一平行线等分线段定理

合集下载

平行线等分线段定理

平行线等分线段定理

A
B
B1
C
C1
推论2:
A
B
B1
C
C1
推论2:
A A1
l1
B
B1
l2
C
C1
l3
推论2:
A
B
B1
C
C1
推论2:
A B1
B
C
C1
推论2:
A B C
B1 C1
推论2: 经过三角形一边的中点与另一边平行的直线
必平分第三边.
A
在△ACC1中, AB=BC, BB1∥CC1,
∴AB1=B1C.
B C
B1 C1
求证:AG=2GD. 分析:需要证明GH=2GD=2DH.
证明:
∵AD、BE是中线,
∴AE=EC,BD=DC,
∵CH∥EB, B
∴AG=GH,
GD=DH,
∴AG=2GD.
本题说明三角形的两中线的交点把中线分成2:1的两部分. 这个结论叫做重心定理.(现行课本已把它略去.)
A
E G
D
C
H
6、已知:梯形ABCD中,AD∥BC,
这里给出动画显示,证明的语句略去。 证法1:
. . D B
A .
. H
C E
F
7、已知:△ABC中,AB=AC, D在AB上,F在AC的延长线上, 且BD=CF,DF交BC于E,
求证:DE=EF. 证法2:
(以下略去。)
A
D B H
C E
F
8、已知:AC⊥AB,DB⊥AB, 求证:OA=OB. 分析:需证明点O在AB的垂直平分线上.
M为AD的中点,
直线CM交AB于点P,

平行线等分线段定理

平行线等分线段定理

篇一:1平行线等分线段定理平行线等分线段定理【知识点精析】1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。

理解这个定理要注意的是:(1)必须有一组平行线存在,平行线至少有三条;(2)在某一条直线上截得的线段相等。

满足上述两个条件,才能保证这组平行线在其他直线上截得的线段相等.2.平行线等分线段定理的几个基本图形平行线等分线段定理的几个基本图形如图所示,若已知l1∥l2∥l3,ab = bc,根据定理可直接得到a1b1 = b1c1.即被平行线组所截的两条直线的相对位置,不影响定理的结论.3.定理的两个推论推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰.推论 2 经过三角形一边的中点与另一边平行直线必平分第三边.4.应用平行线等分线段定理,可以等分任意一条线段.【例题】1.如图,直线l1∥l2∥l3,ab = bc.求证:a1b1 = b1c1. a1 l1 b1 l2l32.已知:线段ab.求作:线段ab的五等分点.ab3.如图,直角梯形abcd中,ad∥bc,ab⊥bc,m是cd的中点.求证:ma = mb.4.如图,在△abc中,ad是bc边上的中线,m是ad的中点,bm的延长线交ac于n.求证:an =1cn. 2思考题:如图,梯形abcd中,ad∥bc,dc⊥bc,∠b = 60°,ab = bc,e为ab的中点.求证:△ecd为等边三角形.【练习与作业】一、填空题1.△abc中,∠c =90°,d为ab的中点,de⊥bc交bc于e,则ceeb.2.已知三条直线ab∥cd∥ef,它们之间的距离分别是2cm,作一直线mn分别与三条平行线交于30°角,且与ab、cd、ef分别交于m、n、p,则mn = cm,np = cm.3.如图,f是ab的中点,fg∥bc,eg∥cd,则ag = ae =4.如图,l1∥l2∥l3∥l4∥l5,a1b1 = b1c1 = c1d1 = d1e1,则a2b2 = = = ,a2c2 = = .5.直角梯形abcd中,ad ∥bc,∠a = 90°,ef是ab的垂直平分线交ab于e,cd于f,则df = .6.如图,已知ab∥cd∥ef,af、be交于o,若ao = od = df,be = 10cm,则bo = .7.如图,已知ad∥ef∥bc,e是ab中点,则dg = h是f是中点.8.如图,已知ce是△abc的中线,cd =若cd = 5cm,则af= cm.9.如图,在ad两旁作ab∥cd,a1、a2为ab的两个三等分点,c1、c2为cd的两个三等分点,连a1c、a2c1、bc2,则把ad分成四条线段的长度(填相等或不相等).第3题第4题第6题第7题第8题第9题1ad,ef∥bd,eg∥ac,若ef = 10cm,则bg = cm,2二、选择题10.下列用平行线等分线段的图形中,错误的是()c d a b 11.右图,ab∥cd∥ef,且ao = od = df,oe = 6,则be =()a.9 b.10c.11 d.1212.ad是△abc的高,dc =bc于f,则fc =()a.1bd,m,n在ab上,且am = mn = nb,me⊥bc于e,nf⊥32bd 3 c. 2bc 3 b.3bc 4 d.3bd 41ac. 3三、解答题 13.△abc中,ab = ac,ad⊥bc,p是ad中点,延长bp交ac于点n.求证:an =14.如图,m、n分别是yabcd中ab、cd的中点.求证:be = ef = fd.15.如图△abc中,ch是∠acb的平分线,ad⊥ch于d,de∥bc交ab于e.求证:ae = eb.16.如图,等腰直角△abc,∠acb = 90°,ce = cd,ef⊥bd交ab于f,cg⊥bd交ab于g.求证:ag = gf.17.如图,△abc中,ad、bf为中线,ad、bf交于g,ce∥fb交ad延长线于e.求证:ag = 2de.18.如图,abcd为梯形,ab∥dc,adbe是平行四边形,ab交ec于f.求证:ef = fc.19.已知△abc中,ad⊥bc于d,e为ab中点,ef⊥bc于f,且dc = a,bd = 8a.求fc 的长.篇二:《平行线等分线段定理》教学设计《平行线等分线段定理》教学设计执教李裕达【教学内容】人教版初中《几何》第二册4.9平行线等分线段定理(课本p176 ~ p178)【教学目标】1.识记并掌握平行线等分线段定理及其推论,认识它的变式图形;2.能运用平行线等分线段定理任意等分已知线段,能运用推论进行简单的证明或计算; 3.培养学生化归的思想、运动联系的观点。

