⎪⎨⎧−=−=,121,61221e C e C 所以原方程满足初始条件的特解为.26])121(612[23x x xe x e x e x e e y −+−+−=).cos (x x y y 2214+=+′′求解方程例5解特征方程,042=+r 特征根,22,1i r ±=对应的齐方的通解为.2sin 2cos 21x C x C Y +=设原方程的特解为.*2*1*y y y +=,)1(*1b ax y +=设,)(*1a y =′则,0)(*1=′′y ,得代入x y y 214=+′′,x b ax 2144=+由,04=b ,214=a 解得,0=b ,81=a ;81*1x y =∴),2sin 2cos ()2(*2x d x c x y +=设,2sin )2(2cos )2()(*2x cx d x dx c y −++=′则,2sin )44(2cos )44()(*2x dx c x cx d y +−−=′′,得代入x y y 2cos 214=+′′故原方程的通解为.2sin 81812sin 2cos 21x x x x C x C y +++=,2cos 212sin 42cos 4x x c x d =−由,04=−c ,214=d 即,81=d ,0=c ;2sin 81*2x x y =∴.)(),(1)()(2此方程的通解(2)的表达式;(1),试求:的齐次方程有一特解为,对应有一特解为设x f x p x xx f y x p y =′+′′例6解(1)由题设可得:⎪⎩⎪⎨⎧=−+=+),()1)((2,02)(223x f xx p x x x p 解此方程组,得.)(,)(331x x f xx p =−=(2)原方程为.313x y x y =′−′′,的两个线性无关的特解程是原方程对应的齐次方显见221,1x y y ==是原方程的一个特解,又xy 1*=由解的结构定理得方程的通解为.1221xx C C y ++=例7求微分方程()423d d 0y x y xy x −+=解原方程变形为23d 3,d x x x y y y−=−即223d 62,d x x y y y−=−此是关于函数的一阶线性非齐次微分方程,()2x f y =的通解.由求解公式得66d d 23e 2ed y y y yx y y C −⎛⎞∫∫=−+⎜⎟⎜⎟⎝⎠∫6463d 2.y y C y Cy y ⎛⎞=−+=+⎜⎟⎝⎠∫再作变换则有方程1,z u −=例8求解方程2d cos cos sin sin .d y y x y y x−=解令则原式为sin ,u y =2d cos .d u u x u x−=⋅此方程为伯努利方程,d cos .d zz x x+=−由积分公式, 得该方程的通解为()1sin cos e .2xz x x C −=−++从而得到原方程的通解()11sin sin cos e .2x y x x C −⎡⎤=−++⎢⎥⎣⎦⑵证明当时满足不等式例9设在时所定义的可微函数满足条件1x>−()g x ()()()()01d 0,011xg x g x g t t g x ′+−==+∫⑴求(),g x ′()e1.xg x −≤≤证⑴原方程变形为()()()()01d .xx g x g x g t t ′++=⎡⎤⎣⎦∫两端求导, 得()g x 0x ≥()()()()()()1,x g x g x g x g x g x ′′′′++++=⎡⎤⎣⎦令则原方程化为(),g x p ′=()()d 120,d px x p x +++=由条件所设即方程⑴()()001,g g ′=−=−01,x p ==−即2d ,1dp x x p x +=−+⑴()1e .1xg x p x −′==−+两端积分, 并由初始条件, 得⑵函数在上满足拉格郎日中值定理的条件, ()g x []0,x ()()()()()e 000,0,1g x g g x x x x ξξξξ−′−=−=−><<+从而有故当时, 又当()()01,g x g <=() 1.g x ≤0x ≥()()1ee e 0,1x x xf xg x x −−−′′=+=−≥+所以当时单调增加, 于是()f x 0x ≥因此时, 令则()()e ,xf xg x −=−()()()()e0010,x f x g x f g −=−≥=−=即综合以上得, 当时有,()e .x g x −≥0x ≥()e 1.x g x −≤≤例12 设()()()0sin d ,x f x x x t f t t =−−∫().f x 解因()()()00sin d d ,x xf x x xf t t tf t t =−+∫∫两边求导, 得()()()()0cos d xf x x f t t xf x xf x ′=−−+∫()0cos d ,xx f t t =−∫再次求导, 得()f x 其中为连续函数, 求()()sin ,f x x f x ′′=−−即()()sin .f x f x x ′′+=−并有初始条件对应的齐次方程的通()()00,0 1.f f ′==12sin cos .y C x C x =+设非齐次方程的特解是()*sin cos ,y x a x b x =+解是由待定系数法得10,.2a b ==121sin cos cos .2y C x C x x x =++由初始条件, 得121,0,2C C ==()11sin cos .22f x x x x =+即即原方程的通解为。

