中考数学复习指导:一次函数在实际生产生活中的应用举例

合集下载

一次函数在实际生活中的应用

一次函数在实际生活中的应用

一次函数在实际生活中的应用例1某房地产开发公司计划建A B两种户型的住房共80套,该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:分析:设AA型住房的总成本是__________ 万元;B型住房的总成本是______________ 万元;80套住房的总成本是 ______________万丿元。

A型住房的总售价是___________ 万元;B型住房的总售价是___________ 万元;80套住房的总售价是_______________ 万元。

A型住房的总利润是___________ 万元;B型住房的总利润是___________ 万元;80套住房的总利润是_______________ 万元。

依据所筹资金情况可列不等式组彳-----------不等式组的解集是____________ ,故有_________ 种建房方案。

依据总利润的解析式,当x= _________ 套时总利润最大,最大利润为__________ 万元•终上所述,共有 _____ 种建房方案;当建A型房________ 套,B型住房____ 套时,总利润最大,最大利润是_________ 万元。

例2塑料厂某车间生产甲、乙两种塑料的相关信息如下表,请你解答下列问题:(1)设该车间每月生产甲、乙两种塑料各x吨,利润分别为y i元和y2元,分别求y i和屮关于x的函数解析式(注: 利润=总收入-总支出);(2)已知该车间每月生产甲、乙两种塑料均不超过400吨,若某月要生产甲、乙两种塑料共700吨,该月生产甲、乙塑料各多少吨,获得的总利润最大?最大利润是多少?例3某商场欲购进A、B两种品牌的饮料500箱,此两种饮料每箱的进价和售价如下表所示。

设购进A种饮料x箱,且所购进的两种饮料能全部卖出,获得的总利润为y元.⑴求y关于x的函数关系式?⑵如果购进两种饮料的总费用不超过20000元,那么该商场如何进货才能获利最多?并求出最大利润。

一次函数的实际应用

一次函数的实际应用

一次函数的实际应用在我们的日常生活和学习中,数学知识无处不在,而一次函数作为数学中的重要概念,具有广泛的实际应用。

一次函数的表达式通常为 y = kx + b (其中 k 不为 0),它能够帮助我们解决许多与变量之间线性关系相关的问题。

先来说说行程问题。

假设小明以每小时 5 千米的速度匀速行走,行走的时间为 x 小时,行走的路程为 y 千米。

那么,路程 y 与时间 x 之间的关系就可以用一次函数来表示,即 y = 5x 。

通过这个函数,我们可以很容易地算出小明在给定时间内行走的路程,或者根据路程计算出所需的时间。

再看购物中的打折问题。

商场在进行促销活动时,常常会有“满减”的优惠政策。

比如,购买商品总价达到 200 元,可享受 8 折优惠。

设购买商品的原价为 x 元,实际支付的金额为 y 元。

当x ≤ 200 时,y =x ;当 x > 200 时,y = 08x 。

这就是一个分段的一次函数,通过这个函数,我们能清晰地了解到购买商品时的价格变化规律,从而做出更明智的消费决策。

在成本与利润的计算中,一次函数也发挥着重要作用。

假设一家工厂生产某种产品,每件产品的成本为 10 元,售价为 x 元,销售量为 y 件。

总利润 z 等于销售收入减去成本,即 z = y(x 10) 。

如果销售量 y 与售价 x 之间存在线性关系,比如 y =-2x + 100 ,那么总利润 z 就可以表示为 z =(-2x + 100)(x 10) ,这是一个二次函数,但其中包含了一次函数的成分。

