平行线等分线段定理及证明
平行线等分线段定理 课件

反思感悟证明线段相等的基本方法 1.证明在同一条直线上的两条线段相等的关键是找出平行线等 分线段定理的基本条件,找准被一组平行线截得的线段. 2.证明不在同一条直线上的两条线段相等,可以根据等腰三角形 的两腰相等或者根据全等三角形的对应边相等来证明. 3.在几何证明中添加辅助线的常见方法:(1)在三角形中,利用角平 分线可构造全等三角形或相似三角形;(2)在三角形或梯形中,若已 知一边或一腰的中点,则过中点可作平行于底边的辅助线.
2.推论1 经过三角形一边的中点与另一边平行的直线必平分第三边. 名师点拨对推论1的理解 (1)符号表示:在△ABC中,D为AB的中点,过点D作DE∥BC,交AC于 点E,则点E平分AC. (2)图形表示:
(3)三角形的中位线定理:三角形的中位线平行于第三边,并且等 于第三边的一半.
3.推论2 经过梯形一腰的中点,且与底边平行的直线平分另一腰. 名师点拨对推论2的理解 (1)符号表示:在梯形ABCD中,AD∥BC,E为AB的中点,过点E作 EF∥BC,交CD于点F,则点F平分CD. (2)图形表示:
(3)平行线等分线段定理的逆命题是:如果一组直线截另一组直线 成相等的线段,那么这组直线平行.可以证明这一命题是错误的.(如 图)
【做一做1】 如图,已知a∥b∥c,直线AB分别与a,b,c交于点A,E,B,直 线CD分别与a,b,c交于点C,E,D.若AE=EB,则( )
A.AE=CE B.BE=DE C.CE=DE D.CE>DE 解析:由平行线等分线段定理可直接得到答案. 答案:C
(3)梯形的中位线定理:梯形的中位线平行于两底,并且等于两底 和的一半.
【做一做2】 如图,已知AD∥EF∥BC,E是AB的中点,则
DG=
,H是
平行线等分线段定理

平行线等分线段定理
如果一组平行线在一条直线上截得 的线段相等,那么在其他直线上截得的 线段也相等. 如何来证明?
推论1 经过梯形一腰的中点与底平行 的直线,必平分另一腰
推论2
经过三角形一边的中点与另 一边平行的直线,必平分第三边
平行线等分线段定理
画一画:
任意画一条线段AB,并且把 AB 3等分、4等分、5等分,说说 你的方法。
思考:假如没有刻度尺,怎样把线段AB 任意等分呢?
做一做:
(1)在单线簿上画直线L1,使得 L1与横线垂直,观察L1被各条横线 分成的线段是否相等。 (2)再画一条直线L2,那么 L2被各条横线分成的线段也相 等吗? (3) 如果再画呢?
(八年级数学教案)平行线等分线段定理

平行线等分线段定理八年级数学教案教学建议1.平行线等分线段定理定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.2.平行线等分线段定理的推论推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。
记忆方法:“中点”+“平行”得“中点”.推论的用途:(1)平分已知线段;(2)证明线段的倍分.重难点分析本节的重点是平行线等分线段定理.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.本节的难点也是平行线等分线段定理.由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.教法建议平行线等分线段定理的引入生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:①从生活实例引入,如刻度尺、作业本、栅栏、等等;②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论.教学设计示例一、教学目标1. 使学生掌握平行线等分线段定理及推论.2. 能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力.3. 通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.4. 通过本节学习,体会图形语言和符号语言的和谐美●二、教法设计学生观察发现、讨论研究,教师引导分析●三、重点、难点1.教学重点:平行线等分线段定理2.教学难点:平行线等分线段定理●四、课时安排l课时●五、教具学具计算机、投影仪、胶片、常用画图工具●六、师生互动活动设计教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习七、教学步骤【复习提问】1.什么叫平行线?平行线有什么性质.2.什么叫平行四边形?平行四边形有什么性质?【引入新课】由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线,测量它被相邻横线截得的线段是否也相等?(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).已知:如图,直线,.求证:.分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得),通过全等三角形性质,即可得到要证的结论.(引导学生找出另一种证法)分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.证明:过点作分别交、于点、,得和,如图.∴∵,∴又∵,,∴∴为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).引导学生观察下图,在梯形中,,,则可得到,由此得出推论1.推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.再引导学生观察下图,在中,,,则可得到,由此得出推论2.推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.接下来讲如何利用平行线等分线段定理来任意等分一条线段.例已知:如图,线段.求作:线段的五等分点.作法:①作射线.②在射线上以任意长顺次截取.③连结.④过点.、分别作的平行线、、、,分别交于点、、、.、、就是所求的五等分点.(说明略,由学生口述即可)【总结、扩展】小结:(l)平行线等分线段定理及推论.(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.(4)应用定理任意等分一条线段.●八、布置作业教材P188中A组2、9●九、板书设计●十、随堂练习教材P182中1、2。
平行线等分线段定理

