中考技巧圆幂定理 、共高定理、共角定理、共边定理

合集下载

平面几何的17个著名定理,助力中考,快帮孩子收藏

平面几何的17个著名定理,助力中考,快帮孩子收藏

平面几何的17个著名定理,助力中考,快帮孩子收藏平面几何是初中数学中的一大重点,对于中考数学而言,几何同样占据着举足轻重的地位,学号几何,对于中考数学的提分绝对是必不可少的一大助力。

你拥有一颗几何脑将会让你对于几何的学习异常轻松。

今天为大家分享平面几何的17个著名定理,希望对您的数学提升有所帮助!一、欧拉线:同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半。

二、九点圆:任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

三、费尔马点:已知为锐角△ ABC内一点,当∠ APB = ∠ BPC = ∠ CPA = 120° 时,PA PB PC的值最小,这个点P称为△ ABC的费尔马点。

(图中H为B.点,G为C点)四、海伦公式:在△ ABC中,边BC 、 CA 、 AB的长分别为a 、b 、 c,若P = ½ (a bc ),则△ABC的面积S = √ P (P - a)(P - b )(P - c)。

五、塞瓦定理:在△ ABC中,过△ABC的顶点作相交于一点P的直线,分别交边BC 、 CA 、 AB与点D 、 E 、 F ,则BD / DC :CE / EA : AF / FB = 1;其逆亦真。

六、密格尔点:若AE 、 AF 、 ED 、 FB四条直线相交于ABCDEF 六点,构成四个三角形,它们是△ ABF、△ AED 、△ BCE 、△ DCF ,则这四个三角形的外接圆共点,这个点称为密格尔点。

七、葛尔刚点:△ ABC的内切圆分别切边AB 、BC 、CA于点D 、E 、F ,则AE 、 BF 、 CD三线共点,这个点称为葛尔刚点。

八、西摩松线:已知P为△ABC外接圆周上任意一点,PD ⊥ BC ,PE ⊥ AC ,PF ⊥ AB , D 、 E、 F为垂足,则D 、 E、 F三点共线,这条直线叫做西摩松线。