通过对这个函数的分析,厂家可以确定最优的售价,以实现利润最大化。

水电费的计算也是一次函数的常见应用场景。

比如,某地区的水费收取标准为:每月用水量不超过 10 吨时,每吨水收费 2 元;超过 10 吨的部分,每吨水收费 3 元。

设每月用水量为 x 吨,水费为 y 元。

那么当x ≤ 10 时,y = 2x ;当 x > 10 时,y = 2×10 + 3(x 10) ,即 y =3x 10 。

一次函数在生活中的具体应用

一次函数在生活中的具体应用

一次函数在生活中的具体应用一次函数是数学中的一个基本概念,也是我们在生活中经常会遇到的数学模型。

这种函数的特点是其自变量的最高次数为1,在数学中以y=ax+b的形式来表示。

一次函数在生活中有着诸多具体的应用,下面我们将从不同的角度来探讨一次函数在生活中的具体应用。

我们来看一次函数在经济学中的应用。

在经济学中,成本、收入和利润都是非常重要的概念,而这些概念通常可以用一次函数来建模。

假设某公司的总成本是由固定成本和每单位生产的变动成本组成,可以用一次函数C(x) = ax + b来表示,其中x是生产的数量,a是变动成本的斜率,b是固定成本。

这个函数模型可以帮助公司合理安排生产数量,以获得最大的利润。

同样地,对于销售收入和利润来说,都可以用一次函数来建模,以帮助企业做出更加明智的经营决策。

一次函数在物理学中也有着广泛的应用。

在物理学中,速度、位移和力等概念都可以用一次函数来表示。

假设一个物体在匀速直线运动,其位移随时间的变化可以用一次函数来描述。

设物体的位移为y,时间为x,则位移函数可以表示为y=ax+b,其中a代表物体的速度,b代表物体的初始位置。

这样的一次函数模型可以帮助物理学家更好地理解物体的运动规律,并且应用于工程技术中,例如建筑工程和交通运输等领域。

一次函数在市场营销中也有着重要的应用。

在市场营销中,销售额、利润和市场份额等概念可以用一次函数来表示。

假设一个公司的销售额随着广告投入的增加而变化,可以用一次函数来建立广告投入和销售额之间的关系。

这样的函数模型可以帮助市场营销人员合理安排广告投入,以达到最大化销售额的目标。

一次函数在工程学中也有着广泛的应用。

在工程学中,压力、温度和电压等物理量都可以用一次函数来描述。

假设一个材料的承受力随着温度的变化而变化,可以用一次函数来表示这种变化规律。

这样的函数模型可以帮助工程师更好地设计材料的使用条件,以确保其安全性和稳定性。

一次函数在生活中的日常应用也是非常广泛的。

一次函数与生活实例

一次函数与生活实例

一次函数与生活实例一次函数在数学中是一个非常常见的函数形式,通常可以表示为y= ax + b的形式,其中a和b为常数,x为自变量,y为因变量。

一次函数在生活中也有着广泛的应用,下面将通过几个生活实例来展示一次函数的应用。

1. 购买水果假设某水果摊上正在出售苹果,价格为每个2元。

如果你购买了x个苹果,那么你需要支付的费用可以表示为y = 2x的关系。

这个关系就是一个一次函数,其中a = 2,b = 0。

当你购买不同数量的苹果时,费用会随之线性增加。

2. 打车费用在某城市打车的费用可以表示为每公里x元,同时还有起步价b元。

如果你打车了y公里,那么你需要支付的费用可以表示为y = ax + b的关系。

这同样是一个一次函数,其中a为每公里的价格,b为起步价。

3. 人力资源一家公司的员工数量通常会随着时间的推移而发生变化。

假设某公司每个月会有a名员工离职,同时会有b名员工入职。

那么公司员工数量随时间变化的关系可以表示为y = ax + b的一次函数关系,其中a为离职率,b为入职率。

4. 燃料消耗一辆汽车在行驶过程中,燃料消耗通常和行驶的里程成正比。

假设一辆汽车每行驶x公里需要消耗y升汽油,那么燃料消耗和行驶里程的关系可以表示为y = ax的一次函数关系,其中a为单位里程消耗的汽油量。

通过以上几个生活实例的展示,我们可以看到一次函数在生活中的广泛应用。

无论是购买物品、计算费用、人力资源管理还是燃料消耗,一次函数都能够清晰地描述各种实际情况,帮助我们更好地理解和应用数学知识。

希望通过这些例子,能够帮助大家更好地理解和应用一次函数的概念。

中考第一轮复习第三节一次函数的实际应用

中考第一轮复习第三节一次函数的实际应用

第三节一次函数的实际应用命噩点一次函数的实际应用1. (2019贵阳*II拟)某校校园超市老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的是2倍,考虑各种因素,预计购进乙品牌文具盒的数量y(个)与甲品牌文具盒的数量x(个)之间的函数关系如图所示.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7 200元.(1)根据图象,求y与x之间的函数关系式;(2)求甲、乙两种品牌的文具盒进货单价.250=50k+b. k=- 1, 解:(1)设y与x之间的函数关系式为y=kx+b,由函数图象,得100=200k+b,解得b= 300.,y 与x之间的函数关系式为y=—x+300; (2) •./= —x+300; .•.当x=120时,y=180,设甲品牌的进货单价是a元,则乙品牌的进货单价是2a元,由题意,得120a+180X2a = 7 200,解得a=15, .••甲品牌的进货单价是15元,乙品牌的进货单价是30元.答:甲、乙两种品牌的文具盒进货单价分别为15 元、30元.2. (2019贵阳模拟)李明乘车从市区到某景区旅游,同时王红从该景区返回市区,线段OB表示李明离市区的路程S1(km)与时间t(h)的函数关系;线段AC表示王红离市区的路程S2(km)与时间t(h)的函数关系,已知行驶1 h,李明、王红离市区的路程分别为100 km、280 km,王红从景区返回市区用了4.5h.(假设两人所乘的车在同一线路上行驶)(1 )分别求S1, S2关于t的函数表达式;(2)当t为何值时,他们乘坐的两车相遇;(3)当李明到达景区时,王红离市区还有多远?解:(1)设S1 = k1t,将点(1 , 100)代入S1=k1t 中,解得匕=100,1=100t ,设S2=k2t+b,将点k2+b = 280,(1 , 280) , (4.5 , 0)代入S2=k2t + b 中得,4.5k2+b=0.解得k2=- 80, b= 360, s 2= —80t + 360; (2)由题意得100t = —80t+360,解得t=2, .•.当t=2时,两车相遇;(3)由S2= — 80t + 360可知从市区到景区的路程为360 km,二.李明的速度为100 km/h,,李明到达景区时的时间t =360+100= 3.6(h),当李明到达景区,王红离市区S2=— 80X 3.6 + 360=72 (km).答:当李明到达景区时,王红离市区还有72 km.中考考点清单) 考点一次函数的实际应用1.用一次函数解决实际问题的一般步骤为:(1)设定实际问题中的自变量与因变量;(2)通过列方程(组)与待定系数法求一次函数关系式;(3)确定自变量的取值范围;(4)利用函数性质解决问题;(5)检验所求解是否符合实际意义;(6)答.2.方案最值问题对于求方案问题,通常涉及两个相关量,解题方法为根据题中所要满足的关系式,通过列不等式,求解出某一个事物的取值范围,再根据另一个事物所要满足的条件,即可确定出有多少种方案.【方法点拨】求最值的本质为求最优方案,解法有两种:①可将所有求得的方案的值计算出来,再进行比较;②直接利用所求值与其变量之间满足的一次函数关系式求解,由一次函数的增减性可直接确定最优方案及最值;若为分段函数,则应分类讨论,先计算出每个分段函数的取值,再进行比较.显然,第② 种方法更简单快捷.