(八年级数学教案)平行线等分线段定理
平行线等分线段定理 课件

平行线等分线段定理推论1的运用 [例2] 如图,在△ABC中,AD,BF为中线,AD,BF交 于点G,CE∥FB交AD的延长线于点E. 求证:Байду номын сангаасG=2DE.
[思路点拨] AF=FC,GF∥EC → AG=GE → △BDG≌△CDE → AG=2DE
3.如图,在▱ ABCD中,对角线AC,BD相
交于点O,OE平行于AB交BC于E,AD= 6,求BE的长. 解:因为四边形ABCD是平行四边形, 所以OA=OC,BC=AD. 因为AB∥DC,OE∥AB, 所以DC∥OE∥AB. 因为AD=6, 所以BE=EC=12BC=12AD=3.
4.已知:在△ABC中,AD是BC边上的中线,E是AD的中点, BE的延长线交AC于点F. 求证:AF=13AC. 证明:如图,过D作DG∥BF交AC于点G. 在△BCF中,D是BC的中点, DG∥BF, ∴G为CF的中点,即CG=GF. 在△ADG中,E是AD的中点, EF∥DG, ∴F是AG的中点,即AF=FG. ∴AF=13AC.
有梯形且存在线段中点时,常过该点作平行线, 构造平行线等分线段定理推论2的基本图形,进而进 行几何证明或计算.
5.若将本例中“M是CD的中点”与“AM=BM”互换,那么 结论是否成立?若成立,请给予证明. 解:结论成立.证明如下: 过点 M 作 ME⊥AB 于点 E, ∵AD∥BC,∠ABC=90°, ∴AD⊥AB,BC⊥AB. ∵ME⊥AB, ∴ME∥BC∥AD. ∵AM=BM,且 ME⊥AB, ∴E 为 AB 的中点, ∴M 为 CD 的中点.
由平行线等分线段定理知,BO=OC=CE,
又OE=6,所以BE=9.
数学教案:平行线等分线段定理

数学教案:平行线等分线段定理一、教学目标1.理解平行线等分线段定理的基本概念及定理内容;2.掌握平行线等分线段定理的证明方法,并能运用该定理解决实际问题;3.提高学生对平行四边形的认识和理解能力;4.加强学生的空间几何思维和推理能力。
二、教学重点1.理解平行线等分线段定理的基本概念及定理内容;2.掌握平行线等分线段定理的证明方法;3.运用平行线等分线段定理解决实际问题。
三、教学难点1.掌握平行线等分线段定理的证明方法;2.运用平行线等分线段定理解决实际问题。
四、教学方法1.课堂讲解;2.课堂讨论;3.案例分析;4.课堂练习。
五、教学过程第一步:引入问题老师拿出一支笔和一张纸,向学生展示两个平行线段,要求学生探究两个平行线段之间的关系。
第二步:学生探究学生分组讨论,在讨论的过程中,师生共同发现两个平行线段中间的线段被平分。
第三步:提出结论学生在分组讨论的基础上,提出结论:平行线等分线段定理。
第四步:确立概念老师向学生引入平行线等分线段定理的定义,让学生理解该概念。
第五步:证明定理老师给出定理的证明,让学生观察和理解证明过程。
第六步:实例练习老师让学生在班内分为小组,通过实例练习来加深对平行线等分线段定理的理解。
第七步:课堂讨论老师和学生一起讨论实例练习的解法,帮助学生梳理思路,加深对平行线等分线段定理的理解。
六、教学评估1.学生通过实例练习的成绩;2.学生课堂讨论表现的质量;3.学生对平行线等分线段定理的掌握程度。
七、板书设计1.平行线等分线段定理;2.定义:两个平行线段间的线段被平分。
八、课堂作业1.完成课堂练习;2.思考并总结平行线等分线段定理的证明方法。
九、教学反思通过本节课的教学,学生们进一步了解了平行线等分线段定理,掌握了证明方法,提高了空间几何思维和推理能力,并对平行四边形有了更深的认识。
但是,课堂时间可能会不够充分,需要加强课堂安排。
平行线等分线段定理 说课稿 教案 教学设计