一-平行线等分线段定理

一-平行线等分线段定理
2
作DE//BC
E与E重合
A
作DF//AC
BF=FC =DE D B
E
E′
F
C
如图:有块直角三角形菜地,分配给张,王,李三
家农民耕种,已知张,王,李三家人口分别为2人,4
人,6人,菜地分配方法按人口比例,并要求每户土
地均有一部分紧靠水渠AB,P处是三家合用的肥
料仓库,所以点P必须是三家地的交界地 P
要求:用尺规在图中作出
各家菜地的分界线
张王 李
A
E
F
B
小结
1、平行线等分线段定理和两个推论
2、定理和推论的应用
(1)把线段n等分
(2)证明在同一直线上的线段相等
A AD

EF

E
F

B B
CB
? C
作业
课本第5页习题1.1 题2,3
判断题
1、如图△ABC中点D、E三等分AB,
D
DF∥EG∥BC,DF、EG分别交AC于点 E
F、G,则点F、G三等分AC ( ) B
2、四边形ABCD中,点M、N分别在AB、
CD上若AM=BM、DN=CN 则
A
AD∥MN∥BC ( )
M
F G C D
N
3、一组平行线,任意相邻的两平行线间 B
的距离都相等,则这组平行线能等分线
段。 ( )
A
4、如图l1∥l2∥l3且AB=BC,那么
B
AB=BC=DE=EF ( )
C
C
D l1
E l2 F l3
例 如图,要在一块钢板上 的A、B两个小孔间再钻 三个小孔,使这些小孔 都在直线AB上,并且每 两个小孔中心的距离相 等.如果只有圆规和无刻 度直尺,应当怎样确定小 孔的中心位置?

平行线等分线段定理

平行线等分线段定理
(2)在射线AC上以任意取定的长度顺次截取
AD1=D1D2=D2D3=D3D4=D4D5;
(3)连接D5B;
(4)分别过D1,D2,D3,D4作D5B的平行线D1A1,D2A2,D3A3,D4A4,分别
交AB于点A1,A2,A3,A4,则点A1,A2,A3,A4将线段AB五等分.
题型一
题型二
题型三
形中位线定理,过点A作BC的平行线即可证明.
题型一
题型二
题型三
证明:如图,过点A作BC的平行线AG,交DC于点G.
∵AB∥DC,
∴四边形ABCG是平行四边形.
∴AG BC.
∵EF∥BC,∴EF∥AG.
∵E为AD的中点,∴F是DG的中点.
1
1
∴EF= 2 . ∴ = 2 , 即BC=2EF.
题型一
题型二
题型三
题型二
证明线段相等
【例2】 如图,已知AC⊥AB,DB⊥AB,O是CD的中点.求
证:OA=OB.
分析:因为线段OA和OB有共同端点,所以只需
证明点O在AB的垂直平分线上即可.
证明:过点O作AB的垂线,垂足为E,如图.
∵AC⊥AB,DB⊥AB,
∴OE∥AC∥DB.
∵O为CD的中点,
(2)在射线AC上以任意取定的长度顺次截取
AD1=D1D2=D2D3=…=Dn-1Dn;
(3)连接DnB;
(4)分别过点D1,D2,D3,…,Dn-2,Dn-1作DnB的平行线,分别交AB于点
A1,A2,…,An-2,An-1,则点A1,A2,…,An-2,An-1将线段AB分成n等份.
题型一
题型二
B'C'∥BC交AC于点C',求证:点C'是AC的中点.