中考重难点突破)类型一次函数的实际应用【例】(河南中考)某商店销售10台A型和20台B型电脑的利润为4 000元,销售20台A型和10 台B型电脑的禾1J润为3 500元.(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2 倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.①求y关于x的函数关系式;②该商店购进A型、B型电脑各多少台,才能使销售总利润最大?(3)实际进货时,厂家对A型电脑出厂价下调m(0<m< 100)元,且限定商店最多购进A型电脑70 台.若商店保持两种电脑的售价不变,请你根据以上信息及(2)中条件,设计出使这100台电脑销售总利润最大的进货方案.【解析】[信息梳理]设每台A型电脑的销售利润为a元,每台B型电脑的销售利润为b元.解:(1)设每台A型电脑的销售利润为a元,每台B型电脑的销售利润为b元,则有10a+20b=4 000 , a=100,20a+10b= 3 500.解得b= 150.答:每台A型电脑的销售利润为100元,每台B型电脑的销售利润为150 元;(2)①根据题意y= 100x+ 150(100 —x),即y=— 50x+ 15 000.②根据题意得,100—xW2x,1解得x>333.二.在y=- 50x+ 15 000中,一50V0,,y随x的增大而减小.二x为正整数,,当x=34 时,y取得最大值,此时100 —x = 66.即商店购进A型电脑34台,B型电脑66台,才能使销售总利润最1大;(3)根据题意得y= (100+m)x+ 150(100 —x),即y = (m-50)x + 15 000.其中333WxW70.①当0V m< 50时,m- 50<0, y随x的增大而减小.,当x = 34时,y取得最大值.即商店购进34台A型电脑和66台B型电脑才能获得最大禾1J 润.②当m= 50时,m- 50=0, y= 15 000.即商店购进A型电脑数量满1足333WxW70的整数时,获得的利润为 1 500元.③当50Vm< 100时,m- 50>0, y随x的增大而增1大,又333WxW70, .♦.当x = 70时,y取得最大值,即商店购进70台A型电脑和30台B型电脑,能获最大利润.料时训练1.(2019山西中考)我省某苹果基地销售优质苹果,该基地对需要送货且购买量在 2 000 kg〜5 000 kg(含2 000 kg 和5 000 kg)的客户有两种销售方案(客户只能选择其中一种方案):方案A:每千克5.8元,由基地免费送货.方案B:每千克5元,客户需支付运费2 000元.(1)请分别写出按方案A,方案B购买这种苹果的应付款y(元)与购买量x(kg)之间的函数表达式;(2)求购买量x在什么范围时,选用方案A比方案B付款少;(3)某水果批发商计划用20 000元,选用这两种方案中的一种,购买尽可能多的这种苹果,请直接写出他应选择哪种方案.y = 5.8x ,方案B:函数表达式为y = 5x+2 000 ; (2)由题意,得解:(1)方案A:函数表达式为5.8x<5x +2 000 ,解不等式得x<2 500, •••当购买量x的取值范围为2 000 < x<2 500时,选用方案A比方案B付款少;(3)他应选择方案B.2.(2019孝感中考)孝感市在创建国家级园林城市中,绿化档次不断提升.某校计划购进A, B两种树木共100棵进行校园绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?(2)因布局需要,购买A种树木的数量不少于B种树木数量的3倍.学校与中标公司签订的合同中规定:在市场价格不变的情况下(不考虑其他因素),实际付款总金额按市场价九折优惠,请设计一种购买树木的方案,使实际所花费用最省,并求出最省的费用.一、一一. __ ____________ _ ________ 一一一2a +5b=600, 一一a=100, ,, 一.解:(1)设A种,B种树木每棵分别为a兀,b兀,则3a+b=380,解得b = 80.答:A种,B种树木每棵分别为100元,80;(2)设购买A种树木为x棵,则购买B种种木为(100—x)棵,则x> 3(100 - x) ,,x> 75.设实际付款总金额为y 元,贝U y=0.9[100x + 80(10 0—x)] , y= 18x+7 200. / 18>0, y 随x的增大而增大,,x= 75时,y最小.即x=75, y最小值= 18X 75+ 7 200 = 8 550(元),,当购买A种树木75棵,B种树木25棵时,所需费用最少,最少费用为8 550元.3.(2019广安中考)某水果基地积极计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在第(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?一一一一,E, ,一,一 x x+y=8' j ,rX=2'入八、一一一,,E解:(1)设装运乙、丙水果的车分别为x辆,y辆,得:2x+3y=22,解得y= 6.答:装运乙种水果的车有2辆,丙种水果的汽车有6辆;(2)设装运乙、丙水果的车分别为a辆,b辆,得:vm- a+b=20, a=m— 12,4m+ 2a+3b= 72,解得b= 32 —2m.答:装运乙种水果的汽车是(m—12)辆,丙种水果的汽车是(32 - 2m)m—12> 1,辆;(3)设总利润为w 千元,w= 4X5m+ 2X 7(m—12)+4X 3(32 — 2m)=10m+ 216.「32—2m> 1, /.13<15.5 , -. m 为正整数,,m= 13, 14, 15,在w= 10m+ 216中,w随x的增大而增大,,当m= 15 时,W最大=366千元.答:当运甲水果的车15辆,运乙水果的车为3辆,运丙水果的车为2辆时,利润最大,最大利润为366千元.2019-2020 学年数学中考模拟试卷一、选择题1.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y (千米)与行驶时间x (小时)的函数关系的图象,下列说法错误的是()# , [ -100s ---- 不70 M .d 03 L75三,时)A.乙先出发白^时间为0.5小时B.C.甲出发0.5小时后两车相遇D.2.-5的相反数是()A. - 5B. 5C. 甲的速度是80千米/小时. ..... .. …1…甲到B地比乙到A地早一小时121 D 15 . 50(0 , 0) , A(0, 3) , B(4 , 0),按以下步骤作图:T(程)①以点0为圆心,适当长度为半径作弧,分别交OC, OB于点1 ........ 一…,一 ,于一DE的长为半径作弧,两弧在/ BOC内父于点F;③作射线2为()川Of / 3 IA (4 , 4) B. (4 , 4) C. (5,4)3 3 34.已知关于x的一元二次方程x2+x—m + 9- 0没有实数根4A. m<2B. m < -2C. m>—25.只用卜列一种止多边形/、能镶嵌成平面图案的是()A.正三角形B.止方形C.正五边形6.已知在四边形ABC邛,AD// BC,对角线AC与BD相交十点0,就能判定这个四边形是菱形的是()D, E;②分别以点D, E为圆心,大OF,交边BC于点G,则点G的坐标D. (4 ,-)3,则实数m的取值范围是()D. m>2D.正六边形A0= CO如果添加卜列一个条件后,A.BO= DOB.AB= BCC.AB=CDD.AB// CDJ 1 1 AA. m -1B. m _ -1C. m _ -1D. m :: -1x, y 满足xv 59 - 1 < y,则这两个整数是(A. 1 和 2B, 2 和 3 C. 3 和 4 D, 4 和 512 .