一平行线等分线段定理[学习目标]1.理解平行线等分线段定理的证明过程及性质.2.能独立证明平行线等分线段定理的推论1、推论2.3.能应用定理和推论解决相关的几何计算问题和证明问题.[知识链接]1.三角形、梯形的中位线定理的内容是什么?提示(1)三角形中位线平行于第三边,并且等于它的一半.(2)梯形的中位线平行于两底,并且等于两底和的一半.2.如图,已知AD∥EF∥BC,E是AB的中点,则DG=____,H是____的中点,F是____的中点.提示BG AC DC[预习导引]1.平行线等分线段定理文字语言如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等符号语言已知a∥b∥c,直线m,n分别与a,b,c交于点A,B,C和A′,B′,C′,且AB=BC,则A′B′=B′C′图形语言作用证明同一直线上的线段相等2.推论1证明线段相等,求线段的长度3.推论证明线段相等,求线段的长度要点一平行线等分线段定理例1如图①,在AD两旁作AB∥CD,且AB=CD,A1,A2为AB的两个三等分点,C1,C2为CD 的两个三等分点,连接A1C,A2C1,BC2,求证把AD分成四条线段的长度相等.证明如图②,过点A作直线AM平行于A1C,延长DC交AM于点M,过点D作直线DN平行于BC2,延长AB交DN于点N,由AB∥CD,A1,A2为AB的两个三等分点,点C1,C2为CD的两个三等分点,可得四边形A1CC1A2,四边形A2C1C2B为平行四边形,所以A1C∥A2C1∥C2B,所以AM∥A1C∥A2C1∥C2B∥DN,因为AA1=A1A2=A2B=CC1=C1C2=C2D,由平行线等分线段定理可知,A1C,A2C1,BC2把AD分成的四条线段的长度相等.规律方法解决此题的关键是找出平行线等分线段定理的基本条件,找准被一组平行线截得的线段.跟踪演练1如图①,AB∥CD∥EF,且AO=OD=DF,OE=6,则BC=()A.3B.6C.9D.4解析如图②,过O作一直线与AB,CD,EF平行,因为AO=OD=DF,由平行线等分线段定理知,BO=OC=CE,又OE=6,所以BC=6.答案 B要点二平行线等分线段定理的推论例2如图所示,在△ABC中,∠ACB=90°,AC=BC,E,F分别在AC,BC上,且CE=CF,EM⊥AF交AB于M,CN⊥AF交AB于N.求证:MN=NB.解如图所示,延长ME交BC的延长线于点P,由题意可得Rt△EPC≌Rt△FAC,∴PC=AC=BC.∵EM⊥AF,CN⊥AF,∴PM∥CN,又∵点C是BP的中点,∴点N是MB的中点.∴MN=NB.规律方法证明同一直线上相邻两条线段相等,常用方法构造三角形及中位线.跟踪演练2如图所示,在梯形ABCD中,AD∥BC,∠ABC=90°,M是CD的中点.求证:AM=BM.证明过M点作ME∥BC,交AB于点E.∵∠ABC=90°,∴∠AEM=90°,即ME⊥AB.∵在梯形ABCD中,M是CD的中点,∴AE=EB.∴ME是AB的垂直平分线.∴AM=BM.要点三平行线等分线段定理的综合应用例3已知平面α,β,γ,α∥β∥γ,直线l1分别交α,β,γ于A,B,C三点,直线l2分别交α,β,γ于D,E,F三点,且AB=BC.求证:DE=EF.证明(1)当l1与l2共面时,由面面平行的性质得AD∥BE∥CF,又∵AB=BC,由平行线等分线段定理得:DE=EF,(2)当l1与l2异面时,如图,在直线l2上取一点G,过点G作l3∥l1,设l3与平面α,β,γ分别相交于P,Q,R.则l1与l3确定一个平面π1,l3与l2确定一个平面π2.在平面π1中,连接AP,BQ,CR,则由面面平行的性质可知AP∥BQ∥CR.由AB=BC,得PQ=QR;同理在平面π2中,就可证明DE=EF.综上,DE=EF.规律方法这是平行线等分线段定理在空间的推广,即:如果一组平行平面在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等.