20-21版:一 平行线等分线段定理(创新设计)

20-21版:一 平行线等分线段定理(创新设计)

课堂讲义
当堂检测
3.推论2
文字 经过梯形一腰的中点且与底边平__行__的直线必平分另一腰 语言
符号 在梯形ABCD中,AD∥BC,E为AB的中点,过E作 语言 EF∥BC,交CD于F,则F_平__分__CD
图形 语言 作用 证明线段相等,求线段的长度
预习导学
课堂讲义
当堂检测
要点一 平行线等分线段定理
预习导学
ቤተ መጻሕፍቲ ባይዱ课堂讲义
当堂检测
预习导学
课堂讲义
当堂检测
规律方法 这是平行线等分线段定理在空间 的推广,即:如果一组平行平面在一条直线 上截得的线段相等,那么在其他直线上截得 的线段也相等.
预习导学
课堂讲义
当堂检测
跟踪演练 3 如图所示,四边形 ABCD 中,AB= CD,E,F 分别是 BC,AD 的中点,BA,CD 的 延长线分别与 EF 的延长线交于点 M,N. 求证:∠AME=∠CNE.
预习导学
课堂讲义
当堂检测
1.如图所示,l1∥l2∥l3,直线 AB 与 l1,l2,l3 相
交于 A,E,B,直线 CD 与 l1,l2,l3 相交于 C,
E,D,AE=EB,则有( )
A.AE=CE
B.BE=DE
C.CE=DE
D.CE>DE
解析 由平行线等分线段定理知CE=ED.
答案 C
预习导学
预习导学
课堂讲义
当堂检测
(2)当 l1 与 l2 异面时,如图, 在直线 l2 上取一点 G,过点 G 作 l3∥l1,设 l3
与平面 α,β,γ分别相交于 P,Q,R.
则 l1 与 l3 确定一个平面π1,l3 与 l2 确定一个平 面π2.在平面π1 中,连接 AP,BQ,CR,则由 面面平行的性质可知 AP∥BQ∥CR.由 AB= BC,得 PQ=QR;同理在平面π2 中,就可证 明 DE=EF.综上,DE=EF.

平行线等分线段定理 课件

平行线等分线段定理   课件
求证:AG=2DE.
图 1-1-4
【思路探究】
【自主解答】 在△AEC 中, ∵AF=FC,GF∥EC, ∴AG=GE. ∵CE∥FB, ∴∠GBD=∠ECD,∠BGD=∠E. 又 BD=DC, ∴△BDG≌△CDE. 故 DG=DE,即 GE=2DE, 因此 AG=2DE.
1.如果已知条件中出现中点,往往运用三角形的中位 线定理来解决问题.
图 1-1-3
【证明】 ∵▱ABCD 的对角线 AC、BD 交于点 O, ∴OA=OC,OB=OD. ∵AA′⊥a,OO′⊥a,CC′⊥a, ∴AA′∥OO′∥CC′. ∴O′A′=O′C′, 同理:O′D′=O′B′, ∴A′D′=B′C′.
如图 1-1-4,在△ABC 中,AD,BF 为中线, AD,BF 交于 G,CE∥FB 交 AD 的延长线于 E.
2.有梯形且存在线段中点时,常过该点作平行线,构 造平行线等分线段定理的推论 2 的基本图形,进而进行几何 证明或计算.
如图 1-1-7,在梯形 ABCD 中,AD∥BC,BC=2AD, E,F 分别是 AB,CD 的中点,EF 交 BD 于 G,交 AC 于 H. 求证:EG=GH=HF.
图 1-1-7
平行线等分线段定理
1.平行线等分线段定理 (1)文字语言:如果一组平行线在 一条直线 上截得的线 段相等,那么在 其他直线 上截得的线段也 相等 .
(2)图形语言
图 1-1-1 如图 1-1-1,l1∥l2∥l3,l 分别交 l1,l2,l3 于 A, B,C,l′分别交 l1,l2,l3 于 A1,B1,C1,若 AB=BC, 则 A1B1=B1C1 .
1.本题中由 AC⊥AB,DB⊥AB 知 AC∥DB,联想到作 OE⊥AB,再根据平行线等分线段定理证明点 E 是 AB 的中点.

