圆幂定理
圆定理证明

圆幂定理定义圆幂=PO^2-R^2 (该结论为欧拉公式)所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P 引两条割线与圆分别交于A、B;C、D, 则有PA ·PB=PC ·PD。
统一归纳:过任意不在圆上的一点P 引两条直线L1、L2,L1 与圆交于A、B(可重合,即切线),L2 与圆交于C、D(可重合),则有PA ·PB=PC ·PD。
相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)相交弦说明几何语言:若弦AB 、CD 交于点P则PA ·PB=PC ·PD (相交弦定理)推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的例中项几何语言:若AB 是直径,CD 垂直AB 于点P, 则PC^2=PA ·PB (相交弦定理推论)相交弦定理CADPo°B⊙O中,AB、CD 为弦,交于PPA ·PB=PC·PD连结AC、BD,证:△APC△DPB切割线定理定义从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
是圆幂定理的一种。
几何语言:∵PT 切⊙O于点T,PBA 是⊙O的割线∴PT 的平方=PA ·PB (切割线定理)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,P BA,PDC 是⊙O的割线∴PD·PC=PA ·PB (切割线定理推论)(割线定理)由上可知:PTA2 (平方)=PA ·PB=PC ·PD证明切割线定理证明:设ABP 是⊙O的一条割线,PT 是⊙O的一条切线,切点为T, 则PT^2=PA ·PB证明:连接AT,BT∵∠PTB=∠PAT (弦切角定理)∠P=∠P(公共角)∴△PBTO△PTA (两角对应相等,两三角形相似)则PB:PT=PT:AP即:PT^2=PB ·PA割线定理定义从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
圆幂定理

圆中的比例线段根轴相交弦定理圆内的两条相交弦被交点分成的两条线段的积相等.切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项割线定理从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.上述三个定理统称为圆幂定理,它们的发现距今已有两千多年的历史,它们有下面的同一形式:圆幂定理过一定点作两条直线与圆相交,则定点到每条直线与圆的交点的两条线段的积相等,即它们的积为定值.这里切线可以看作割线的特殊情形,切点看作是两个重合的交点.若定点到圆心的距离为d,圆半径为r,则这个定值为|d2-r2|.当定点在圆内时,d2-r2<0,|d2-r2|等于过定点的最小弦的一半的平方;当定点在圆上时,d2-r2=0;当定点在圆外时,d2-r2>0,d2-r2等于从定点向圆所引切线长的平方.特别地,我们把d2-r2称为定点对于圆的幂.一般地我们有如下结论:到两圆等幂的点的轨迹是与此二圆的连心线垂直的一条直线;如果此二圆相交,那么该轨迹是此二圆的公共弦所在直线.这条直线称为两圆的“根轴”.对于根轴我们有如下结论:三个圆两两的根轴如果不互相平行,那么它们交于一点,这一点称为三圆的“根心”.三个圆的根心对于三个圆等幂.当三个圆两两相交时,三条公共弦(就是两两的根轴)所在直线交于一点.练习:1.如图,四边形ABCD是圆O的内接四边形,延长AB和DC相交于点P.若PB=1,PD=3,则BCAD的值为________.2.如图,四边形ABCD内接于⊙O,BC是直径,MN与⊙O相切,切点为A,∠MAB=35°,则∠D=________.3.如图,AB是⊙O的直径,D是⊙O上一点,E为BD的中点,⊙O 的弦AD与BE的延长线相交于点C,若AB=18,BC=12,则AD=_____4.