最新中考数学共边定理及其应用与推广

最新中考数学共边定理及其应用与推广

共边定理及其应用与推广几何一直是初中数学的重难点,初中几何主要研究边角关系,并要求对边,角关系进行严格的证明、推理.学生普遍感觉几何好学但解题难,难在思维的深度,尤其难在辅助线的添加,许多几何题目往往受制于这神来一笔的辅助线.如何攻克这座堡垒呢?本文将介绍共边定理这一用途极广的几何解题工具,以供广大读者参考.一、共边定理共边定理建立在共边三角形的基础上,它是指,共边三角形的面积比等于第三个顶点的连线被公共边所截得的线段比.定理 如图1,设直线AB 与CD 交于M ,则有ABC ABD S CM S DM ∆∆= (共有四种情形).这个定理的证明基于一个基本的事实:共高三角形的面积比等于底的比.具体证明如下.证明 ABC ABC ACM ADM ABD ACM ADM ABD S S S S S S S S ∆∆∆∆∆∆∆∆=g gAB CM AM CM AM DM AB DM ==g g .由于共边定理有四种位置情形却对应同一个比值,所以,如何选择两个合适的三角形,是运用共边定理解决间题的关键,而图形的选择差异使得解法往往不唯一共边定理虽然是对等高等底三角形面积相等这一基本性质的推广,但是它的用途却相当的广泛.它在线段和面积之间建立了天然的桥梁,由此可利用这两种几何量的反复转化,证明一大批几何问题,尤其是在没有特别条件下只涉及直线相交、平行、同一直线上的线段比以及面积比等问题中,运用共边定理会得到易想不到的效果.下面通过几个例题来说明共边定理的应用.二、共边定理的应用1.有关线段的问题例1 凸四边形ABCD 的两边,AD BC 延长后交于点K ;两边,AB CD 延长交于L ,对角线,BD AC 延长后分别与直线KL 交于,F G ,如图2.求证:KF KG LF LG =.该题的叙述比较复杂,但其实不看文字,只看图也是一目了然的,即为几条直线相交后证同一直线的线段比.此题是数学大师华罗庚在《1978年全国中学生数学竞赛题》前言中提到的有趣的几何题.题目的证明较难,难点在于图中没有相似三角形和全等的三角形,只有几条线段相交的条件.但此题倘若利用共边定理来解决会变得很简单,具体证法如下.证明 KBD KBD KBL LBD KBL LBDS S S KF LF S S S ∆∆∆∆∆∆==g =ACD ACK ACL ACD S S CD AK CL AD S S ∆∆∆∆=g g =ACK ACL S KG S LG ∆∆=注 该题将共边定理面积比用于证明线段成比例,相反也可以利用线段成比例来证明面积比.2.有关面积的问题例2 在ABC ∆的三边,,BC CA AB 上,分别取点,,X Y Z ,使13CX BC =,13AY AC =,13BZ AB =.连,,AX BY CZ 三条线,围成LMN ∆,如图3.问LMN ∆的面积是ABC ∆面积的几分之几? 解由于LMN ∆与ABC ∆不是公边三角形,为计算LMN ∆,将其转化为与ABC ∆公边的三角形MBC ∆,NCA ∆,LMN ∆来计算.先求MBC S ∆.ABC ABM BCM ACM MBC MBC S S S S S S ∆∆∆∆∆∆++=712AY AZ CY BZ =++=. 又27NCAABC S S ∆∆=,∴27MBC ABC S S ∆∆=. 同理,27LAB ABC S S ∆∆=, ∴17LMN ABC S S ∆∆=. 3.有关平行的问题现在我们反过来思考,共边定理的前提是直线AB 与CD 交于一点M ,但是如果AB 与CD 不相交呢,会有什么情况?首先会不会有AB 与CD 不相交的情况呢?当然会.当ABC ABD S S ∆∆=,且CD 与AB 同侧的时候,它们会平行从而不相交,如图4:通过上述反向的思考得到了一个新的思路,即把共边三角形与平行直线联系到一起了.这个几何事实描述为:若点,C D 在AB 的同侧,//CD AB 的充要条件为ABC ABD S S ∆∆=.有了这一定理就可以不用平行线的性质来证明两直线的平行,张景中教授把这种方法称为“平行线面积判定法”.下面我们通过一个例题来说明其应甩例3 已知线段AB 与一条平行于AB 的直线l ,取不在AB 上也不在l 上的一点P ,作,PA PB 分别与直线l 交于点,M N ,连结,AN BM 交于O ,连PO 交直线AB 于Q ,如图5.求证:AQ BQ =.证明:AOP AOP AOB POB AOB PPOBS S S AQ BQ S S S ∆∆∆∆∆∆==g PMN AMN BMN MNP S S PN AM NB PM S S ∆∆∆∆==g g 1AMN BMNS S ∆∆==. 注在证明最后一步中运用了//AB l ,推导出了AMN BMN S S ∆∆=.实际上此题还解决了在平面内给定两点,A B 和平行于AB 的一条直线,仅利用没有刻度的直尺如何作出AB 的中点的操作方法.类似的方法还可以证明出PQ 平分l .如此一来,便得到了梯形中常见的一个结论,即延长梯形两腰的交点与梯形对角线的连线平分梯形的上下底. 此外,在这个过程中还有一个结论1PN AM NB PM =g ,实际上得到了平行线分线段成比例定理. 共边定理不仅能推导出以上的定理,它还可以推导出相似形基本定理,平行四边形的性质,三角形重心的性质,“共角定理”等.还有一些用传统方法比较难证的定理如“赛瓦定理”,“帕普斯定理”,“德沙格定理”等等,在这里就不一一赘述了,有兴趣的读者可以尝试证明.三、共边定理的推广下面将共边定理进行空间上的推广,即得到共面定理.共面定理:设直线PQ 与平面ABC 交于一点S ,如图6,则有P ABC Q ABC V PS V QS --=.该定理可用于立体几何的计算与证明.此外,共边定理还可以用于解决应用题.例如在行程问题当中,时间不变就等价于三角形中一的高不变,一般涉及正比例的应用题都可以考虑用共边定理来解决,而不仅限于解决平面几何的问题.那么,相比传统方法,共边定理有哪些优点呢?(1)可接受性共边定理基于一个基本的事实,即共高三角形的面积比等于底的比.这个道理在小学就接触过,学生学起来简单,相比相似三角形和全等三角形,需要判定相似或全等的条件比较多,学生的可接受性较强一(2)通用性平面几何中的基本图形是三角形,从统计学的角度来看,一般几何图形中出现全等三角形或相似三角形的可能性太小了.为了能利用相似三角形和全等三角形性质来解题,就需要添加辅助线,但辅助线的添加往往无章可循,而共边三角形却比比皆是,因而它的性质具有通用性.(3)对等性利用相似三角形和全等三角形性质解决问题,需要三个判定条件证明全等或相似.相比之下,共边定理则是一个条件对应一个结论,正是这种对等性,往往能简化几何证明的过程.在这里需要说明的是,共边定理的应用并不排斥传统几何方法中那些有效的方法,相反,它能为传统方法提供更简捷的证明思路一个定理的用途越广,就越能凸显该定理的重要性从上述的例题可以看出,共边定理的作用不容小觑,掌握好这个定理,对初中几何学习是大有帮助的.。