如图,正方形 ABCD 勺边长为8,分别以正方形的三边为直径在正方形内部作半圆,则阴影部分的面A. 32B. 2 兀C. 10 71+2 D, 8兀 +1二、填空题13 .为了了解一批圆珠笔芯的使用寿命,宜采用 方式进行调查;为了了解某班同学的身高,宜采用 方式进行调查.(填“抽样调查”或“普查”)14 .分解因式:巾二4 =.15 .如图,在矩形 ABCD43,有一个小正方形 EFGH 其中顶点E, F, G 分别在AB, BC, FD 上.连接 DH 如果 BC=13 BF=4, AB=12,则 tan / HDG 勺值为.7.实数a 、b 、c 在数轴上的对应点的位置如图所示,如果a b cA. |a|=|b|B. a+c>0C. a = -1ba+b=0,那么下列结论错误的是D. abc>08.如图,在口 ABCD 中,点E 在BC 边上, DC 、AE 的延长线交于点 F ,下列结论错误的是()A . AF FE BCCE B . CE _ CBE F - AEEF CE AEAB C . AF CB D. EFCF9.港珠澳大桥是中国境内一座连接着香港、珠海和澳门的桥隧工程,工程投资总额 1269亿元,1269亿用科学记数法表示为( A. 1.269 X10 10B. 1.269 X 10 11C. 12.69X10 10D. 0.1269 X10 1210.若不等式组x-2 1-2x有解,则m 的取值范围是()11.若两个连续整数积之和是()16 .抛掷一枚质地均匀的硬币,连续3次都是正面向上,则关于第 4次抛掷结果,P (正面向上)P(反面向上).(填写或“=”)17 .计算:2#-回=.18 .在一个不透明的盒子中装有三张卡片,分别标有数字1, 2, 3,这些卡片除数字不同外其余均相同,从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片,两次抽取的卡片上数字 之和为奇数的概率是 . 三、解答题onio 「1L O19 .(1) -12019+|--|V3-2| -2sin60. x 2x -1x - 4 ...........(2)化简:.x2- 2 一卜工^ ,并从owxv 5中选取合适的整数代入求值.x 2-2x x 2-4x 4 x20 .如图,在方格纸中,每个小正方形的边长都是1,点P 、Q 都在格点上.(2)在图中画出一个以 P 、Q 为其中两个顶点的格点平行四边形,且面积等于( 1)中的k 的值.21 .计算:22 .甲、乙两人在笔直的道路 AB 上相向而行,甲骑自行车从A 地到B 地,乙驾车从 B 地到A 地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,乙的速度为旦千米/分,在整个过程2中,甲、乙两人之间的距离y (千米)与甲出发的时间x (分)之间的部分函数图象如图.(1)A 、B 两地相距千米,甲的速度为千米/分;(2)求线段EF 所表示的y 与x 之间的函数表达式;(1)若点P 的坐标记为(-1,1 ),反比例函数ky =一的图像的一条分支经过点 xQ 求该反比例函数解析4 18.24 .设a, b, c 为互不相等的实数,且满足关系式: b 2+c 2= 2a 2+16a+14①bc=a 2-4a-5②.求a 的取值25 .如图,已知正方形 ABC 邛,E 为CD 边上的一点,F 为BC 延长线上一点,且 CE= CF.若/ BEC=题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 DB AA CB D BBDCA、填空题13 .抽样调查普查(m+2 ( m- 2).1 22B?2a -1,并从0, 1, B 2四个数中,给a 选取一个恰当***14.15. 16. 17.(3)当乙到达终点 A 时,甲还需多少分钟到达终点 的数进行求值.60° ,求/ EFD 的度数.B、选择题三、解答题19. (1) 1; (2) 1.【解析】 【分析】(1)按顺序先分别进行乘方的运算、负整数指数哥的运算、绝对值的化简、代入特殊角的三角函数值, 然后再按运算顺序进行计算即可;(2)括号内先进行分式的减法运算,然后再进彳T 分式的除法运算,化简后再从0Wxv 5中选取使分式有意义的整数值代入进行计算即可. 【详解】x 2 X-2-XX-1 X=2s7x x -2x -41=2 ,X-2从0Wxv 5可取x= 1,1此时原式=2=1.1-2(1)本题考查了实数的运算,熟悉乘方、负整数指数哥、绝对值的意义以及特殊角的三角函数值是解题 的关键. (2)本题考查的是分式的化简求值,熟知分式混合运算的,法则是解答此题的关键.420. (1) y =—;⑵详见解析.x【解析】⑴.12019 ・ 12 .2-|、,3 -2| -2sin=-1+4+* - 2-2X =-1+4+ 耶-2 -乖(1)建立平面直角坐标第,确定Q点坐标,即可求出反比例函数解析式;(2)由(1)得k=4,画出面积为4的平行四边形即可.【详解】(1)如图1 ,建立平面直角坐标系k k由题意得Q (2,2 ),把Q (2,2 )代入y =—得2 = 3 ,解得k=44・♦.该反比例函数解析式为y =-x(2)如图所示本题考查了用待定系数法求反比例函数解析式,解此题的关键是根据点P的坐标确定平面直角坐标系, 同时还考查了平行四边形的画法.21•【解析】【分析】根据绝对值,特殊角的三角函数值和负指数哥进行计算即可【详解】原式=-J2-1-,/2+4 =3【点睛】此题考查绝对值,特殊角的三角函数值和负指数哥,掌握运算法则是解题关键22. (1)24 ,[;(2)y =- 11x+33; (3)当乙到达终点A时,甲还需50分钟到达终点B.3 6【解析】【分析】(1)观察图象知A、B两地相距为24km,由纵坐标看出甲先行驶了2千米,由横坐标看出甲行驶2千米用____ . 、一2 一,了6分钟,则甲的速度是 -千米/分钟;6(2)列方程求出相遇时的时间,求出点F的坐标,再运用待定系数法解答即可;(3)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B站需要的时间,再根据有理数的减法,可得答案【详解】解:(1)观察图象知A B两地相距为24km,•••甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,……1 2 1・.甲的速度TE —=—千米/分钟;6 3 (1)故答案为:24, -;3(2)设甲乙经过a分钟相遇,根据题意得,3, 一1 ……一(a -6) + — a =24 ,解答a=18, 2 3••F(18, 0),设线段EF表示的y与x之间的函数表达式为y=kx+b,根据题意得,110=18x b k--11\ ,解得《 6 ,22=6k bb =33「•线段EF表示的y与x之间的函数表达式为y= - -' x+33;6⑶相遇后乙到达A地还需:(18 X1)+3 = 4(分钟),3 2相遇后甲到达B站还需:(12 X ° ) + , = 54(分钟)2 3当乙到达终点A时,甲还需54- 4= 50分钟到达终点B.【点睛】本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.注意求出相遇后甲、乙各自的路程和时间.23.-£-2.a -2【解析】【分析】根据分式的运算,将分式化简后,再选中能使分式有意义的a的值代入求值即可.【详解】564Ei a(a -1) a 2-1 -2a 1原式=——2 ----- ------------(a -1) a -1 a(a -1) a -12-(a -1)2a(a -2)1------ ,a -2• aw 。