如图,过点D作圆的切线切于B点,作割线交圆于A,C两点,其中BD=3,AD=4,AB=2,则BC=________.5如图,半径为2的⊙O 中,∠AOB =90°,D 为OB 的中点,AD 的延长线交⊙O 于点E ,则线段DE 的长为________.6.如图所示,P A 为⊙O 的切线,A 为切点,PBC 是过点O 的割线,P A =10,PB =5,∠BAC 的平分线与BC 和⊙O 分别交于点D 和E ,则AD ·AE 的值为__________.例1. 在ΔABC 中,已知CM 是∠ACB 的平分线,ΔAMC 的外接圆交BC于N ,若AC =12AB ,求证:BN =2AM .例2 ⊙O 与⊙O '外切于点P ,一条外公切线分别切两圆于点A 、B ,AC 为⊙O 的直径,从C 引⊙O '的切线CT ,切点为T .求证:CT =AB .例3. AD 是Rt △ABC 斜边BC 上的高,∠B 的平分线交AD于M ,交AC 于N .求证:AB 2-AN 2=BM ·BN .O AB C M N AP O'O B C T E A N C D BF M 1 2 3 4 5例4. 已知AB 切⊙O 于B ,M 为AB 的中点,过M 作⊙O 的割线MD 交⊙O 于C 、D 两点,连AC 并延长交⊙O 于E ,连AD 交⊙O 于F .求证:EF ∥AB .例5.(I )已知四边形PQRS 是圆内接四边形,∠PSR =90°,过点Q 作PR 、PS 的垂线,垂足分别为点H 、K .(1)求证:Q 、H 、K 、P 四点共圆;(2)求证:QT =TS .(II )如图所示,AB 是⊙O 的直径,G 为AB 延长线上的一点,GCD 是⊙O 的割线,过点G 作AB 的垂线,交AC 的延长线于点E ,交AD 的延长线于点F ,过G 作⊙O 的切线,切点为H .求证:(1)C ,D ,F ,E 四点共圆;(2)GH 2=CE ·GF .例6. 如图,ABCD 是⊙O 的内接四边形,延长AB 和DC 相交于E ,延长AB 和DC 相交于E ,延长AD 和BC 相交于F ,EP 和FQ 分别切⊙O 于P 、Q .求证:EP 2+FQ 2=EF 2.O E F D A B C M A O QP C B G FE D例7. 如图所示,P A 、PB 是⊙O 的两条切线,PEC 是⊙O 的一条割线,D 是AB 与PC 的交点,若PE =2,CD =1,求DE 的长.例8.以O 为圆心的圆通过⊿ABC 的两个顶点A 、C ,且与AB 、BC 两边分别相交于K 、N 两点,⊿ABC 和⊿KBN 的两外接圆交于B 、M 两点.证明:∠OMB 为直角.例9 AB 是⊙O 的弦,M 是其中点,弦CD 、EF 经过点M ,CF 、DE 交AB 于P 、Q ,求证:MP =QM .P AA B D E FM 1 2 3 4 O P Q1.13 2.125° 3.14 4.325.355 6.(1)利用∠PHQ=∠PKQ=90°;(2)先证∠HKS=∠QSP,TS=TK,再证TS=QT.证明(1)∵∠PHQ=∠PKQ=90°,∴Q、H、K、P四点共圆.(2)∵Q、H、K、P四点共圆,∴∠HKS=∠HQP,①∵∠PSR=90°,∴PR为圆的直径,∴∠PQR=90°,∠QRH=∠HQP,②而∠QSP=∠QRH,③由①②③得,∠QSP=∠HKS,TS=TK,又∠SKQ=90°,∵∠SQK=∠TKQ,∴QT=TK,∴QT=TS. (2)证明(1)如图,连接BC.∵AB是⊙O的直径,∴∠ACB=90°.∵AG⊥FG,∴∠AGE=90°.又∠EAG=∠BAC,∴∠ABC=∠AEG.又∠FDC=∠ABC,∴∠FDC=∠AEG.∴∠FDC+∠CEF=180°.∴C,D,F,E四点共圆.(2)∵GH为⊙O的切线,GCD为割线,∴GH2=GC·GD.由C,D,F,E四点共圆,得∠GCE=∠AFE,∠GEC=∠GDF.∴△GCE∽△GFD.∴GCGF=GEGD,即GC·GD=GE·GF.∴CH2=GE·GF.。
圆幂定理