圆幂定理+讲义2023年九年级数学中考复习【附解析】

圆幂定理+讲义2023年九年级数学中考复习【附解析】

圆幂定理九年级数学中考复习一、圆幂的定义:一点P对半径为r的圆O的幂=22OP r-二、圆幂定理:是相交弦定理、切割线定理、割线定理(切割线定理推论)的统称。

1、相交弦定理:若圆内任意弦AB、弦CD交于点P,则··PAPB PC PD=()PAC PBD∆∆∽2、切割线定理:从圆外一点引圆的切线和割线,切线(PA)长是割线和这点到割线(PD)与圆交点的两条线段长的比例中项²·PA PC PD=()PAC PDA∆∆∽3、割线定理(切割线定理的推论):例如如果交点为P的两条相交直线与圆O相交于A、B 与C、D,则·PA PB PC PD⋅=总结:平面上任意一点对于圆的幂为这个点到圆心的距离与圆的半径的平方差的绝对值。

22··PA PB PC PD r OP==-222·PA PC PD OP r==-22·PA PB PC PD OP r⋅==-例题讲解【例1】如图,在圆O 中,M 、N 是弦AB 的三等分点,弦CD ,CE 分别经过点M ,N , 若2CM =,4MD =,3CN =,则线段NE 的长为( )A .83B .3C .103D .52【例2】如题图,圆O 的弦AB ,CD 相交于点E ,过点A 作圆O 的切线与DC 的延长线交于 点P ,若6PA =,9AE =,3PC =,:2:1CE ED =,则BE = .【例3】如图,点P 为弦AB 上一点,连接OP ,过P 作PC OP ⊥,PC 交O 于点C ,若 6AP =,3PB =,则PC 的长为( )A .4B .5C .23D .32【例4】如图,正方形ABCD 内接于O ,点P 在劣弧AB 上,连接DP ,交AC 于点Q .若 QP QO =,则QC QA的值为( )A .231B .23C 32D 32+【例5】如图,PA 切圆于点A ,直线PCB 交圆于C ,B 两点,切线长42PA =4PC =, 则AB AC等于( )A 2B .22C .2D .以上结果都不对 【例6】如图,AT 切O 于T ,若6AT =,3AE =,4AD =,2DE =,则BC 等于()A .3B .4C .6D .8【例7】如图,在以O 为圆心的两个同心圆中,A 为大圆上任意一点,过A 作小圆的割线 AXY ,若4AX AY ⋅=,则图中圆环的面积为( )A .16πB .8πC .4πD .2π【例8】如图,在ABCD 中,过A 、B 、C 三点的圆交AD 于E ,且与CD 相切.若4AB =, 5BE =,则DE 的长为( )A .3B .4C .154D .165【例9】如图,四边形ABCD 是圆的内接四边形,AB 、DC 的延长线交于点P ,若C 是PD 的中点,且6PD =,2PB =,那么AB 的长为( )A .9B .7C .3D .92【例10】已知:P 为O 外一点,PQ 切O 于Q ,PAB 、PCD 是O 的割线,且PAC BAD ∠=∠.求证:22PQ PA AC AD -=.【例11】圆幂定理是平面几何中最重要的定理之一,它包含了相交弦定理、切割线定理、割线定理以及它们推论,其中切割线定理的内容是:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.喜欢思考的天天在了解这个定理之后尝试给出证明,下面是他的部分证明过程:已知:如图①,点P为O外一点,切线PA与圆相切于点A,割线PBC与圆相交于点B、C.求证:2=⋅.PA PB PC证明:如图,连接AB、AC、BO、AO,PA切O于点A,∠+∠=︒.PAB BAO∴⊥,即90PA AO⋯阅读以上材料,完成下列问题:(1)请帮助天天补充完成以上证明过程;(2)如图②,割线PDE与圆交于点D、E,且4PE=,求DE的长.==,7PB BC挑战训练【挑战训练1】如图,已知:PA切O于A,若AC为O的直径,PBC为O的割线,E 为弦AB的中点,PE的延长线交AC于F,且45FPB∠=︒,点F到PC的距离为5,则FC 的长为()。