求证: AE=EC 证明: 因为AD=BD,DE//BC
A DE
根据平行线等分线段定理,得:
B
C
AE=EC.
能推出
思
什么结论?
考
知识要 点
平行线等分线段定理
推论1:经过三角形一边的中点与另一边 平行的直线必平分第三边.
小练习
已知:梯形ABCD,E是AB的中点,
求证:CF=DF.
A
C
证明: 因为AE=BE,AC//BD E
难点
灵活应用定理和推论解决相关几何问题.
研讨
l
A1 A2 A3
l’
B1 l1 B2 l2
B3 l3
l1//l2//l3, l//l
A1A2=A2A3
思考…
B1B2 = B2B3
研讨
l
A1 A2 A3
l’
B1 B2
l1 l2
B3 l3
l1//l2//l3, l,l不平行 A1A2=A2A3
B1B2 = B2B3
F
B
根据平行线等分线段定理,得:
D
CF=DF.
同样能推 出什么结论?
知识要 点
平行线等分线段定理
推论2:经过梯形一腰的中点,且与底
边平行的直线必平分另一腰.
体会
定理 推论
小练习
如图△ABC中点D、E三等分AB, DF∥EG∥BC,DF、EG分别交AC于点F、G,则 AF,FG,GC的关系.
A
根据平行线等分线段定理,得:
D、E 分别是△ABC中AB边和AC边的中点.
求证:DE//BC且 DE 1 BC.
2
作DE//BC
E与E重合
A
4.平行线分线段成比例.详解

相交的平行直线a、b、c.分别度量l1,l2被直线a、b、 A1 B1 AB 与 c截得的线段AB,BC,A1B1,B1C1的长度. B1C1 BC 相等吗?任意平移直线c,再度量AB,BC,A1B1,B1C1 AB AB 与 1 1 还相等吗? 的长度, B1C1 BC
AB BC
=
A1 B1 B1C1
AD AE DB EC
如图,过点A作直线MN,使MN∥DE.
∵ DE∥BC , ∴ MN∥DE∥BC. 因此AB,AC被一组平行线MN,DE,BC 所截, 则由平行线分线段成比例可知, AD AE AD AE AB AC DB EC DB EC DB EC , . 同时还可以得到 AD AE AB AC
由于 AD DB
1 1 , AB BE EF FC BC . 2 3
因此 AD DB BE EF FC .
由于a∥d∥b∥e∥f∥c, 因此 A1D1=D1B1 =B1E1 =E1F1 = F1C1.
A1 B1 2 A1 D1 2 . 从而 B1C1 3 B1 E1 3B D NhomakorabeaA
4
E F
2
C
图1 12
8
解 因为 DE // BC, 所以 AD AE 4 2 1 . AB AC 6 3 AD CF 因为 DF // AC , 所以 . AB CB
2
2 CF 16 16 8 由12式得 , 即CF .所以 BF 8 . 3 8 3 3 3
观察 下图是一架梯子的示意图.由生活常识可以知
道:AA1,BB1,CC1,DD1互相平行,且若AB=BC, 则A1B1=B1C1.由此可以猜测:若两条直线被一组平 行线所截,如果在其中一条直线上截得的线段相等, 那么在另一条直线上截得的线段也相等.这个猜测是 真的吗?
平行线等分线段定理 课件

图 1-1-4
【思路探究】
【自主解答】 在△AEC 中, ∵AF=FC,GF∥EC, ∴AG=GE. ∵CE∥FB, ∴∠GBD=∠ECD,∠BGD=∠E. 又 BD=DC, ∴△BDG≌△CDE. 故 DG=DE,即 GE=2DE, 因此 AG=2DE.
1.如果已知条件中出现中点,往往运用三角形的中位 线定理来解决问题.
图 1-1-3
【证明】 ∵▱ABCD 的对角线 AC、BD 交于点 O, ∴OA=OC,OB=OD. ∵AA′⊥a,OO′⊥a,CC′⊥a, ∴AA′∥OO′∥CC′. ∴O′A′=O′C′, 同理:O′D′=O′B′, ∴A′D′=B′C′.
如图 1-1-4,在△ABC 中,AD,BF 为中线, AD,BF 交于 G,CE∥FB 交 AD 的延长线于 E.
2.有梯形且存在线段中点时,常过该点作平行线,构 造平行线等分线段定理的推论 2 的基本图形,进而进行几何 证明或计算.
如图 1-1-7,在梯形 ABCD 中,AD∥BC,BC=2AD, E,F 分别是 AB,CD 的中点,EF 交 BD 于 G,交 AC 于 H. 求证:EG=GH=HF.
图 1-1-7
平行线等分线段定理
1.平行线等分线段定理 (1)文字语言:如果一组平行线在 一条直线 上截得的线 段相等,那么在 其他直线 上截得的线段也 相等 .
(2)图形语言
图 1-1-1 如图 1-1-1,l1∥l2∥l3,l 分别交 l1,l2,l3 于 A, B,C,l′分别交 l1,l2,l3 于 A1,B1,C1,若 AB=BC, 则 A1B1=B1C1 .
1.本题中由 AC⊥AB,DB⊥AB 知 AC∥DB,联想到作 OE⊥AB,再根据平行线等分线段定理证明点 E 是 AB 的中点.
(4)平行线分线段成比例