圆幂定理廖述美 知识要点相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等. 即若弦AB 、CD 交于点P ,则PA·PB=PC·PD . 切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段的比例中项.即若PT 切⊙O 于点T ,PAB 是⊙O 的割线,则PT2=PA·PB割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.即若割线AB 、CD 与⊙O 分别交于A 、B 、C 、D ,则PA·PB=PC·PD .圆幂定理:相交弦定理、切割线定理、割线定理统称圆幂定理. 经典例题例1. 如图,⊙O 和⊙O ′都经过点A 和B ,PQ 切⊙O 于P ,交⊙O ′于Q ,M ,交AB的延长线于N.求证:2PN NM NQ =∙例2.如图,两个以O 为圆心的同心圆,AB 切大圆于B ,AC 切小圆于C ,交大圆于D ,E ,AB =12,AO =20,AD =8, 求两圆的半径.例3.如图,在以O为圆心的两个同心圆中,A,B是大圆上任意两点,过A,B作小圆的割线AXY和BPQ.求证:AX·AY=BP·BQ破题分析相交弦定理练习1:如图,圆中两条弦AB,CD相交于圆内一点P,已知PA=PB=4,PC=14PD,求CD的长。
切割线定理2:两圆相交于A,B两点,P为两圆公共弦AB上任一点,从P引两圆的切线PC,PD,求证PC=PD3:E 是圆内两弦AB 和CD 的交点,直线EF//CB,交AD 的延长线于F,切圆于G 求证(1) EFA DFE (2)EF=FG基础题1.如图1,AB 是⊙O 的直径,C ,D 是半圆的三等分点,则∠C +∠E +∠D =( )A .135°B .110°C .145°D .120° 2.如图2,以等腰三角形的腰为直径作圆,交底边于D ,连结AD ,那么( )A .∠BAD +∠CAD =90°B .∠BAD >∠CADC .∠BAD =∠CADD .∠BAD <∠CAD3、如图3,PAB 、PC 分别是圆O 的割线和切线(C 为切点),若3PA AB ==,则PC 的长为A .62B .6C .32D .3(如图1) (如图2) (如图3)ABC OP4、 如图4,已知⊙O 的直径5AB =,C 为圆周上一点,4=BC ,过点C 作⊙O 的切线l ,过点A 作l 的垂线AD ,垂足为D ,则CD =___________.5、如图5,已知PA 是圆O 的切线,切点为A ,PO 交圆O 于,B C 两点,3,1PA PB ==, 则圆O 的半径为 ,C ∠=6、如图6,PC 切O 于点C ,割线PAB 经过圆心O ,弦C D A B ⊥于点E ,已知O 的半径为3,2PA =,则PC =_________,OE =_________.(如图4) (如图5) (如图6)7.如图7,AB 是⊙O 的直径,CB 切⊙O 与B ,CD 切⊙O 与D ,交BA 的延长线于E .若AB =3,ED =2,则BC 的长为______.8. 如图8,AB 是O ⊙的直径,弦CD AB ⊥,垂足为E ,P 是BA 延长线上的点,连结PC交O ⊙于F ,如果713P F F C ==,,且::2:4:P A A E E B =,那么CD 的长是 .9. 如图9,BC 是半圆O ⊙的直径,EF BC ⊥于点F ,5BFFC=.已知点A 在CE 的延长线上,AB 与半圆交于D ,且82AB AE ==,,则AD 的长为_____________.O F EDCBAPABCDEFO(如图7) (如图8) (如图9)AB PCO ·PCBA D EO lOAD CB10.如图,在梯形ABCD中,AB∥CD,⊙O为内切圆,E为切点,(Ⅰ)求∠AOD的度数;(Ⅱ)若AO=8 cm,DO=6 cm,求OE的长.11.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.12.如图,AB 是⊙O 的直径,CD 是⊙O 的一条弦,且CD ⊥AB 于E ,连结AC 、OC 、BC .(1)求证:∠ACO =∠BCD ;(2)若BE =2,CD =8,求AB 和AC 的长.