解析几何的圆幂定理

解析几何的圆幂定理

解析几何的圆幂定理
圆幂定理是解析几何中的重要定理,它描述了一个点到圆的切
线两个交点处的线段长度之积等于这个点到圆心的距离的平方。


体来说,设有一个圆C,圆心为O,半径为r,点P在圆外,作点P
到圆C的切线,切点分别为A和B,则有PA PB = PO^2 r^2。

这个定理可以从几何和代数两个角度来解释。

从几何角度来看,圆幂定理可以被解释为点到圆的切线的长度关系。

当点P在圆外时,PA和PB分别是点P到两个切点的距离,而PO是点P到圆心的距离,r是圆的半径。

根据圆的性质,PA PB的值等于PO^2 r^2。

从代数角度来看,圆幂定理可以被解释为代数方程式的关系。

设圆的方程为(x-a)^2 + (y-b)^2 = r^2,其中(a, b)为圆心坐标,
r为半径,点P的坐标为(x, y),则根据勾股定理可得到PO^2 =
(x-a)^2 + (y-b)^2。

另外,点P到切点A的距离可以表示为PA = sqrt((x1-x)^2 + (y1-y)^2),同理PB也可以表示为sqrt((x2-
x)^2 + (y2-y)^2),其中(x1, y1)和(x2, y2)分别为切点A和B的
坐标。

将PA和PB代入PA PB = PO^2 r^2的公式中,经过化简可
以得到圆幂定理的代数形式。

总之,圆幂定理是解析几何中的重要定理,它可以从几何和代数两个角度进行解释,对于圆的性质和相关问题的解决具有重要的意义。

2024中考数学知识点圆的基础性质公式定理

2024中考数学知识点圆的基础性质公式定理

2024中考数学知识点圆的基础性质公式定理中考数学中圆的基础性质公式定理有以下几个:
一、圆周公式
圆的圆周C=2πr,其中C为圆的圆周长,r为圆的半径。

二、圆的面积公式
圆的面积S=πr2,其中S为圆的面积,r为圆的半径。

三、圆心角公式
圆心角的大小θ等于弧长除以半径:θ=l/r,其中θ为圆心角的大小,圆周长l,半径r。

四、圆切线与圆弦关系
三次角关系:若圆的两条切线和圆弧相切,则圆心角的三个角相等:θA=θB=θC,其中θA,θB,θC分别为圆心角的三个角的大小。

五、圆周弦关系
三次角关系:若圆的两条切线和圆弧相切,则两条切线上有等于圆弧的三次夹角:θA=θB=θC,其中θA,θB,θC分别为圆弧上三次夹角的大小。

六、圆的外接四边形关系
若四边形是圆的外接四边形,则四边形的对角线等于圆的直径:DA=DB=2r,其中DA,DB为四边形的两条对角线,r为圆的半径。

七、半径交点概念
若平面上有两条圆,以及它们的公共外接四边形,它们上的所有的交点都是半径交点,即两圆从它们公共外接四边形的对角线交点开始,向外射线,直到相交,所有相交的点都是它们的半径交点。

八、圆内接四边形关系
若四边形是圆的内接四边形,则四边形的对角线等于圆的直径:DA=DB=2r。

中考技巧圆幂定理 、共高定理、共角定理、共边定理

中考技巧圆幂定理 、共高定理、共角定理、共边定理

中考技巧圆幂定理、共高定理、共角定理、共边定理圆幂定理是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一,例如如果交点为P的两条相交直线与圆O相交于A、B与C、D,则PA·PB=PC·PD。