G
4 如图,已知直线 a∥b∥c,直线 m、n 与 a、b、c 分别交于点 A、
C、E、B、D、F,AC=4,CE=6,BD=3,则 DF 等于( A.7 C.8 B.4.5 D.8.5
)
活动六:小结
平行线分线段成比例定理: 两条直线被一组平行线所截,所得的对应线段成比例
A B C D E F a b c C A (D ) B E F a b c
E F
b
b
c
C
F
c
活动四:用一用
例1 .已知: a∥b∥c 则:
AB BC AB DE
( DE ) ( EF )
BC AC
(AC )
( EF ) ( DF)
F
A B
D
E
a b
( BC) ( EF)
C c
( DF )
例2.教材第71页例题
M
A E
N
D
B
C
E E
M
F D
A
A
N
推论:
B B
C
平行于三角形一边的直线截其他两边 (或两边延长线),所得的对应线段成比例
复习引入
1.平行线等分线段定理
两条直线被一组平行线所截,如果在其中一条 直线上截得的线段相等,那么在另一条直线上截 得的线段也相等
推论1 经过梯形一腰的中点与底平行的 直线,必平分另一腰。
推论2
经过三角形一边的中点与另一 边平行的直线,必平分第三边。
A E
D
?
A F
? E C ?F ? B C
B
图1
符号语言:
∵在梯形ABCD,AD∥EF∥BC, AE=EB ∴DF=FC
数学教案-平行线等分线段定理_平行线等分线段成比例定理

1.教学重点:平行线等分线段定理
在横格纸上画一条垂直于横线的直线 ,看看这条直线被相邻横线截成的
2.教学难点:平行线等分线段定理
各线段有什么关系?〔相等,为什么?〕这时在横格纸上再任画一条与横
四、课时支配
线相交的直线 ,测量它被相邻横线截得的线段是否也相等?
l 课时
〔引导学生把做试验的条件和得到的结论写成一个命题,教师总结,
五、教具学具
由此得到平行线等分线段定理〕
计算机、投影仪、胶片、常用画图工具
平行线等分线段定理:假如一组平行线在一条直线上挂得的线段相等,
六、师生互动活动设计
那么在其他直线上截得的线段也相等.
教师复习引入,学生画图探究;师生共同归纳结论;教师示范作图,
留意:定理中的“一组平行线〞指的是一组具有特殊条件的平行线,
助线,把梯形转化为平行四边形和三角形,然后再利用这些熟识的学问即
推论 1:经过梯形一腰的中点与底平行的直线,必平分另一腰.
可证得 .
再引导学生观看下列图,在 中, , ,则可得到 ,由此得出推论 2.
证明:过 点作 分别交 、 于点 、 ,得 和 ,如图.
推论 2:经过三角形一边的中点与另一边平行的直线必平分第三边.
求作:线段 的五等分点.
八、布置作业
作法:①作射线 .
教材 P188 中 A 组 2、9
②在射线 上以任意长顺次截取 .
九、板书设计
③连结 .
④过点 . 、 、 分别作 的平行线 、 、 、 ,分别交 于点 、 、 、 .
、 、 、 就是所求的五等分点.
〔说明略,由学生口述即可〕
【总结、扩展】 小结: 〔l〕平行线等分线段定理及推论. 〔2〕定理的证明只取三条平行线,是在较简洁的状况下证明的,对 于多于三条的平行线的状况,也可用同样方法证明. 〔3〕定理中的“平行线组〞,是指每相邻两条平行线间的距离都相
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线等分线段定理及证明
附图
定理内容
如果一组等距的平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等
经过三角形一边中点且与另一边平行的直线必平分第三边
经过梯形一腰的中点且与底边平行的直线必平分另一腰
第二条定理也做:三角形过一边中点的直线平行第二边平分第三边。
也称“一二三定理”。
第二第三条即常说的“中位线定理”。
定理证明过程
证明如下:
已知:AB∥CD∥EF,GI,JL交AB,CD,EF于点G,J,H,K,I,L.(如右图) 求证:GH:HI=JK:KL
证明:。