高等代数第六章9第六章课堂练习题太原理工大学

高等代数第六章9第六章课堂练习题太原理工大学

2) L(1 , 2 ) L( 1 , 2 ) L(1 , 2 , 1 , 2 )
对以 1 , 2 , 1 , 2 为列向量的矩阵A作初等行变换
返回 上页 下页
1 2 A 1 0 1 0 0 0
1 1 1 1 1 0 1 0
2 1 0 1 2 2 1 2
从而
V1=V2.
证毕.
返回
上页
下页
五.在R2×2中证明向量组
1 2 3 1 4 3 2 4 3 4 , 4 2 , 2 1 , 1 3 线性相关. 证明 由 1 2 3 1 4 3 2 k1 3 4 k2 4 2 k3 2 1 k4 1 k1 3 k 2 4 k 3 2 k 4 0 即有 2 k1 k 2 3 k 3 4 k 4 0 3 k1 4 k 2 2 k 3 k 4 0 4k1 2k 2 1k 3 3k 4 0

x1 x1 x1 x 2 x1 2 x 2
解得x2=-2x1,令x1 =k,得所求向量为
x= k(1, -2)T.
返回
上页
下页
1 1 2 2 , 七.已知 A , W X AX XA , X R 0 1 证明W是R2×2的子空间;求W的基与维数;写出W 中矩阵的一般形式.
第六章 课堂练习题
返回 上页 下页
一.单项选择题
1. 下列各向量集合不构成线性空间的是( D ).
V x x1 , x2 , , xn x1 x2 xn 0, xi R
2 2 2
(A)

高等代数第六章——线性空间测试题2004年11月

高等代数第六章——线性空间测试题2004年11月

高等代数第六章——线性空间测试题一、填空题(1) 已知R 3的两组基Ⅰ)1,0,0(),0,1,0(),0,0,1(321===ααα; Ⅱ)0,1,1(),1,1,0(),1,0,1(321===βββ那么由Ⅱ到Ⅰ的过渡矩阵为 。

(2)在22⨯P 中,已知⎪⎪⎭⎫ ⎝⎛=11111A ,⎪⎪⎭⎫ ⎝⎛=01112A ,⎪⎪⎭⎫ ⎝⎛=00113A ,⎪⎪⎭⎫ ⎝⎛=00014A 是22⨯P 的基,那么,⎪⎪⎭⎫ ⎝⎛=4321A 在该基下的坐标为 。

(3)设1W 是方程组04321=+++x x x x 解空间,2W 是方程组⎩⎨⎧=+-+=-++0043214321x x x x x x x x 那么1W ∩2W 是方程组 的解空间。

(4)设()()()()()()3,2,1,1,1,0,1,0,1,0,1,121L W L W == ()=+21dim W W 。

(5)设1W 、2W 都是V 的子空间,且1W +2W 为直和,那么()=⋂21dim W W 。

二、判断题:(1)一个线性方程组的全体解向量必做成一个线性空间。

( )(2)实数域R 上的全体n 几级可逆矩阵做成n n P ⨯的子空间。

( )(3)齐次线性方程组的解空间的维数等于自由未知数的个数。

( )(4)线性空间V 中任意两个子空间的并集仍是V 的子空间。

( )(5)在子空间的和1W +2W 中,如果),(0221121w w ∈∈+=αααα,且这种表示形式唯一,那么1W +2W 为直和。

( )三、在22⨯P 中,,1111⎪⎪⎭⎫ ⎝⎛=a G ,111,11132⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛=a G a G ⎪⎪⎭⎫ ⎝⎛=a G 1114当a 为何值时,4321,,,G G G G 线性相关?当a 为何值时,4321,,,G G G G 线性无关?四、设}{P a a a x a x a a x P o o ∈++=212213,,|][(1)证明1,1,12--x x 是3][x P 的基,并求由该基到基1,,2x x 的过渡矩阵。