圆幂定理是一个总结性的定理。

根据两条与圆有相交关系的线的位置不同,有以下定理:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

则有AE·CE=BE·DE。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

则有PA²=PC·PD。

割线定理:从圆外一点P引两条割线与圆分别交于A、B、C、D,则有PA·PB=PC·PD。

从上述定理可以看出,两条线的位置从内到外,都有着相似的结论。

经过总结和归纳,便得出了圆幂定理。

点对圆的幂定义:P点对圆O的幂定义为OP²—R²。

性质:点P对圆O的幂的值,和点P与圆O的位置关系有下述关系:点P在圆O内→P对圆O的幂为负数;点P在圆O外→P对圆O的幂为正数;点P在圆O上→P对圆O的幂为0。

注意:以上关系除正向应用通过点和圆的位置关系判断点对的圆的幂的符号,还可以逆向应用,通过点对圆的幂的符号反推点和圆的位置关系。

在某些书中,点P对圆O的幂表示为 |OP²—R²|。

共高定理如图1,延长△PAM的边AM至点B,得△PBM,根据面积公式可以证明以下定理.图1共高定理:若M在直线AB上,P为直线AB外一点,则有S△PAM:S△PBM=AM:BM.证明:如图1,因为S△PAM=1/2AM·PM,S△PAM=1/2BM·PM,所以S△PAM:S△PBM=AM:BM.【举一反三】如图2,点P在△ABC的边BC上,且∠BAP=∠CAP,试用共高定理推出PB:PC=AB:AC.图2共角定理中考数学压轴题昨天共角定理若两个三角形有一组对应角相等或互补,则它们的面积比等于对应两边乘积的比。

中考关于圆的知识点有哪些

中考关于圆的知识点有哪些

中考关于圆的知识点有哪些数学以一门学科的面目出现,往往让同学们感到非常高大上,有些知识点又很难懂。

但其实,数学与每个人、与我们的生活是息息相关的。

下面是小编给大家带来的中考关于圆的知识点,欢迎大家阅读参考,我们一起来看看吧!数学中考知识点总结圆知识点:一、圆1、圆的有关性质在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫圆,固定的端点O叫圆心,线段OA 叫半径。