提高题1、如图1:PA 切O 于点A ,4PA =,PBC 过圆心O ,且与圆相交于B 、C 两点,:1:2AB AC =,则O 的半径为 .2、如图2,在圆内接四边形ABCD 中, 对角线, AC BD 相交于点E .已知23BC CD ==,2AE EC =,30CBD ∠=,则CAB ∠= ,AC 的长是 .3、如图3,过⊙O 外一点A 作一条直线与⊙O 交于C ,D 两点,AB 切⊙O 于B ,弦MN 过CD 的中点P .已知AC =4,AB =6,则MP ·NP = .(如图1) (如图2) (如图3)C D M NOBAP BCOAP4、如图,在半径为4的⊙O中,AB、CD是两条直径,M为OB的中点,CM的延长线交⊙O于点E,且EM>MC.连接DE,DE=15,求EM的长.5.如图所示,⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O2于点D、E,DE与AC相交于点P.(1)求证:AD∥EC;(2)若AD是⊙O2的切线,且PA=6,PC=2,BD=9,求AD的长.挑战极限1.如图,⊙A与⊙B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,⊙B的半径为R,则⋂DE的长度是()(题目进行过改编)A.()9090Rx-πB.()9090Ry-πC.()180180Rx-πD.()180180Ry-π2.(2012武汉中考题)在平面直角坐标系中,点A的坐标为(3.0),点B为y轴正半轴上的一点,点C是第一象限内一点,且AC=2.设tan∠BOC=m,则m的取值范围是.考点:切线的性质;坐标与图形性质;勾股定理;锐角三角函数的定义。
圆幂的定理

圆幂的定理
圆幂定理是几何学中的一条定理,它描述了一个点与一个圆之间的关系。
具体来说,圆幂定理说明了如果有一条直线通过一个点P,与一个圆相交于点M和点N,那么这个点P到圆的两个切线段PM和PN的长度的乘积等于点P到圆心O的距离的平方减去圆的半径的平方,即可以表示为PM * PN = PO^2 - r^2。
圆幂定理可以推广到两个圆相交的情况下,即如果有两个圆分别为圆A和圆B,并且它们相交于点M和点N,那么点M和点N到这两个圆心的线段的乘积等于这两个圆心到点M和点N的距离的乘积,即可以表示为MA * MB = NA * NB。
这个式子即为圆A关于圆B的圆幂定理。
圆幂定理有许多应用,其中一个重要的应用是求解圆的切线长度。
通过圆幂定理,可以求解出切线与切点之间的关系,进而解决与圆切线相关的几何问题。
圆幂定理

中小学1对1课外辅导专家武汉龙文教育学科辅导讲义 圆幂定理圆幂定理:过一定点P 向⊙O 作任一直线,交⊙O 于两点,则自定点P 到两交点的两条线段之积为常数||(R 为圆半径),因为叫做点对于⊙O 的幂,所以将下述定理统称为圆幂定理。
定理 图形 已知 结论 证法 相交弦定理⊙O 中,AB 、CD 为弦,交于P. PA·PB=PC·PD 连结AC 、BD ,证:△APC∽△DPB .相交弦定理的推论⊙O 中,AB 为直径,CD⊥AB 于P.PC 2=PA·PB . 用相交弦定理.切割线定理⊙O 中,PT 切⊙O 于T ,割线PB 交⊙O 于APT 2=PA·PB 连结TA 、TB ,证:△PTB∽△PAT割线定理推论PB 、PD 为⊙O 的两条割线,交⊙O 于A 、C PA·PB=PC·PD 过P 作PT 切⊙O 于T ,用两次切割线定理圆中的相似(1)一、圆中相似三角形的判定1.如图,直线PM 切⊙O 于点M ,直线PO 交⊙O 于A ,B 点,弦AC ∥PM ,连接OM 、BC.求证:(1)△ABC ∽△POM ;(2)2OA 2=OP •BC .CA MB PO中小学1对1课外辅导专家2.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 交AC 与E ,交BC 与D .求证:(1)D 是BC 的中点; (2)△BE C ∽△ADC ; (3)BC 2=2AB ·CE二、利用圆中相似三角形证明圆中的比例线段3.如图,在圆内接四边形ABCD 中,CD 为∠BCA 的外角的平分线,F 为错误!未找到引用源。