高等代数单元自测题6

高等代数单元自测题6

高等代数单元自测题(第六章)姓名___________学号____________一. 选择题(20分)1. 把复数C 看作R 上的线性空间,这个空间的维数是( )A 、一维B 、二维C 、三维D 、四维2.设线性空间V 的向量组p βββ ,2,1可由向量组q ααα ,,21线性表出,则1β,,2βp β, 线性相关的充分条件是( )A .p>q B.p=q C.p<q D. 互素3.设有的两个子空间(){},02,,3213211=+-=x x x x x x V (){},023,0,,321213212=+-=+=x x x x x x x x V 则子空间21V V ⋂的维数为( )A.一维B.二维C.三维D.零维4.设有3P 的两个子空间( )(){}(){},02,02,,,02,,312132123213211=+=+==-+=x x x x x x x V x x x x x x V则子空间21V V +的维数为( )A.一维B.二维C.三维D.零维5.线性空间[]3x P 的向量()256x x x f +-=在基1,()21,1--x x 下的坐标是( )A.(6,5,1)B.(1,-5,6)C.(1,-3,2)D.(2,-3,1)6. XOY 平面上向量的集合,对于通常的向量加法,数量乘法定义为k αα= 则它是( )A. Q 上的线性空间B. R 上的线性空间C. C 上的线性空间D. 不构成线性空间二. 判断题:(20分)1.设M,N 是两个集合,如果,N M N M ⋃=⋂,那么M=N.2.设V 是n 维线性空间,V n ∈ααα ,,21且V 中的任一向量均可由nααα ,,21线性表出,则n ααα ,,21是V 的一组基3.设21,V V 是线性空间V 的两个子空间,那么21V V ⋃也是V 的子空间。

4.设4321,,αααα是空间V 的一组线性无关向量,则()()().,,,,43214321ααααααααL L L +=5.设21,V V 是有限维线性空间V 的两个子空间,且维(V )=维()1V +维()2V ,则21V V ⊕(⊕表示直和)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 线性空间 自测题
一 . 填空题 (20 分)
1. 若
1 ,
2 , , n 是线性空间 V 的一个基,则满足条件 (1)
1,
2 , , n 是

(2) 对 V 中任意向量
, .
2. 数域 P 上的线性空间 V 的非空子集 W 是 V 的子空间的充要条件为 .
3. 已知 W 1,W 2 为线性空间 V 的子空间 , W 1 W 2 为直和的充要条件为
.
4. 设 V 和 W 是数域 P 上两个线性空间, V 到 W 的一个同构映
射 f 满足如下三个条件:
( 1 ) f 是 V 到 W 的
;
( 2 )对 , V ,有 ;
( 3 )对
V , k P ,有
.
5. 向量空间 V 的基
1 ,
2,L , n 到基
n , n 1,L , 1 ,的过渡矩阵为 _______
.
6. 复数域
复数域
C
C 作为实数域
作为复数域 R
C 上的向量空间,则
上的向量空间,则
dim C
dim C
_____, 它的一个基为 __
__.
__ __, 它的一个基为 __
_ _.
二 . 选择题 (10 分)
1. 若 W 1 ,W 2 均为线性空间 V 的子空间,则下列等式成立的是( )
(A ) W 1
(W 1 W 2) W 1 W 2 ; (B )W 1 (W 1 W 2) W 1 W 2 ; (C ) W 1 (W 1 W 2) W 1 ;
(D )W 1
(W 1
W 2) W 2
2. 按通常矩阵的加法与数乘运算,下列集合不构成 P 上线性空间的是: ( )
(A ) W 1 A P n n A A
(C ) W 3
A P n n A 0

(B ) W
A
P n n
tr ( A) 0 ;
2

(D ) W 4 A
P n n
AA .
3. 数域 P 上线性空间 V 的维数为 r , 1 ,
2 ,
, n
V ,且任意 V 中向量可由 1 , 2 , , n
线性表出,则下列结论成立的是: ( )
(A ) r
n ;
( B ) r n ;
( C ) r n ;
( D ) r n 4. 设 W 1 P 3[ x],W 2 P 4[ x] 则 dim( W 1 W 2 ) (