由圆的意义可知:圆上各点到定点(圆心O)的距离等于定长的点都在圆上。

就是说:圆是到定点的距离等于定长的点的集合,圆的内部可以看作是到圆。

心的距离小于半径的点的集合。

圆的外部可以看作是到圆心的距离大于半径的点的集合。

连结圆上任意两点的线段叫做弦,经过圆心的弦叫直径。

圆上任意两点间的部分叫圆弧,简称弧。

圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫半圆,大于半圆的弧叫优弧;小于半圆的弧叫劣弧。

由弦及其所对的弧组成的圆形叫弓形。

圆心相同,半径不相等的两个圆叫同心圆。

能够重合的两个圆叫等圆。

同圆或等圆的半径相等。

在同圆或等圆中,能够互相重合的弧叫等弧。

二、过三点的圆l、过三点的圆过三点的圆的作法:利用中垂线找圆心定理:不在同一直线上的三个点确定一个圆。

经过三角形各顶点的圆叫三角形的外接圆,外接圆的圆心叫外心,这个三角形叫圆的内接三角形。

2、反证法反证法的三个步骤:①假设命题的结论不成立;②从这个假设出发,经过推理论证,得出矛盾;③由矛盾得出假设不正确,从而肯定命题的结论正确。

例如:求证三角形中最多只有一个角是钝角。

证明:设有两个以上是钝角则两个钝角之和>180°与三角形内角和等于180°矛盾。

不可能有二个以上是钝角。

即最多只能有一个是钝角。

三、垂直于弦的直径圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。

推理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对两条弧。

模型26 圆幂定理(原卷版)-中考数学解题大招复习讲义

模型26 圆幂定理(原卷版)-中考数学解题大招复习讲义

1.弦切角定理(1)弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角叫做弦切角.(2)弦切角定理:弦切角的度数等于它所夹的弧的圆心角的度数的一半.如图所示,直线PT切圆O于点C,BC、AC为圆O的弦,则有∠PCA=∠PBC(∠PCA为弦切角).2、相交弦定理【结论1】如图,⊙O中,弦AB、CD相交于点P,半径为r,则①AP·BP=CP·DP,②AP·BP=CP·DP=r2-OP2.3、切割线定理【结论2】如图,PBC是⊙O的一条割线,PA是⊙O的一条切线,切点为A,半径为r,则①PA2=PB·PC,②PA2=PB·PC=PO2-r24、割线定理【结论3】如图,PAB、PCD是⊙O的两条割线,半径为r,则①PA·PB=PC·PD②PA·PB=PC·PD=OP2-r2☑口诀:从两线交点处引出的共线线段的乘积相等例题精讲考点一:相交弦定理【例1】.已知:如图弦AB经过⊙O的半径OC的中点P,且AP=2,PB=3,则是⊙O的半径等于()A.B.C.D.变式训练【变式1-1】.如图,⊙O的弦AB、CD相交于点E,若CE:BE=2:3,则AE:DE=.【变式1-2】.如图,在⊙O的内接四边形ABCD中,AC⊥BD,CA=CB,过点A作AC的垂线交CD的延长线于点E,连结BE.若cos∠ACB=,则的值为.考点二:弦切角定理【例2】.如图,割线PAB过圆心O,PD切⊙O于D,C是上一点,∠PDA=20°,则∠C的度数是度.变式训练【变式2-1】.如图,已知∠P=45°,角的一边与⊙O相切于A点,另一边交⊙O于B、C两点,⊙O的半径为,AC=,则AB的长度为()A.B.6C.D.5【变式2-2】.如图,BP是⊙O的切线,弦DC与过切点的直径AB交于点E,DC的延长线和切线交于点P,连接AD,BC.若DE=DA=,BC=2,则线段CP的长为.考点三:切割线定理【例3】.如图,直线PA过半圆的圆心O,交半圆于A,B两点,PC切半圆与点C,已知PC=3,PB=1,则该半圆的半径为.变式训练【变式3-1】.如图,Rt△ABC中,∠C=90°,O为AB上一点,以O为圆心,OA为半径作圆O与BC相切于点D,分别交AC、AB于E、F,若CD=2CE=4,则⊙O的直径为()A.10B.C.5D.12【变式3-2】.如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE•CA,分别延长AB,DC相交于点P,PB=BO,CD=2.则BO的长是.【变式3-3】.如图,在Rt△ABC中,∠C=90°,BE平分∠ABC交AC于点E,点D在AB上,DE⊥EB.(1)求证:AC是△BDE的外接圆的切线;(2)若,求BD的长.考点四:割线定理【例4】.如图,过点P作⊙O的两条割线分别交⊙O于点A、B和点C、D,已知PA=3,AB=PC=2,则PD的长是()A.3B.7.5C.5D.5.5变式训练【变式4-1】.如图,P是圆O外的一点,点B、D在圆上,PB、PD分别交圆O于点A、C,如果AP=4,AB=2,PC=CD,那么PD=.【变式4-2】.已知直角梯形ABCD的四条边长分别为AB=2,BC=CD=10,AD=6,过B、D两点作圆,与BA的延长线交于点E,与CB的延长线交于点F,则BE﹣BF的值为.1.