上一点,BC=AF ,延长DF 与BA 的延长线交于E . (1)求证:△ABD 为等腰三角形. (2)求证:AC•AF=DF•FE .4如图,BD 为⊙O 的直径,AB =AC ,AD 交B C 于点E ,AE =2,ED =4, (1)求证:△ABE ∽△ADB ; (2)求AB 的长;(3)延长DB 到F ,使得BF =BO ,连接F A ,试判断直线F A 与⊙O 的位置关系,并说明理由.FD OC EB AA C BD EO · 圆中的相似(2)三、利用圆中相似进行计算1.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于 点P ,AC=PC ,∠COB=2∠PCB. (1)求证:PC 是⊙O 的切线; (2)求证: AB =2BC ;(3)点M 是弧AB 的中点,CM 交AB 于点N , 若AB=4,求MN ·MC 的值.2.如图,已知R t △ABC ,∠ABC =90°,以直角边AB 为直径作O ,交斜边AC 于点D ,连结BD . (1)若AD =3,BD =4,求边BC 的长; (2)取BC 的中点E ,连结ED ,试证明ED 与⊙O 相切.四、圆的有关线段与相似三角形的综合运用3.如图,点P 为△ABC 的内心,延长AP 交△ABC 的外接圆于D ,在AC 延长线上有一点E ,满足AD 2=AB ·AE ,求证:DE 是⊙O 的切线.4.如图,AB 是⊙O 的直径,AC 是弦,CD 是⊙O 的切线,C 为切点,AD ⊥CD 于点D . 求证:(1)∠AOC =2∠ACD ;(2)AC 2=AB ·AD .圆中的相似(3)1、如图, Rt ABC △中,90ABC ∠=°,以AB 为直径的O ⊙交AC 于点D ,过点D 的切线交BC 于E .(1)求证:12DE BC =;(2)若,求AD 的长.2.如图,已知ABC △,以BC 为直径,O 为圆心的半圆交AC 于点F ,点E 为 CF的中点,连接BE 交AC 于点M ,AD 为△ABC 的角平分线,且AD BE ⊥,垂足为点H 。
圆幂定理逆定理

圆幂定理逆定理
圆幂定理是一个经典的几何定理,它描述了一个点和圆之间的关系。
具体而言,如果一个点P在圆的外部,则它到圆的两个切点的距离的乘积等于它到圆心的距离的平方减去圆的半径的平方。
如果一个点P在圆的内部,则圆的半径的平方减去它到圆心的距离的平方等于它到圆的两个切点的距离的乘积。
圆幂定理的逆定理是指,如果给定一个点P和两条相交的直线AB和CD,使得AP·BP=CP·DP,则这个点P在由ABCD组成的圆上。
这个定理的证明可以通过构造圆心角相等来完成。
圆幂定理和它的逆定理在几何证明中经常被使用,它们可以帮助我们解决很多和圆相关的问题。
在学习几何知识的过程中,深入理解这些定理的含义和证明方法是非常重要的。
- 1 -。
圆幂定理

一知识再现1. 圆幂定理一般地,把相交弦定理、切割线定理、割线定理等统称为圆幂定理。
它的基本内容是,在平面上经过;点P的直线与⊙O相交于A、B两点,有向线段PA、PB的乘积PA·PB是一个定值。
如下列图形,经过一定点P作圆的弦或割线或切线,设⊙O半径为R在图(1)中,PA·PB=PC·PD=PE·PF=(R-OP)(R-OP)=R2-OP2在图(2)中,PA·PB=PT2=OP2-OT2==OP2-R2在图(3)中,PA·PB=PC·PD= PT2==OP2-R2可得PA·PB均等于,为一常数,所以叫做点P关于⊙O的幂,所以相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理.2.角平分线定理角平分线的定义:从一个角的顶点引出一条射线,把这个角分成两个相等的角,这条射线叫做这个角的角平分线。
三角形的角平分线定义:三角形顶点到其内角的角平分线交对边的点连的一条线段,叫三角形的角平分线。
【注】三角形的角平分线不是角的平分线,是线段。
角的平分线是射线。
■拓展:三角形的三条角平分线相交于一点,并且这一点到三条边的距离相等!(即内心)。
■定理1:在角平分线上的任意一点到这个角的两边距离相等。