初中数学—平行线等分线段定理

初中数学—平行线等分线段定理

求证: B1B2=B2B3. 证明: (1) 当 l//l 时 (如图), ∵l1//l2//l3,
l l
A1 B1
l1
∴ A1A2B2B1, A2A3B3B2
A2 B2
l2
都是平行四边形, ∴ A1A2=B1B2, A2A3=B2B3,
A3
B3
l3
又∵A1A2=A2A3, ∴B1B2=B2B3.
思想: 借助平行四
每两个相邻的小孔中心的距离相等, 如果只有圆规和
无刻度直尺, 应当怎样确定小孔的中心位置?
画法: (1) 连接 AB; (2) 在钢板上另作一射线
AC; (3) 在 AC 上取 AD=DE
=EF=FG;
B PQ R A DE F G C
(4) 连接 GB;
(5) 分别过点 D, E, F 作 GB 的平行线, 交 AB
通过证明
例 1. 如图, 要在一块钢板上的 A、B 两个小孔
间再钻三个小孔, 使这些小孔都在直线 AB 上, 并且
每两个相邻的小孔中心的距离相等, 如果只有圆规和
无刻度直尺, 应当怎样确定小孔的中心位置?
思路: 工具中直尺无刻度,
B
不便于度量 AB 的长度.
因为平行线可以等分线段, A
所以考虑过 A 作一条不与 AB 重合的射线 AC, 在 AC 上则可

A1 A2
又∴∵∠AB11AB22=CA1=2A∠3,B2B3C2; ③ A3
∴由B①1C②1=③B得2C△2. B1C①1B2≌△B2C2B3,
l3于C2.
l l 思想B1: l1
为平变行CC1非.2 B平B2 3行ll23
∴B1B2=B2B3.
结论: 如果一条直线被三条平行直线截得的线段相等, 那么这三条平行线截其他直线所得的线段也相等.

平行线等分线段定理

平行线等分线段定理

教学建议1.平行线等分线段定理定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.2.平行线等分线段定理的推论推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。

记忆方法:中点+平行得中点.推论的用途:(1)平分已知线段;(2)证明线段的倍分.重难点分析本节的重点是平行线等分线段定理.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中平行线分线段成比例定理的基础.本节的难点也是平行线等分线段定理.由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.教法建议平行线等分线段定理的引入生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:①从生活实例引入,如刻度尺、作业本、栅栏、等等;②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论.教学设计示例一、教学目标1. 使学生掌握平行线等分线段定理及推论.2. 能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力.3. 通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.4. 通过本节学习,体会图形语言和符号语言的和谐美二、教法设计学生观察发现、讨论研究,教师引导分析三、重点、难点1.教学重点:平行线等分线段定理2.教学难点:平行线等分线段定理四、课时安排l课时五、教具学具计算机、投影仪、胶片、常用画图工具六、师生互动活动设计教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习七、教学步骤【复习提问】1.什么叫平行线?平行线有什么性质.2.什么叫平行四边形?平行四边形有什么性质?【引入新课】由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.注意:定理中的一组平行线指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).已知:如图,直线, .求证: .分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得 ),通过全等三角形性质,即可得到要证的结论.(引导学生找出另一种证法)分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得 .证明:过点作分别交、于点、,得和,如图.∵,又∵,,为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).引导学生观察下图,在梯形中,,,则可得到,由此得出推论 1.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.再引导学生观察下图,在中,,,则可得到,由此得出推论2.推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.接下来讲如何利用平行线等分线段定理来任意等分一条线段.例已知:如图,线段 .求作:线段的五等分点.作法:①作射线 .②在射线上以任意长顺次截取 .③连结 .④过点 . 、、分别作的平行线、、、,分别交于点、、、 .、、、就是所求的五等分点.(说明略,由学生口述即可)【总结、扩展】小结:(l)平行线等分线段定理及推论.(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.(3)定理中的平行线组,是指每相邻两条平行线间的距离都相等的特殊平行线组.(4)应用定理任意等分一条线段.八、布置作业教材P188中A组2、9九、板书设计。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