跟踪演练3如图所示,四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,BA,CD的延长线分别与EF的延长线交于点M,N.求证:∠AME=∠CNE.证明连接BD,过F作FG∥AB,交BD于G,连接GE,GF.在△ABD中,∵FG∥AB,且F是AD的中点,∴DG=GB,∴FG是△ABD的中位线,∴GF=12AB,GF∥BM.同理可证:GE=12CD,GE∥CN.∵AB=CD,∴GF=GE,∴∠GEF=∠GFE.∵GF∥BM,∴∠GFE=∠BME.∵GE∥CD,∴∠GEF=∠CNE.∴∠AME=∠CNE.1.(1)定理中的“一组平行线”是指“平行线组”,是由三条或三条以上互相平行的直线组成的.(2)定理中的条件“在一条直线上截得的线段相等”实质是指“平行线组”中每相邻两条平行线间的距离都相等.(3)定理及推论的主要作用在于证明同一直线上的线段相等问题.2.在梯形中,如果已知一腰的中点,添加辅助线的方法(1)过这一点作底边的平行线,由平行线等分线段定理的推论得另一腰的中点;(2)可通过延长线段构造全等三角形或相似三角形.3.在几何证明中添加辅助线的方法(1)在三角形中,由角平分线可构造全等或相似三角形;(2)在三角形或梯形中,若有一边上的中点,则过这点可作辅助线.。
平行线等分线段定理数学教案

平行线等分线段定理数学教案
标题:平行线等分线段定理数学教案
一、教学目标
1. 让学生理解并掌握平行线等分线段定理的概念和证明方法。
2. 培养学生的空间想象能力,提高他们的几何思维能力。
3. 通过实际操作,使学生能够运用所学知识解决实际问题。
二、教学内容
平行线等分线段定理是平面几何中的重要定理之一,它的表述为:如果一条直线与两条平行线相交,那么被截得的两部分长度相等。
三、教学过程
1. 引入新课
教师可以通过展示一些实例或者生活中的场景来引入这个定理,激发学生的学习兴趣。
2. 教学新知
(1)定理的描述:首先,教师要清晰明了地向学生解释定理的内容。
(2)定理的证明:然后,教师需要引导学生一起进行定理的证明。
在这个过程中,教师要注重培养学生的逻辑思维能力和推理能力。
3. 巩固练习
教师可以设计一些相关的习题,让学生在实践中巩固所学的知识。
四、课堂小结
教师带领学生回顾本节课的主要内容,并强调平行线等分线段定理的重要性。
五、作业布置
教师可以布置一些相关的作业,让学生在课后继续思考和练习。
六、教学反思
教师需要对本节课的教学效果进行反思,以便于改进以后的教学。
平行线等分线段定理

篇一:1平行线等分线段定理平行线等分线段定理【知识点精析】1.平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等。
理解这个定理要注意的是:(1)必须有一组平行线存在,平行线至少有三条;(2)在某一条直线上截得的线段相等。
满足上述两个条件,才能保证这组平行线在其他直线上截得的线段相等.2.平行线等分线段定理的几个基本图形平行线等分线段定理的几个基本图形如图所示,若已知l1∥l2∥l3,ab = bc,根据定理可直接得到a1b1 = b1c1.即被平行线组所截的两条直线的相对位置,不影响定理的结论.3.定理的两个推论推论 1 经过梯形一腰的中点与底平行的直线,必平分另一腰.推论 2 经过三角形一边的中点与另一边平行直线必平分第三边.4.应用平行线等分线段定理,可以等分任意一条线段.【例题】1.如图,直线l1∥l2∥l3,ab = bc.求证:a1b1 = b1c1. a1 l1 b1 l2l32.已知:线段ab.求作:线段ab的五等分点.ab3.如图,直角梯形abcd中,ad∥bc,ab⊥bc,m是cd的中点.求证:ma = mb.4.如图,在△abc中,ad是bc边上的中线,m是ad的中点,bm的延长线交ac于n.