■逆定理:在一个角的内部(包括顶角),且到这个角的两边距离相等的点在这个角的角平分线上。
■定理2:三角形一个角的平分线分对边所成的两条线段与这个角的两邻边对应成比例,如:在△ABC 中,BD 平分∠ABC ,则AD :DC=AB :BC 3.平行线分线段定理定理 三条平行线截两条直线,所得的对应线段成比例.二 例题讲解例1如图4AB 是⊙O 的弦,P 是AB 上一点,AB = 10cm ,P A : PB = 2 : 3,OP = 5cm ,则⊙O 的半径等于 .解析:设⊙O 的半径为R .∵AB = 10cm ,P A : PB = 2 : 3,∴PA = 4 cm ,PB = 6 cm . 由相交弦定理,得P A ·PB = PC ·PD = R 2-OP 2,即4×6 = R 2-52. 所以,R = 7. 故⊙O 的半径等于7 cm . 例2.如图5,已知P AC 为⊙O 的割线,连接PO 交⊙O 于B ,PB = 2,OP = 7,P A= AC ,则P A 的长为( )A .7B .23C .14D .32解析:延长PO 交⊙O 于D .∵PB = 2,OP = 7,∴OB = 5,即PC = 12. 由切割线定理的推论,得 P A ·AC = PB ·PC . ∵P A = AC ,∴2 P A 2 = 2×12. 所以,P A = 23.故应选B .一、“四心”分类讨论1、外心三解形三条垂直平分线的交点叫做三角形的外心,即外接圆圆心。
圆幂定理

圆幂定理是平面几何中的一个定理。
所以圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
圆幂定理是一个总结性的定理,是对相交弦定理、切割线定理及割线定理(切割线定理推论)以及它们推论的统一与归纳。
根据两条与圆有相交关系的线的位置不同,有以下定理:相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
割线定理:从圆外一点P引两条割线与圆分别交于A、B;C、D,则有PA·PB=PC·PD从上述定理可以看出,两条线的位置从内到外,都有着相似的结论。
经过总结和归纳,便得出了圆幂定理。
基本定义定义:一点P对半径R的圆O的幂定义如下:圆幂a=OP²-R²符号:圆内的点的幂为负数,圆外的点的幂为正数,圆上的点的幂为零。
定理内容过任意不在圆上的一点P引两条直线L1、L2,L1与圆交于A、B(可重合,即切线),L2与圆交于C、D(可重合,即切线),则有PA×PB=PC×PD 。
考虑经过P点与圆心O的直线,设PO交⊙O于M、N,R 为圆的半径,则有PA×PB=PC×PD=PM×PN=(OP+R)│OP-R│=│OP²-R²│定理证明图Ⅰ:相交弦定理。
如图,AB、CD为圆O的两条任意弦。
相交于点P,连接AD、BC,由于∠B与∠D同为弧AC 所对的圆周角,因此由圆周角定理知:∠B=∠D,同理∠A=∠C,所以△PAD∽△PCB。
所以有:PA/PC=PD/PB,即:PA×PB=PC×PD 。
图Ⅱ:割线定理。
如图,连接AD、BC。
可知∠B=∠D,又因为∠P为公共角,所以有△PAD∽△PCB,同上证得PA×PB=PC×PD。
图Ⅲ:切割线定理。
如图,连接AC、AD。
∠PAC为切线PA与弦AC组成的弦切角,因此有∠PAC=∠D,又因为∠P为公共角,所以有△PAC∽△PDA ,易证PA²=PC×PD。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆幂定理相交弦定理:圆内的两条相交弦,被交点分成的两条线段长的积相等。
或:经过圆内一点引两条弦,各弦被这点所分成的两段的积相等。
定理圆内的两条相交弦,被交点分成的两条线段长的积相等。
(经过圆内一点引两条弦,各弦被这点所分成的两段的积相等)几何语言:若弦AB、CD交于点P则PA·PB=PC·PD(相交弦定理)概述相交弦定理为圆幂定理之一,其他两条定理为:切割线定理割线定理2证明证明:连结AC,BD由圆周角定理的推论,得∠A=∠D,∠C=∠B。