要点三 平行线等分线段定理的综合应用 例3 如图,在△ABC中,CD平分∠ACB,
AE⊥CD于E,EF∥BC交AB于F.
求证:AF=BF. 证明 延长AE交BC于M.
∵CD是∠ACB的平分线,AE⊥CE于E,
∴在△AEC和△MEC中,
??∠ AEC = ∠ MEC ,
?
?EC = .
∴△AEC≌△MEC,∴AE=EM,∴E是AM的中点.
又在△ABM中,EF∥BM,∴点F是AB边的中点,∴AF=BF.
规律方法 这部分内容是新增内容,在高考中还未出现 过,估计不会单独命题,仅作为证明几何问题的工具使 用.其用途是为下节课的平行线分线段成比例定理做铺垫.
跟踪演练3 如图,在△ABC中,AD是BC边上 的中线,E是AD的中点,BE的延长线交AC于 点F,求证:AF= AC. 证明 过D作DG∥BF交AC于点G. ∵BD=DC,DG∥BF,∴FG=GC. 又∵EF∥DG,AE=ED, ∴AF=FG,于是 AF=13AC.
课堂小结
1.对于平行线等分线段定理的理解 (1)对于定理的证明:分m平行于n和m不平行于n两种情况证 明.当m平行于n时,直接运用平行四边形加以证明;当 m不 平行于n时,利用辅助线构造相似三角形,进而关系式得证 . (2)定理及推论的主要作用在于证明同一直线上的线段相等 问题.
2.在梯形中,如果已知一腰的中点,添加辅助线的方法 (1)过这一点作底边的平行线,由平行线等分线段定理的推 论得另一腰的中点; (2)可通过延长线段构造全等三角形或相似三角形. 3.在几何证明中添加辅助线的方法 (1)在三角形中,由角平分线可构造全等或相似三角形; (2)在三角形或梯形中,若有一边上的中点,则过这点可作 辅助线.
(3)定理的推论1:经过三角形一边的中点与另一边平行的 直线必平分 第三边 . (4)定理的推论2:经过梯形一腰的中点,且与底边平行的 直线平分 另一腰 .
要点一 平行线等分线段定理及其应用 例1 如图所示,在△ ABC中,D是AB的中点, E是BC的三 等分点(BE>CE),AE与CD交于点F.求证:F是CD的中点.
2. 如 图 , 已 知 AD∥EF∥BC , E 是 AB 的 中 点 , 则 DG = ___B_G____,H是___A_C____的中点,F是___C_D____的中点.
1.平行线等分线段定理 (1)定理:如果一组 平行线 在一条直线上截得的线段相等, 那么在其他直线上截得的线段也相等. (2)符号语言:已知a∥b∥c,直线m、n分别 与a、b、c交于点A、B、C和A′、B′、C′, 如果AB=BC,那么A′B′=B′C′.如图 所示.
证明 过D作DG∥AE交BC于G在△ABE中, ∵AD=BD,DG∥AE,∴BG=GE, ∵E是BC的三等分点,∴BG=GE=EC, 在△CDG中, ∵GE=CE,DG∥EF,∴DF=CF. 即F是CD的中点.
规律方法 解决此题的关键是找出平行线等分线段定理 的基本条件,找准被一组平行线截得的线段.
跟踪演练1 如图所示,若a∥b∥c,那么下列 结论中错误的是( ) A.由AB=BC可得FG=GH B.由AB=BC可得OB=OG C.由CE=2CD可得CA=2BC D.由 GH=12FH 可得 CD=DE 解析 由于OB、OG不是一条直线被一组平行线截得的线 段,故B不正确.
要点二 平行线等分线段定理的推论 例2 如图所示,已知在梯形ABCD中,AD ∥BC,∠ADC=90°,点E是AB边的中点, 连接ED、EC.求证:ED=EC. 证明 如图所示,过点E作EF∥BC交DC于F, ∵在梯形ABCD中,AD∥BC, ∴AD∥EF∥BC, ∵E是AB的中点,∴F是CD的中点. ∵∠ADC=90°,∴∠DFE=90°,∴EF⊥DC于F.
第一课平行线等分线段定理 [学习目标]
1.理解平行线等分线段定理. 2.探索平行线等分线段定理的证明过程.
3.能证明平行线等分线段定理的推论1、推论2
1.三角形、梯形的中位线定理的内容是什么? 答案 (1)三角形中位线平行于第三边,并且等于它的一半 . (2)梯形的中位线平行于两底,并且等于两底和的一半 .
又∵F是DC的中点,∴EF是DC的垂直平分线,∴ED=EC.
规律方法 证明不在同一条直线上的两条线段相等,可 以根据等腰三角形的两腰相等或者根据全等三角形对应 边相等来证明.
跟踪演练2 如图,在△ABC中,AB=AC,AD 是∠BAC的平分线,DE∥AB, 求证:AE=EC=DE. 证明 ∵AB=AC,AD是△ABC的角平分线, ∴D为BC中点.∵DE∥AB, ∴由平行线等分线段定理的推论1知,E为AC中点, ∴AE=EC,且 DE=12AB.
相关文档
最新文档