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,CM切⊙O于点C,∠BCM=60°,则∠B的正切值是()A.B.C.D.2.如图,从圆外一点P引圆的切线PA,点A为切点,割线PDB交⊙O于点D、B.已知PA=12,PD=8,则S△ABP:S△DAP=.3.如图,在△ABC中,AB=AC,∠C=72°,⊙O过AB两点且与BC切于B,与AC交于D,连接BD,若BC=﹣1,则AC=.4.如图,⊙O的直径AB=8,将弧BC沿弦BC折叠后与∠ABC的角平分线相切,则△ABC 的面积为.5.如图,⊙O是△ABC的外接圆,∠BAC=45°,AD⊥BC于点D,延长AD交⊙O于点E,若BD=4,CD=1,则DE的长是.6.如图,已知AC=AB,AD=5,DB=4,∠A=2∠E.则CD•DE=.7.如图:BE切⊙O于点B,CE交⊙O于C,D两点,且交直径于AB于点P,OH⊥CD于H,OH=5,连接BC、OD,且BC=BE,∠C=40°,劣弧BD的长是.8.如图,在平面直角坐标系中,⊙O经过点A(4,3),点B与点C在y轴上,点B与原点O重合,且AB=AC,AC与⊙O交于点D,延长AO与⊙O交于点E,连接CE、DE 与x轴分别交于点G、F,则tan∠DFO=,tan∠A=.9.如图,在△ABC中,AB=AC,⊙O是△ABC的外接圆,CD是⊙O的切线,C为切点,且CD=CB,连接AD,与⊙O交于点E.(1)求证AD=AB;(2)若AE=5,BC=6,求⊙O的半径.10.如图,△ABC是⊙O的内接三角形,CD是⊙O的直径,AB⊥CD于点E,过点A作⊙O 的切线交CD的延长线于点F,连接FB.(1)求证:FB是⊙O的切线.(2)若AC=4,tan∠ACD=,求⊙O的半径.11.如图,正方形ABCD内接于⊙O,点E为AB的中点,连接CE交BD于点F,延长CE 交⊙O于点G,连接BG.(1)求证:FB2=FE•FG;(2)若AB=6,求FB和EG的长.12.如图,⊙O的割线PBA交⊙O于A、B,PE切⊙O于E,∠APE的平分线和AE、BE 分别交于C、D,PE=4,PB=4,∠AEB=60°.(1)求证:△PDE∽△PCA;(2)试求以PA、PB的长为根的一元二次方程;(3)求⊙O的面积.(答案保留π)13.如图,圆O上有A,B,C三点,AC是直径,点D是的中点,连接CD交AB于点E,点F在AB延长线上,且FC=FE.(1)求证:CF是圆O的切线;(2)若,BE=2,求圆O的半径和DE•EC的值.14.如图,AB为⊙O的直径,点P在AB的延长线上,点C在⊙O上,且PC2=PB•PA.(1)求证:PC是⊙O的切线;(2)已知PC=20,PB=10,点D是的中点,DE⊥AC,垂足为E,DE交AB于点F,求EF的长.15.已知:如图,PF是⊙O的切线,PE=PF,A是⊙O上一点,直线AE、AP分别交⊙O于B、D,直线DE交⊙O于C,连接BC,(1)求证:PE∥BC;(2)将PE绕点P顺时针旋转,使点E移到圆内,并在⊙O上另选一点A,如图2.其他条件不变,在图2中画出完整的图形.此时PE与BC是否仍然平行?证明你的结论.16.已知△ABC是⊙O的内接三角形,∠BAC的平分线与⊙O相交于点D,连接DB.(1)如图①,设∠ABC的平分线与AD相交于点I,求证:BD=DI;(2)如图②,过点D作直线DE∥BC,求证:DE是⊙O的切线;(3)如图③,设弦BD,AC延长后交⊙O外一点F,过F作AD的平行线交BC的延长线于点G,过G作⊙O的切线GH(切点为H),求证:FG=HG.17.【提出问题】小聪同学类比所学的“圆心角“与“圆周角”的概念,将顶点在圆内(顶点不在圆心)的角命名为圆内角.如图1中,∠AEC,∠BED就是圆内角,所对的分别是、,那么圆内角的度数与所对弧的度数之间有什么关系呢?【解决问题】小聪想到了将圆内角转化为学过的两种角,即圆周角、圆心角,再进一步解决问题:解:连接BC,OA,OC,OB,OD.如图2,在△BCE中,∠AEC=∠EBC+∠ECB∵∠EBC=∠AOC,∠ECB=∠BOD∴∠AEC=∠AOC+∠BOD=(∠AOC+∠BOD)即:∠AEC的度数=(的度数+的度数)(1)如图1,在⊙O中,弦AB、CD相交于点E,若弧的度数是65°,弧的度数是40°,则∠AED的度数是.【类比探究】顶点在圆外且两边与圆相交的角,命名为圆外角.(2)如图3,在⊙O中,弦AB,CD的延长线相交于点E,试探索圆外角∠E的度数与它所夹的两段弧、的度数之间的关系.【灵活运用】(3)如图4,平面直角坐标系内,点A(,1)在⊙O上,⊙O与y轴正半轴交于点B,点C,点D是线段OB上的两个动点,满足AC=AD.AC,AD的延长线分别交⊙O 于点E、F.延长FE交y轴于点G,试探究∠FGO的度数是否变化.若不变,请求出它的度数;若变化,请说明理由.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考技巧圆幂定理、共高定理、共角定理、共边定理
圆幂定理是平面几何中的一个定理,是相交弦定理、切割线定理及割线定理(切割线定理推论)的统一,例如如果交点为P的两条相交直线与圆O相交于A、B与C、D,则PA·PB=PC·PD。