数学知识:一次函数知识的现实应用举例

数学知识:一次函数知识的现实应用举例

一次函数知识的应用我们学过一次函数y=kx+b的图象是一条直线,还学过一次函数的性质.直线是最简单、最常见的几何图形,也是线段、射线的概念的基础,而两点确定一条直线、两点之间线段最短,于是,与直线或线段有关的最大或最小值问题,最多或最少等问题,必然反映到现实生活、生产实践或商品经济大潮中,摘选几例,予以说明.[例1] 如图所示,两村的坐标位置各为A(-3,3)、B(5,1).x轴表示一条运河,两村拟在河旁合建一座扬水站C,使C到两村所用的管道最省,试确定点C 的位置(坐标单位:千米).点B关于x轴的对称点).解:作点B(5,1)关于x的对称点B′(5,-1).由两点A、B′之间线段最短,连结AB′交x轴于点C,且CB′=CB.设直线AB′为y=kx+b,则点A、B′在这条直线上,于是即扬水站建在图中的点C(3,0)处,可使C到两村所铺设的管道最省.[例2] 已知A市和B市各存机床12台和6台,现运往C市10台、D市8台.若从A市运一台到C市、D市各需4万元和8万元,若从B市运一台到C 市、D市各需3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式.(2)若总费用不超过95万元,问共有几种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?解:(1)由题意,得B市运往D市(6-x)台,A市运往C市(10-x)台,A市运往D市[12-(10-x)]台,于是y=3x+(6-x)×5+(10-x)×4+(2+x)×8,即y=2x+86(0≤x≤6).(2)根据题意,得2x+86≤95.解得x≤4.5,由实际意义,应取x≤4.结合原函数的x取值范围,得0≤x≤4.所以x可取0,1,2,3,4这五个数,即总费用不超过95万元的调运方法共有五种.(3)由一次函数y=2x+86的性质知,y随x的增大而增大,而0≤x≤4,所以x=0时,y取最小值86.即最低费用是86万元,调运方法是B市运往D市6台,A 市运往C市10台、运往D市2台.说明:本题用到了某个范围内的一次函数的最值的性质:当m≤x≤n(m<n)、k>0时,若x=m,则y=kx+b取得最小值km+b;若x=n,则y=kx+b取最大值kn+b.当m≤x≤n(m<n)、k<0时,若x=m,则y=kx+b取得最大值km +b;若x=n,则y=kx+b取最小值kn+b.下面给出练习思考题:(1)在边防沙漠区,巡逻车每天行驶200千米,每辆巡逻车装载供行驶14天的汽油.现有5辆巡逻车同时由驻地A出发,完成任务再返回A.为让其余3辆尽可能向更远距离巡逻(然后一起返回),甲、乙两车行至途中B后,仅留足自己返回A必须的汽油,将多余的油给另3辆用,问另3辆行驶的最远距离是多少千米.(2)30名劳力承包75亩地,这些地可种蔬菜、玉米和杂豆.每亩蔬菜需0.5个劳力,预计亩产值2000元;每亩玉米需0.25个劳力,预计亩产值800元;每亩杂豆需0.125个劳力,预计亩产值550元.怎样安排种植计划,才能使总产值最大?最大产值是多少元?提示与略解:(1)设巡逻车行至B处用x天,从B到最远处用y天,则2[3(x+y)+2x]=14×5,即又x>0,y>0,14×5-(5+2)x≤14×3,所以x=4时,y取最大值5.另三辆车行驶最远距离:(4+5)×200=1800(千米).(2)设种蔬菜、玉米、杂豆各x、y、z亩,总产量u元.则所以45≤x≤55,即种蔬菜55亩,杂豆20亩,最大产值为121000元.。