求证:an =1cn. 2思考题:如图,梯形abcd中,ad∥bc,dc⊥bc,∠b = 60°,ab = bc,e为ab的中点.求证:△ecd为等边三角形.【练习与作业】一、填空题1.△abc中,∠c =90°,d为ab的中点,de⊥bc交bc于e,则ceeb.2.已知三条直线ab∥cd∥ef,它们之间的距离分别是2cm,作一直线mn分别与三条平行线交于30°角,且与ab、cd、ef分别交于m、n、p,则mn = cm,np = cm.3.如图,f是ab的中点,fg∥bc,eg∥cd,则ag = ae =4.如图,l1∥l2∥l3∥l4∥l5,a1b1 = b1c1 = c1d1 = d1e1,则a2b2 = = = ,a2c2 = = .5.直角梯形abcd中,ad ∥bc,∠a = 90°,ef是ab的垂直平分线交ab于e,cd于f,则df = .6.如图,已知ab∥cd∥ef,af、be交于o,若ao = od = df,be = 10cm,则bo = .7.如图,已知ad∥ef∥bc,e是ab中点,则dg = h是f是中点.8.如图,已知ce是△abc的中线,cd =若cd = 5cm,则af= cm.9.如图,在ad两旁作ab∥cd,a1、a2为ab的两个三等分点,c1、c2为cd的两个三等分点,连a1c、a2c1、bc2,则把ad分成四条线段的长度(填相等或不相等).第3题第4题第6题第7题第8题第9题1ad,ef∥bd,eg∥ac,若ef = 10cm,则bg = cm,2二、选择题10.下列用平行线等分线段的图形中,错误的是()c d a b 11.右图,ab∥cd∥ef,且ao = od = df,oe = 6,则be =()a.9 b.10c.11 d.1212.ad是△abc的高,dc =bc于f,则fc =()a.1bd,m,n在ab上,且am = mn = nb,me⊥bc于e,nf⊥32bd 3 c. 2bc 3 b.3bc 4 d.3bd 41ac. 3三、解答题 13.△abc中,ab = ac,ad⊥bc,p是ad中点,延长bp交ac于点n.求证:an =14.如图,m、n分别是yabcd中ab、cd的中点.求证:be = ef = fd.15.如图△abc中,ch是∠acb的平分线,ad⊥ch于d,de∥bc交ab于e.求证:ae = eb.16.如图,等腰直角△abc,∠acb = 90°,ce = cd,ef⊥bd交ab于f,cg⊥bd交ab于g.求证:ag = gf.17.如图,△abc中,ad、bf为中线,ad、bf交于g,ce∥fb交ad延长线于e.求证:ag = 2de.18.如图,abcd为梯形,ab∥dc,adbe是平行四边形,ab交ec于f.求证:ef = fc.19.已知△abc中,ad⊥bc于d,e为ab中点,ef⊥bc于f,且dc = a,bd = 8a.求fc 的长.篇二:《平行线等分线段定理》教学设计《平行线等分线段定理》教学设计执教李裕达【教学内容】人教版初中《几何》第二册4.9平行线等分线段定理(课本p176 ~ p178)【教学目标】1.识记并掌握平行线等分线段定理及其推论,认识它的变式图形;2.能运用平行线等分线段定理任意等分已知线段,能运用推论进行简单的证明或计算; 3.培养学生化归的思想、运动联系的观点。
数学教案-平行线等分线段定理

数学教案-平行线等分线段定理一、教学目标1.了解平行线等分线段定理的定义和基本思想;2.掌握平行线等分线段定理的证明方法;3.能够运用平行线等分线段定理解决实际问题。
二、教学重点1.平行线等分线段定理的定义和基本思想;2.平行线等分线段定理的证明方法。
三、教学内容1. 平行线等分线段定理的定义平行线等分线段定理是指:如果一条直线与两条平行线相交,那么这条直线被平行线所截的两条直线段的长度相等。