圆幂定理是一个总结性的定理。

根据两条与圆有相交关系的线的位置不同,有以下定理:
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。

则有AE·CE=BE·DE。

切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。

则有PA²=PC·PD。

割线定理:从圆外一点P引两条割线与圆分别交于A、B、C、D,则有PA·PB=PC·PD。

从上述定理可以看出,两条线的位置从内到外,都有着相似的结论。

经过总结和归纳,便得出了圆幂定理。

点对圆的幂
定义:P点对圆O的幂定义为OP²—R²。

性质:
点P对圆O的幂的值,和点P与圆O的位置关系有下述关系:
点P在圆O内→P对圆O的幂为负数;
点P在圆O外→P对圆O的幂为正数;
点P在圆O上→P对圆O的幂为0。

注意:以上关系除正向应用通过点和圆的位置关系判断点对的圆的幂的符号,还可以逆向应用,通过点对圆的幂的符号反推点和圆的位置关系。

在某些书中,点P对圆O的幂表示为 |OP²—R²|。

共高定理
如图1,延长△PAM的边AM至点B,得△PBM,根据面积公式可以证明以下定理.
图1
共高定理:
若M在直线AB上,P为直线AB外一点,
则有S△PAM:S△PBM=AM:BM.
证明:如图1,
因为S△PAM=1/2AM·PM,S△PAM=1/2BM·PM,
所以S△PAM:S△PBM=AM:BM.
【举一反三】
如图2,点P在△ABC的边BC上,且∠BAP=∠CAP,试用共高定理推出PB:PC=AB:AC.
图2
共角定理
中考数学压轴题
昨天
共角定理
若两个三角形有一组对应角相等或互补,则它们的面积比等于对应两边乘积的比。

命题:若两三角形有一组对应角相等或互补,则它们的面积比等于对应两边乘积的比。

已知:若△ABC和△ADE中,∠BAC=∠EAD ,
求证:S△ABC÷S△AED=
证明:
法一:
由三角形面积公式S=×a×b×sinC可推导出
S△ABC=1/2×AB×AC×sinA
S△ADE=1/2×AD×AE×sinA
∴S△ABC:S△ADE=AB×AC:AD×AE
证毕。

法二:
看到面积可作垂直做铺垫。

如图,
分别过B、D点作AC垂线DF、BG交AC于点F、G。

则DF∥BG。

∴∠ADF=∠ABG
∵S△ABC:S△ADE=AC×BG:AE×DF
∠ADF=∠ABG
∴AD:DF=AB:BG
∴AD:AB=DF:BG
∴S△ABC:S△ADE=AB×AC:AD×AE。

共边定理
百度中考数学压轴题昨天
有一条公共边的三角形叫做共边三角形。

几何课本里有相似三角形、全等三角形,但没有共边三角形。

其实,共边三角形在几何图形中出现的频率更多。

比如,平面上随意取四个点A、B、C、D,这其中一般没有相似三角形,也没有全等三角形,但却有许多共边三角形。

由此,我们说一下共边定理。

共边定理:设直线AB与PQ交于点M,则S△PAB/S△QAB=PM/QM
证明:分如下四种情况,分别作三角形高,由相似三角形可证
S△PAB=(S△PAM-S△PMB)
=(S△PAM/S△PMB-1)×S△PMB
=(AM/BM-1)×S△PMB(等高底共线,面积比=底长比)
同理,S△QAB=(AM/BM-1)×S△QMB
所以,S△PAB/S△QAB=S△PMB/S△QMB=PM/QM(等高底共线,面积比=底长比)
定理得证!。

相关文档
最新文档