中考数学总复习训练 一次函数的实际应用含解析

中考数学总复习训练  一次函数的实际应用含解析

一次函数的实际应用一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?12.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少此时,哪种方案对公司更有利?13.“5•12”四川汶川大地震的灾情牵动全国人民的心,某市A、B两个蔬菜基地得知四川C、D两个灾民安置点分别急需蔬菜240吨和260吨的消息后,决定调运蔬菜支援灾区.已知A蔬菜基地有蔬菜200吨,B蔬菜基地有蔬菜300吨,现将这些蔬菜全部调往C、D两个灾民安置点.从A地运往C、D两处的费用分别为每吨20元和25元,从B地运往C、D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.(1)请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计A 200吨B x吨300吨总计240吨260吨500吨(2)设A、B两个蔬菜基地的总运费为w元,写出w与x之间的函数关系式,并求总运费最小的调运方案;(3)经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m 元(m>0),其余线路的运费不变,试讨论总运费最小的调运方案.14.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:A型利润B型利润甲店200 170乙店160 150(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W 关于x的函数关系式,并求出x的取值范围;(2)若公司要求总利润不低于17560元,说明有多少种不同分配方案,并将各种方案设计出来;(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.甲店的B型产品以及乙店的A,B型产品的每件利润不变,问该公司又如何设计分配方案,使总利润达到最大?一次函数的实际应用参考答案与试题解析一、利用函数的解析式解决问题1.某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植﹣亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.【考点】二次函数的应用;一次函数的应用.【专题】压轴题.【分析】(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=﹣24x2+21600x+2400000,利用二次函数最值问题求最大值.【解答】解:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,分别把点(50,1200),(100,2700)代入得,50k+800=1200,100k1+3000=2700,解得:k=8,k1=﹣3,种植亩数与政府补贴的函数关系为:y=8x+800每亩蔬菜的收益与政府补贴的函数关系为z=﹣3x+3000(x>0)(3)由题意:w=yz=(8x+800)(﹣3x+3000)=﹣24x2+21600x+2400000=﹣24(x﹣450)2+7260000,∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.【点评】主要考查利用一次函数和二次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.利用二次函数的顶点坐标求最值是常用的方法之一.2.某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x (元)15 20 25 …y (件)25 20 15 …若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)求销售价定为30元时,每日的销售利润.【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)已知日销售量y是销售价x的一次函数,可设函数关系式为y=kx+b(k,b 为常数,且k≠0),代入两组对应值求k、b,确定函数关系式.(2)把x=30代入函数式求y,根据:(售价﹣进价)×销售量=利润,求解.【解答】解:(1)设此一次函数解析式为y=kx+b(k,b为常数,且k≠0).(1分)则.(2分)解得k=﹣1,b=40(4分)即一次函数解析式为y=﹣x+40(5分)(2)当x=30时,每日的销售量为y=﹣30+40=10(件)(6分)每日所获销售利润为(30﹣10)×10=200(元)(8分)【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题.3.如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?【考点】一次函数的应用.【专题】应用题;压轴题.【分析】(1)可设y=kx+b,因为由图示可知,x=4时y=10.5;x=7时,y=15,由此可列方程组,进而求解;(2)令x=4+7,求出相应的y值即可.【解答】解:(1)设y=kx+b(k≠0).(2分)由图可知:当x=4时,y=10.5;当x=7时,y=15.(4分)把它们分别代入上式,得(6分)解得k=1.5,b=4.5.∴一次函数的解析式是y=1.5x+4.5(x是正整数).(8分)(2)当x=4+7=11时,y=1.5×11+4.5=21(cm).即把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是21cm.(10分)【点评】本题意在考查学生利用待定系数法求解一次函数关系式,并利用关系式求值的运算技能和从情景中提取信息、解释信息、解决问题的能力.而它通过所有学生都熟悉的摞碗现象构造问题,将有关数据以直观的形象呈现给学生,让人耳目一新.从以上例子我们看到,数学就在我们身边,只要我们去观察、发现,便能找到它的踪影;数学是有用的,它可以解决实际生活、生产中的不少问题.4.鞋子的“鞋码”和鞋长(cm)存在一种换算关系,下表是几组“鞋码”与鞋长换算的对应数值:(注:“鞋码”是表示鞋子大小的一种号码)鞋长(cm) 16 19 21 24鞋码(号) 22 28 32 38(1)设鞋长为x,“鞋码”为y,试判断点(x,y)在你学过的哪种函数的图象上;(2)求x、y之间的函数关系式;(3)如果某人穿44号“鞋码”的鞋,那么他的鞋长是多少?【考点】一次函数的应用.【专题】压轴题;图表型.【分析】(1)可利用函数图象判断这些点在一条直线上,即在一次函数的图象上;(2)可设y=kx+b,把两个点的坐标代入,利用方程组即可求解;(3)令(2)中求出的解析式中的y等于44,求出x即可.【解答】解:(1)如图,这些点在一次函数的图象上;(2)设y=kx+b,由题意得,解得,∴y=2x﹣10.(x是一些不连续的值.一般情况下,x取16、16.5、17、17.5、26、26.5、27等);(3)y=44时,x=27.答:此人的鞋长为27cm.【点评】本题首先利用待定系数法确定一次函数的解析式,然后利用函数实际解决问题.5.某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20m3时,按2元/m3计费;月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费.设每户家庭用水量为xm3时,应交水费y元.(1)分别求出0≤x≤20和x>20时y与x的函数表达式;(2)小明家第二季度交纳水费的情况如下:月份四月份五月份六月份交费金额30元34元42.6元小明家这个季度共用水多少立方米?【考点】一次函数的应用.【专题】应用题.【分析】(1)因为月用水量不超过20m3时,按2元/m3计费,所以当0≤x≤20时,y与x 的函数表达式是y=2x;因为月用水量超过20m3时,其中的20m3仍按2元/m3收费,超过部分按2.6元/m3计费,所以当x>20时,y与x的函数表达式是y=2×20+2.6(x﹣20),即y=2.6x ﹣12;(2)由题意可得:因为四月份、五月份缴费金额不超过40元,所以用y=2x计算用水量;六月份缴费金额超过40元,所以用y=2.6x﹣12计算用水量.【解答】解:(1)当0≤x≤20时,y与x的函数表达式是:y=2x;当x>20时,y与x的函数表达式是:y=2×20+2.6(x﹣20)=2.6x﹣12;(2)因为小明家四、五月份的水费都不超过40元,故0≤x≤20,此时y=2x,六月份的水费超过40元,x>20,此时y=2.6x﹣12,所以把y=30代入y=2x中得,2x=30,x=15;把y=34代入y=2x中得,2x=34,x=17;把y=42.6代入y=2.6x﹣12中得,2.6x﹣12=42.6,x=21.所以,15+17+21=53.答:小明家这个季度共用水53m3.【点评】本题是贴近社会生活的应用题,赋予了生活气息,使学生真切地感受到“数学来源于生活”,体验到数学的“有用性”.这样设计体现了《新课程标准》的“问题情景﹣建立模型﹣解释、应用和拓展”的数学学习模式.6.一辆客车从甲地开往乙地,一辆出租车从乙地开往甲地,两车同时出发,设客车离甲地的距离为y1(km),出租车离甲地的距离为y2(km),客车行驶时间为x(h),y1,y2与x 的函数关系图象如图所示:(1)根据图象,直接写出y1,y2关于x的函数关系式.(2)分别求出当x=3,x=5,x=8时,两车之间的距离.(3)若设两车间的距离为S(km),请写出S关于x的函数关系式.(4)甲、乙两地间有A、B两个加油站,相距200km,若客车进入A站加油时,出租车恰好进入B站加油.求A加油站到甲地的距离.