2. 平行线等分线段定理的证明方法下面我们来介绍平行线等分线段定理的证明方法。
证明方法一:割线法假设我们有两条平行线AB和CD,一条直线EF与这两条平行线相交,且EF 被AB、CD截成了两段。
我们要证明EF被AB、CD等分。
步骤:1.假设EF被AB截成的线段为EF1,被CD截成的线段为EF2;2.假设AB和CD之间的距离为h;3.延长EF2,假设延长线与AB交于点G;4.因为AB和CD是平行线,所以∠ABG=∠EFC(对应角相等);5.同理,∠DGC=∠EFC;6.通过割线截定理可知在△CDG和△CAB中,∠ABG=∠DGC,∠BAG=∠DCG(共内角相等);7.由于∠BAG=∠DCG,所以△BAG与△DCG全等(角边对应相等);8.根据全等三角形的性质可知,AG=CG;9.同理可证,EF1=EF2;10.所以,EF被AB和CD等分。
证明方法二:直角三角形法假设我们有两条平行线AB和CD,一条直线EF与这两条平行线相交,且EF被AB、CD截成了两段。
我们要证明EF被AB、CD等分。
步骤:1.寻找一条垂直于AB的直线,假设为GH;2.因为GH垂直于AB,所以AB和GH之间的距离等于AB和GF之间的距离;3.同理,GH也垂直于CD,所以CD和GH之间的距离等于CD和HE之间的距离;4.根据垂直线段的性质可知,GF=HE;5.在△EFG和△EHG中,∠EFG=∠EHG=90度(垂直线段与直线的夹角为90度);6.通过直角三角形的性质可知,△EFG与△EHG全等(一对直角边相等);7.根据全等三角形的性质可知,EF=EF;8.所以,EF被AB和CD等分。
[特约]初二数学平行线等分线段定理
![[特约]初二数学平行线等分线段定理](https://img.taocdn.com/s3/m/52259fdf88eb172ded630b1c59eef8c75fbf9579.png)
初二数学平行线等分线段定理【教学内容与目的要求】教学内容:1.平行线等分线段定理;2.三角形、梯形的中位线;教学目的与要求:1.理解并掌握平行线等分线段定理,并着重掌握两个推论。
2.会利用平行线等分线段定理将一条线段用直尺和圆规进行若干等分。
3.掌握三角形、梯形的中位线的定义。
4.理解并熟练掌握三角形和梯形的中位线定理,并要求能够灵活运用中位线定理解决一些较为综合性的几何题目。
5.建立起利用中点来构造三角形中位线和梯形中位线的观念,以便顺利地添加出某些中位线。
【知识重点与学习难点】1.平行线等分线段定理是三角形、梯形中位线定理的基础,而它本身又是第五章相似形中平行线分线段成比例定理的特殊情况。
所以在学习这一小节内容时要明确此定理在这儿是作为过渡性的工具,起承上启下作用的。
当然平行线等分线段定理自身也有着极其重要的应用,需要大家能够牢固地掌握。
2.三角形的中位线和梯形的中位线可以这么说是三角形和四边形的精华,也是这两章内容的高潮。
它的综合性和灵活性都较强,它较为系统地串联了三角形一章和四边形一章这两章的大部分内容,故而这一小节要作为重中之重,格外重视。
三角形的中位线定理和梯形的中位线定理都告诉了我们两个方面的结论,即位置关系(平行)和数量关系(一半)。
【方法指导与教材延伸】1.平行线等分线段定理实际上是通过平行线将“相等”进行转移。
即“如果一组平行线在一条直线上截得的线段相等,那么这一组平行线在其他直线上截得的线段也相等”。
它是将一条直线上的线段相等“转移”到另一条直线上的线段相等。
2.作为“平行线等分线段定理”的两个推论是两种特殊情况。
它们特殊在截线与被截线的位置的特殊,从而得到了两个推论:⑴经过梯形一腰中点与底平行的直线,必等分另一腰;⑵经过三角形一边的中点与另一边平行的直线必平分第三边。
这两个推论都是由平行和相等这两个条件得出相等。
3.三角形的中位线是连结三角形两边中点的线段。
一个三角形有三条中位线。
平行线等分线段定理参考教案02