( A )2;
(B ) 3;
(C ) 4;
( D )5
5. 设线性空间
W (a,2a,3a) a R ,则 W 的基为:(

( A ) (1,2,3) ; ( B ) (a, a, a) ; ( C ) (a,2a,3a) ;( D ) (1,0,0) ( 0,2,0) (0,0,3)
3x 1 2x 2
5x 3 4x 4 0
三.(10 分)
在线性空间 P 4 中求由线性方程组: 3x 1 x 2
3x 3 3x 4 0 所确定的 P 4
3x 1 5x 2 13x 3 11x 4
的子空间 W 的基和维数 .
四.(15 分 ) 设 R 3
中的两个基分别为
11
0 1 , 2
0 1 0 ,
3
1 2 2
,
1
100,2 110,3
111.
(1)求由基 1, 2,
3到基 1, 2,
3 的过渡矩阵 .
( 2)已知向量 在基 1, 2 ,
3 下的坐标为
1 3 0 ,求
在基
1 ,
2 ,
3 下的坐标 .
五.(15 分 ) 设
1
(1, 2,1 ,0),
2
( 1,1,1 ,1), 1
(2, 1, 0,1),
2
(1,1,3, 7)
,
W 1 L( 1
,
2 ),W 2 L( 1
,
2 )


dim( W 1 W 2 )

dim ( W 1 W 2) .
六 .(15 分 ) 设 A P n n :
1)证明:全体与 A 可交换的矩阵组成 P n n 的一子空间,记作 C ( A) ;
2)当 A=E 时,求 C( A) ;
1 0 0 L 0
3)当 A
0 2 0 L
0 时,求 C ( A) 的维数与一组基 . L
L L L L
0 L
n
七 .(15 分) 已知 P n n 的两个子空间 V 1 A P n n A A , V 2 A P n n A
A ,
证明: P n n
V 1
V 2 .
答案 :
一 .1.线性无关,可以由 1 , 2 ,,n 线性表示 2.对 V的加法和数乘封闭
3.W1W2{ o}或 dim( W1W2 )0
4.线性映射, f () f ( ) f ( ) ,
1
f (k)kf () 5.
N
1
1
6.dim C2, 它的一个基为 1, i;dim C2, 它的一个基为 1.
二. C C B C A
325432543254三 .解:由3 1 330 3 870 183 73
35131103870000
1 2 3 5 3 4 310 1 9 2 9
018 37 3018 37 3, W 的维数为2,
00000000
一组基为1 1 98 310'
2 97 30
' ,2 1 .
101
四. 解:(1) 由123=12301 2 =123 A ,
102
123=
123
123=
12
1 1 01
1
过渡矩阵AB=0 12
1 02
1
(2)=(1,2,3)3= 1
111
011=1 2 3B,
001
3 A 1B,
111201111221 01121201123 1 . 001101001110
1
23B1A3
1110101111112坐标为B1A 3= 011012311032 0001102010201
11211103
五.解:由1212
21110117 =
1030222 1
01170115
10141000
01170100 00412001,
00020001
dim W1 2,dim W2 2 ,dim( W1W2)=4,dim( W1I W2)=0
六. 证明1)设与A可交换的矩阵的集合记为C ( A).显然O C(A),
B,D C(A), A(B D) AB AD BA DA (B D)A,故 B D C(A).
若 k 是一数, B C ( A) ,可得 A(kB) k( AB) k ( BA)(kB) A ,故 kB C ( A) .所以 C(A) 构成P n n 的子空间。

2)当 A E时,C(A)P n n.
3)设B(b) 为可与
A 交换的矩阵,由第四章习题
5
知,
B
只能是对角矩阵,
ij
故维数为 n ; E11, E22 ,L , E nn为一组基.
七. 证明:显然V1+V2P n n,又 A P n n , A A A' A A',
22
其中A
A'为对称矩阵 ,
A A
'为反对称矩阵 ,A A A' A A'V
1 V
2 2222
故 P n n V1 +V2,从而 P n n = V1+ V2.
又因为A V1 V2, A A', A A',有A O. 故V1V2{O} ,故V1+V2为直和.
故 P n n V1V2。

相关文档
最新文档