【考点】一次函数的应用.【分析】(1)可根据待定系数法来确定函数关系式;(2)可依照(1)得出的关系式,得出结果;(3)要根据图象中自变量的3种不同的取值范围,分类讨论;(4)根据(3)中得出的函数关系式,根据自变量的取值范围分别计算出A加油站到甲地的距离.【解答】解:(1)y1=60x(0≤x≤10),y2=﹣100x+600(0≤x≤6)(2)当x=3时,y1=180,y2=300,∴y2﹣y1=120,当x=5时y1=300,y2=100,∴y1﹣y2=200,当x=8时y1=480,y2=0,∴y1﹣y2=480.(3)当两车相遇时耗时为x,y1=y2,解得x=,S=y2﹣y1=﹣160x+600(0≤x≤)S=y1﹣y2=160x﹣600(<x≤6)S=60x(6<x≤10);(4)由题意得:S=200,①当0≤x≤时,﹣160x+600=200,∴x=,∴y1=60x=150.②当<x≤6时160x﹣600=200,∴x=5,∴y1=300,③当6<x≤10时,60x≥360不合题意.即:A加油站到甲地距离为150km或300km.【点评】本题通过考查一次函数的应用来考查从图象上获取信息的能力.借助函数图象表达题目中的信息,读懂图象是关键.注意自变量的取值范围不能遗漏.7.我国是世界上严重缺水的国家之一.为了增强居民节水意识,某市自来水公司对居民用水采用以户为单位分段计费办法收费.即一月用水10吨以内(包括10吨)的用户,每吨收水费a元;一月用水超过10吨的用户,10吨水仍按每吨a元收费,超过10吨的部分,按每吨b元(b>a)收费.设一户居民月用水x吨,应收水费y元,y与x之间的函数关系如图所示.(1)求a的值;某户居民上月用水8吨,应收水费多少元;(2)求b的值,并写出当x>10时,y与x之间的函数关系式;(3)已知居民甲上月比居民乙多用水4吨,两家共收水费46元,求他们上月分别用水多少吨?【考点】一次函数的应用;二元一次方程组的应用;分段函数.【分析】(1)由图中可知,10吨水出了15元,那么a=15÷10=1.5元,用水8吨,应收水费1.5×8元;(2)由图中可知当x>10时,有y=b(x﹣10)+15.把(20,35)代入一次函数解析式即可.(3)应先判断出两家水费量的范围.【解答】解:(1)a=15÷10=1.5.(1分)用8吨水应收水费8×1.5=12(元).(2分)(2)当x>10时,有y=b(x﹣10)+15.(3分)将x=20,y=35代入,得35=10b+15.b=2.(4分)故当x>10时,y=2x﹣5.(5分)(3)∵假设甲乙用水量均不超过10吨,水费不超过46元,不符合题意;假设乙用水10吨,则甲用水14吨,∴水费是:1.5×10+1.5×10+2×4<46,不符合题意;∴甲、乙两家上月用水均超过10吨.(6分)设甲、乙两家上月用水分别为x吨,y吨,则甲用水的水费是(2x﹣5)元,乙用水的水费是(2y﹣5)元,则(8分)解得:(9分)故居民甲上月用水16吨,居民乙上月用水12吨.(10分)【点评】本题主要考查了一次函数与图形的结合,应注意分段函数的计算方法.二、利用函数的增减性解决问题8.某饮料厂为了开发新产品,用A种果汁原料和B种果汁原料试制新型甲、乙两种饮料共50千克,设甲种饮料需配制x千克,两种饮料的成本总额为y元.(1)已知甲种饮料成本每千克4元,乙种饮料成本每千克3元,请你写出y与x之间的函数关系式.(2)若用19千克A种果汁原料和17.2千克B种果汁原料试制甲、乙两种新型饮料,下表是试验的相关数据;请你列出关于x且满足题意的不等式组,求出它的解集,并由此分析如何配制这两种饮料,可使y值最小,最小值是多少?甲乙每千克饮料果汁含量果汁A 0.5千克0.2千克B 0.3千克0.4千克【考点】一元一次不等式组的应用.【专题】应用题;压轴题.【分析】(1)由题意可知y与x的等式关系:y=4x+3(50﹣x)化简即可;(2)根据题目条件可列出不等式方程组,推出y随x的增大而增大,根据实际求解.【解答】解:(1)依题意得y=4x+3(50﹣x)=x+150;(2)依题意得解不等式(1)得x≤30解不等式(2)得x≥28∴不等式组的解集为28≤x≤30∵y=x+150,y是随x的增大而增大,且28≤x≤30∴当甲种饮料取28千克,乙种饮料取22千克时,成本总额y最小,即y最小=28+150=178元.【点评】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.注意本题的不等关系为:甲种果汁不超过19,乙种果汁不超过17.2.9.某厂工人小王某月工作的部分信息如下:信息一:工作时间:每天上午8:00~12:00,下午14:00~18:00,每月25天;信息二:生产甲、乙两种产品,并且按规定每月生产甲产品的件数不少于60件.生产产品件数与所用时间之间的关系见下表:生产甲产品数(件)生产乙产品数(件)所用时间(分)10 10 35030 20 850信息三:按件计酬,每生产一件甲产品可得1.50元,每生产一件乙产品可得2.80元.根据以上信息,回答下列问题:(1)小王每生产一件甲种产品,每生产一件乙种产品分别需要多少分;(2)小王该月最多能得多少元此时生产甲、乙两种产品分别多少件.【考点】二元一次方程组的应用;一次函数的应用.【专题】压轴题;阅读型;图表型.【分析】(1)设生产一件甲种产品需x分,生产一件乙种产品需y分,利用待定系数法求出x,y的值.(2)设生产甲种产品用x分,则生产乙种产品用(25×8×60﹣x)分,分别求出甲乙两种生产多少件产品.【解答】解:(1)设生产一件甲种产品需x分,生产一件乙种产品需y分.由题意得:(2分)即:解这个方程组得:答:生产一件甲产品需要15分,生产一件乙产品需要20分.(4分)(2)设生产甲种产品共用x分,则生产乙种产品用(25×8×60﹣x)分.则生产甲种产品件,生产乙种产品件.(5分)∴w总额===0.1x+1680﹣0.14x=﹣0.04x+1680(7分)又,得x≥900,由一次函数的增减性,当x=900时w取得最大值,此时w=0.04×900+1680=1644(元)此时甲有(件),乙有:(件)(9分)答:小王该月最多能得1644元,此时生产甲、乙两种产品分别60,555件.【点评】通过表格当中的信息,我们可以利用列方程组来求出生产甲、乙两种产品的时间,然后利用列函数关系式表示出小王得到的总钱数,然后利用一次函数的增减性求出钱数的最大值.10.“5.12”汶川特大地震灾害发生后,社会各界积极为灾区捐款捐物,某经销商在当月销售的甲种啤酒尚有2万元货款未收到的情况下,先将销售甲种啤酒全部应收货款的70%捐给了灾区,后又将该月销售乙种啤酒所得的全部货款的80%捐给了灾区.已知该月销售甲、乙两种啤酒共5000件,甲种啤酒每件售价为50元,乙种啤酒每件售价为35元,设该月销售甲种啤酒x件,共捐助救灾款y元.(1)该经销商先捐款元,后捐款元;(用含x的式子表示)(2)写出y与x的函数关系式,并求出自变量x的取值范围;(3)该经销商两次至少共捐助多少元?【考点】一次函数的应用.【专题】压轴题.【分析】(1)根据题意可直接得出经销商先捐款50x•70%=35x元,后捐款35(5000﹣x)•80%或(140000﹣28x)元;(2)根据题意可列出式子为y=7x+140000,根据“50x﹣20000≥0”,“5000﹣x>0”求出自变量取值范围为400≤x<5000;(3)当x=400时,y最小值=142800.【解答】解:(1)50x•70%或35x,35(5000﹣x)•80%或(140000﹣28x);(2)y与x的函数关系式为:y=7x+140000,由题意得解得400≤x<5000,∴自变量x的取值范围是400≤x<5000;(3)∵y=7x+140000是一个一次函数,且7>0,400≤x<5000,∴当x=400时,y最小值=142800.答:该经销商两次至少共捐款142800元.【点评】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.注意要根据自变量的实际范围确定函数的最值.11.为支持四川抗震救灾,重庆市A、B、C三地现在分别有赈灾物资100吨、100吨、80吨,需要全部运往四川重灾地区的D、E两县.根据灾区的情况,这批赈灾物资运往D县的数量比运往E县的数量的2倍少20吨.(1)求这批赈灾物资运往D、E两县的数量各是多少?(2)若要求C地运往D县的赈灾物资为60吨,A地运往D的赈灾物资为x吨(x为整数),B地运往D县的赈灾物资数量小于A地运往D县的赈灾物资数量的2倍.其余的赈灾物资全部运往E县,且B地运往E县的赈灾物资数量不超过25吨.则A、B两地的赈灾物资运往D、E两县的方案有几种?请你写出具体的运送方案;(3)已知A、B、C三地的赈灾物资运往D、E两县的费用如下表:A地B地C地运往D县的费用(元/吨)220 200 200运往E县的费用(元/吨)250 220 210为及时将这批赈灾物资运往D、E两县,某公司主动承担运送这批赈灾物资的总费用,在(2)问的要求下,该公司承担运送这批赈灾物资的总费用最多是多少?【考点】一元一次不等式组的应用;一次函数的应用.【专题】压轴题;方案型.【分析】(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨,得到一个二元一次方程组,求解即可.(2)根据题意得到一元二次不等式,再找符合条件的整数值即可.(3)求出总费用的函数表达式,利用函数性质可求出最多的总费用.【解答】解:(1)设这批赈灾物资运往D县的数量为a吨,运往E县的数量为b吨.(1分)由题意,得(2分)解得(3分)答:这批赈灾物资运往D县的数量为180吨,运往E县的数量为100吨.(4分)(2)由题意,得(5分)解得即40<x≤45.∵x为整数,∴x的取值为41,42,43,44,45.(6分)则这批赈灾物资的运送方案有五种.具体的运送方案是:方案一:A地的赈灾物资运往D县41吨,运往E县59吨;B地的赈灾物资运往D县79吨,运往E县21吨.。