一平行线等分线段定理教学目标1.掌握平行线等分线段定理及推论,认识它的变式图形.2.熟练掌握任意等分线段的方法.3.培养化归的思想。
运动联系的观点及“特殊——一般——特殊”的认识事物的方法.教学重点和难点重点是平行线等分线段定理及证明;难点是平行线等分线段定理的证明和灵活运用.教学过程设计一、从特殊到一般猜想结论1.复习提问,学生口答.(1)如图4-77,在△ABC中,AM=MB,MD1C1 C1C-84 MCD⊥j于C,E为AD中点.求证:△EBC是等腰三角形.教师指导:引导学生先分析图中存在哪些基本图形,然后怎样利用它们的结论解题.例3(选用)(1)如图4-86,CB⊥AB,DA⊥AB,M为CD中点.求证:∠MAB =∠MBA.(2)如图4-87,E为□ABCD对角线的交点,过点A,B,C,D,E分别向直线j 引垂线,垂足分别为A’,B’,C’,D’,E’.图中能分解出几个基本图形图4-81?j 上的线段之间有何等量关系?四、师生共同小结1.平行线等分线段定理及两个推论的内容及证明方法.2.怎样n等分一条已知线段?3.指导学生学习方法:利用化归思想证明问题;利用“特殊—一般~特殊”的方法研究问题;利用运动的思维方法将问题推广;利用分解,构造基本图形的方法灵活运用定理.五、作业课堂教学设计说明本教学过程设计需1课时完成.1.利用复习题起到两个作用:(1)研究定理的特殊情况,让学生从特殊到一般接受理;(2)启发证明思路,准备定理所用的基本图形,分散难点.2.证明定理的过程,实际上是从特殊——三条平行线,到一般——一组平行线,按照从定理的标准图形(图4-80(a))到变式图形(图4-80(b)-(e),分别证明或说明.这样处理层层深入,符合学生的认知规律,逻辑性较强.3.本节的两个推论实际上是三角形、梯形的中位线的判定定理,有着非常广泛的应用.因此课堂上要求学生不仅会用语言叙述它们,还要求熟练掌握它们的基本图形和数学表达式,并通过两个小题进行及时巩固.4.定理还可用以下方式引入:(1)利用坐标黑板提出问题(图4-88)一组平行直线j1,j2,j3,j4…分别被直线m,n所截.若将m截得线段AB=BC=CD,那么将n截得的线段A’B’,B’C’,C’D’是否相等?(2)得出猜想后,证明上述猜想的最简单情况,即三条平行直线j1,j2,j3.引导学生证明时,要强调两点:①证明线段相等的基本方法之一是化归为证三角形全等.②利用平行四边形的性质平移线段以构造全等三角形.(3)利用运动观点掌握定理的变式图形(图4-80).(4)利用特殊化的方法得出推论2,推论1.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线等分线段定理
八年级数学教案
教学建议
1.平行线等分线段定理
定理:如果一组平行线在一条直线上截得的线段相等,那么在其他需直线上截得的线段也相等.
注意事项:定理中的平行线组是指每相邻的两条距离都相等的特殊的平行线组;它是由三条或三条以上的平行线组成.
定理的作用:可以用来证明同一直线上的线段相等;可以等分线段.
2.平行线等分线段定理的推论
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.
推论2:经过三角形一边的中点与另一边平行的直线,必平分第三边。
记忆方法:“中点”+“平行”得“中点”.
推论的用途:(1)平分已知线段;(2)证明线段的倍分.
重难点分析
本节的重点是平行线等分线段定理.因为它不仅是推证三角形、梯形中位线定理的基础,而且是第五章中“平行线分线段成比例定理”的基础.
本节的难点也是平行线等分线段定理.由于学生初次接触到平行线等分线段定理,在认识和理解上有一定的难度,在加上平行线等分线段定理的两个推论以及各种变式,学生难免会有应接不暇的感觉,往往会有感觉新鲜有趣但掌握不深的情况发生,教师在教学中要加以注意.