一次函数在生活中的应用

一次函数在生活中的应用

一次函数在生活中的应用所谓一次函数在生活中的应用,就是指运用一次函数的有关概念、性质去解决实际问题。

它的基本思路是通过对题目的阅读理解,抽象出实际问题中的函数关系,将文字语言转化为数学语言,再运用函数的思想方法来建立实际问题中的变量间的函数关系。

下面,以中考题为例说明,希望能够对大家有所帮助。

例1 我市某镇组织20辆汽车装运完A 、B 、C 三种脐橙共100吨到外地销售。

按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满。

根据下表提供的信息,解答以下问题:(1)设装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,求y 与x 之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值。

分析:利用题中数量关系,先确定y 与x 之间的函数关系式,再分类讨论。

(1)根据题意,装运A 种脐橙的车辆数为x ,装运B 种脐橙的车辆数为y ,那么装运C 种脐橙的车辆数为()y x --20,则有:()10020456=--++y x y x 整理得:202+-=x y(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、202+-x 、x ,由题意得:⎩⎨⎧≥+-≥42024x x ,解得:4≤x ≤8,因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方案共有5种。

方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车;方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车;方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车;方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车;方案五:装运A 种脐橙8车,B 种脐橙4车,C 种脐橙8车;(3)设利润为W (百元)则:()160048104162025126+-=⨯+⨯+-+⨯=x x x x W∵048<-=k ∴W 的值随x 的增大而减小要使利润W 最大,则4=x ,故选方案一1600448+⨯-=最大W =1408(百元)=14.08(万元)答:当装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车时,获利最大,最大利润为14.08万元。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数在实际生产生活中的应用举例
运用函数知识解决简单的实际问题,体会函数是解决实际问题的数学模型和方法,既是新课程标准的要求,也是中考命题的热点,近几年的中考试题对一次函数的考查力度呈加大
趋势,热点问题集中在一次函数的实际应用上,应该引起同学们的关注.现就应用一次函数
知识在生活、生产实际中解决实际问题举几例说明.
1在日常生活中的应用
一次函数在我们的日常生活中应用十分广泛.例如,当我们购物、租车、住宿、缴水电
费时,会为我们提供两种或多种优惠方案,这些问题往往可利用一元一次函数解决.例1为加强公民的节水意识,某市制定如下的用水标准:每月每户用水未超过7 m3时,每立方米收 1.0元并加收0.2元污水处理费;超过7 m3时,超过部分每立方米收 1.5元并加收0.4元污水费,设某户每月的用水为x m3,应交水费y元.
(1)写出y与x之间的函数关系式.
(2)若某单元所在小区共有50户,某月共交水费541.6元,且每户用水均未超过10 m3,这个月用水未超过7 m3的用户最多可能有多少户?
解(1)由题意可知,当0≤x≤7时,y=1.2x.
当x>7时,y=1.9(x-7)+7×1.2=1.9(x-7)+8.4.
所以y与x之间的函数关系式为
(2)设月用水量未超过7 m3共有x户.
因为月用水7 m3的应交水费8.4元,用水10 m3的应交水费(5.7+8.4)元,
根据题意,得
(50-x)(5.7+8.4)+8.4x=541.6.
解得x≈28. 67.
若x=29时,交费的最大额数为29×8.4+21×14.1=539.7<541.6.
所以x=28(户).即月用水量未超过7 m3的用户最多有28户.
2在市场经济中的应用
随着市场经济体制的逐步完善,人们日常生活中的经济活动越来越丰富多彩.买与卖,
存款与保险,股票与债券,,都已进入我们的生活.同时与这一系列经济活动相关的数学,
利息与利率,统计与概率,运筹与优化等,都将在数学课程中呈现出来.
例2某镇组织20辆汽车装运完A、B、C三种脐橙共100 t到外地销售.按计划20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满.根据下表提供的信息,解答以
下问题:
(1)设装运A种脐橙的车辆数为x,装运B,种脐橙的车辆数为y,求y与x之间的函数关系式;
(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?写出每种
安排方案;
(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值.
解(1)根据题意,装运A种脐橙的车辆数为x,装运B种脐橙的车辆数为y,那么装运C种脐橙的车辆数为(20-x-y),则有
6x+5 y+4(20-x-y)=100.
整理,得y=-2x+20.
(2)由(1)知,装运A 、B 、C 三种脐橙的车辆数分别为x 、-2x +20、x ,根据题意,得
4220
4
x x
,解得4≤x ≤8.因为x 为整数,所以x 的值为4、5、6、7、8,所以安排方
案共有5种,
方案一:装运A 种脐橙4车,B 种脐橙12车,C 种脐橙4车;方案二:装运A 种脐橙5车,B 种脐橙10车,C 种脐橙5车;方案三:装运A 种脐橙6车,B 种脐橙8车,C 种脐橙6车;方案四:装运A 种脐橙7车,B 种脐橙6车,C 种脐橙7车;方案五:装运
A 种脐橙8车,
B 种脐橙4车,
C 种脐橙8车.
(3)设利润为W(百元),根据题意,得
W =6x ×12+5(-2x +20)×16+4x ×10=-48x +1 600.因为k =-48<0,所以W 的值随x 的增大而减小,要使利润W 最大,x 取最小值4,
故选方案一.
W 最大=-
48×4+1 600=1 408(百元)=14.08(万元).
3
在工程问题中的应用
下面这道题看似平常却是别有新意的好题,
本题突破了传统的工程问题的模式,
将工程
问题与一次函数图像相联系,进一步加强了传统经典习题与现实生活的联系,
在新的时代背景中更好地学习和掌握数学知识.
例3
某县在实施“村村通”工程中,决定在
P 、Q 两村之
间修筑一条公路,甲、乙两个工程队分别从P 、Q 两村同时相向
开始修筑.施工期间,乙队因另有任务提前离开,余下的任务由甲队单独完成,直到道路修通.如图1是甲、乙两个工程队所修
道路的长度y(m)与修筑时间
x (天)之间的函数图像,请根据图
像所提供的信息,求该公路的总长.
解由乙图像可知,A(12,840).设y
乙=kx(0≤x ≤12),因为
840=12k ,所以k =70.解
得y
乙=70x .
当x =8时,y 乙=560,所以C(8,560).
设y 甲=mx +n(4≤x ≤16),将B(4,360)、C(8,560)代入,得
43608560
m n m n
,解得
50160
m n

所以y 甲=50x +160.当x =16时,y
甲=50×16+160=960.
由此可得乙修筑公路长840 m ,甲修筑公路长960 m .故该公路全长为1800 m .
4在行程问题中的应用
行程问题是一个常规的问题,而新课程下的行程问题,往往与图像、图形、表格等结合
在一起,不仅考查了我们对知识的理解,而且考查了识图能力和数形结合的数学思想.
例4
甲、乙两人骑自行车前往
A 地,他们距A 地的路程 5 (km)与行驶时间t(h)之间的
关系如图2所示,请根据图像所提供的信息解答下列问题:
(1)甲、乙两人的速度各是多少?(2)写出甲、乙两人距
A 地的路程s 与行驶时间t 之间的
函数关系式(任写一个).(3)在什么时间段内乙比甲离A 地更近?

(1)由图像知,甲
2.5 h 行驶50 km ,
所以V
甲=
502.5
=20(km/h).
乙2h行驶60 km,所以V乙=60
2
=30(km/h).
(2)s甲=50-20t或s乙=60-30t.
(3)当1<t<2.5时,s乙的图像在s甲的图像的下面,说明在同一时刻,s乙<s甲,即乙离A 地距离小于甲离A地距离,乙比甲离A地更近,
以上四例说明,一次函数在我们的日常生活中应用十分广泛,内容十分丰富,上述题
目联系实际和时代的热点,较为自然地考查了一次函数模型的实际问题,同时也考查了同学们利用函数思想和方程、不等式、最值等知识解决问题的能力,希望同学们能从中得到启示,善于运用数学去分析身边周围的现象,学会用数学知识分析和解决生产、生活中的一些实际问题.。

相关文档
最新文档