教法建议
平行线等分线段定理的引入
生活中有许多平行线等分线段定理的例子,并不陌生,平行线等分线段定理的引入可从下面几个角度考虑:
①从生活实例引入,如刻度尺、作业本、栅栏、等等;
②可用问题式引入,开始时设计一系列与平行线等分线段定理概念相关的问题由学生进行思考、研究,然后给出平行线等分线段定理和推论.
教学设计示例
一、教学目标
1. 使学生掌握平行线等分线段定理及推论.
2. 能够利用平行线等分线段定理任意等分一条已知线段,进一步培养学生的作图能力.
3. 通过定理的变式图形,进一步提高学生分析问题和解决问题的能力.
4. 通过本节学习,体会图形语言和符号语言的和谐美
●二、教法设计
学生观察发现、讨论研究,教师引导分析
●三、重点、难点
1.教学重点:平行线等分线段定理
2.教学难点:平行线等分线段定理
●四、课时安排
l课时
●五、教具学具
计算机、投影仪、胶片、常用画图工具
●六、师生互动活动设计
教师复习引入,学生画图探索;师生共同归纳结论;教师示范作图,学生板演练习
七、教学步骤
【复习提问】
1.什么叫平行线?平行线有什么性质.
2.什么叫平行四边形?平行四边形有什么性质?
【引入新课】
由学生动手做一实验:每个同学拿一张横格纸,首先观察横线之间有什么关系?(横线是互相平等的,并且它们之间的距离是相等的),然后在横格纸上画一条垂直于横线的直线
,看看这条直线被相邻横线截成的各线段有什么关系?(相等,为什么?)这时在横格纸上再任画一条与横线相交的直线
,测量它被相邻横线截得的线段是否也相等?
(引导学生把做实验的条件和得到的结论写成一个命题,教师总结,由此得到平行线等分线段定理)
平行线等分线段定理:如果一组平行线在一条直线上挂得的线段相等,那么在其他直线上截得的线段也相等.
注意:定理中的“一组平行线”指的是一组具有特殊条件的平行线,即每相邻两条平行线间的距离都相等的特殊平行线组,这一点必须使学生明确.
下面我们以三条平行线为例来证明这个定理(由学生口述已知,求证).已知:如图,直线
,
.
求证:
.
分析1:如图把已知相等的线段平移,与要求证的两条线段组成三角形(也可应用平行线间的平行线段相等得
),通过全等三角形性质,即可得到要证的结论.
(引导学生找出另一种证法)
分析2:要证的两条线段分别是梯形的腰,我们借助于前面常用的辅助线,把梯形转化为平行四边形和三角形,然后再利用这些熟悉的知识即可证得.
证明:过
点作
分别交
、
于点
、
,得
和
,如图.∴
∵
,
∴
又∵
,
,
∴
∴
为使学生对定理加深理解和掌握,把知识学活,可让学生认识几种定理的变式图形,如图(用计算机动态演示).
引导学生观察下图,在梯形
中,
,
,则可得到
,由此得出推论1.
推论1:经过梯形一腰的中点与底平行的直线,必平分另一腰.
再引导学生观察下图,在
中,
,
,则可得到
,由此得出推论2.
推论2:经过三角形一边的中点与另一边平行的直线必平分第三边.
注意:推论1和推论2也都是很重要的定理,在今后的论证和计算中经常用到,因此,要求学生必须掌握好.
接下来讲如何利用平行线等分线段定理来任意等分一条线段.
例已知:如图,线段
.
求作:线段
的五等分点.
作法:①作射线
.
②在射线
上以任意长顺次截取
.
③连结
.
④过点
.
、
分别作的平行线、
、
、
,分别交于点
、
、
、
.
、
、
就是所求的五等分点.
(说明略,由学生口述即可)
【总结、扩展】
小结:
(l)平行线等分线段定理及推论.
(2)定理的证明只取三条平行线,是在较简单的情况下证明的,对于多于三条的平行线的情况,也可用同样方法证明.
(3)定理中的“平行线组”,是指每相邻两条平行线间的距离都相等的特殊平行线组.
(4)应用定理任意等分一条线段.
●八、布置作业
教材P188中A组2、9
●九、板书设计
●十、随堂练习
教材P182中1、2。