(圆周角推论2: 同(等)弧所对圆周角相等.)∴△PAC∽△PDB∴PA∶PD=PC∶PB,PA·PB=PC·PD注:其逆定理可作为证明圆的内接四边形的方法. P点若选在圆内任意一点更具一般性。
其逆定理也可用于证明四点共圆。
P 不是圆心3比较相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。
一般用于求线段长度。
4相交弦定理推论定理如果弦与直径垂直相交,那么弦的一半是它所分直径所成的两条线段的比例中项。
说明几何语言:若AB是直径,CD垂直AB于点P,则=PA·PB(相交弦定理推论)切割线定理切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。
是圆幂定理的一种。
切割线定理示意图几何语言:∵PT切⊙O于点T,PBA是⊙O的割线∴PT²=PA·PB(切割线定理)推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等几何语言:∵PT是⊙O切线,PBA,PDC是⊙O的割线∴PD·PC=PA·PB(切割线定理推论)(割线定理)由上可知:PT²=PA·PB=PC·PD2证明切割线定理证明:设ABP是⊙O的一条割线,PT是⊙O的一条切线,切点为T,则PT²=PA·PB证明:连接AT, BT∵∠PTB=∠PAT(弦切角定理 )切割线定理的证明∠APT=∠APT(公共角)∴△PBT∽△PTA(两角对应相等,两三角形相似)则PB:PT=PT:AP即:PT²=PB·PA3比较相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。
一般用于求直线段长度。
割线定理:指的是从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等,1定义文字表达:从圆外一点引圆的两条割线,这一点到每条割线与圆交点的距离的积相等。
数学语言:从圆外一点L引两条割线与圆分别交于A.B.C.D 则有LA·LB=LC·LD=LT^2。
如下图所示。
(LT为切线)割线定理2证明一已知:如图直线ABP和CDP是自点P引的⊙O的两条割线求证:PA·PB=PC·PD证明:连接AD、BC∵∠A和∠C都对弧BD∴由圆周角定理,得∠A=∠C又∵∠P=∠P∴△ADP∽△CBP (A,A)∴A P:CP=DP:BP即AP·BP=CP·DP3证明二既然圆内接四边形定理可以从割线定理而得,那么或许割线定理就可以从圆内接四边形定理而得。
如图所示。
已知:从圆O外一点P引两条圆的割线,一条交圆于A、B,另一条交圆于C、D求证:AP·BP=CP·DP证明连接AC、BD由圆内接四边形定理得∠ABD+∠DCA=∠CAB+∠BDC=180°又∵∠ACP+∠DCA=∠DCP=180°,∠CAP+∠CAB=∠BAP=180°(平角的定义)∴∠ABD=∠ACP,∠BDC=∠CAP(同角的补角相等)∴△ACP∽△DBP(两角对应相等的三角形相似)∴AP/DP=CP/BP(相似三角形对应边成比例)∴AP·BP=CP·DP(比例基本性质)[1]4证明三根据切割线定理求证。
已知:从圆O外一点P引两条圆的割线,一条交圆于A、B,另一条交圆于C、D求证:AP·BP=CP·DP过点P作圆O的切线,记切点为T由切割线定理可知:AP·BP=PT^2,CP·DP=PT^2所以AP·BP=CP·DP5比较相交弦定理、切割线定理及割线定理(切割线定理推论)以及他们的推论统称为圆幂定理。
一般用于求线段长度。
垂径定理垂径定理内容:垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧。
数学表达为:如右图,DC 为圆O的直径,直径DC垂直于弦AB,则AE=EB,劣弧AC等于劣弧BC定义垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。
逆定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧2证明如图,在⊙O中,DC为直径, AB是弦,AB⊥DC于点E,AB、CD交于E,求证:AE=BE,弧AC=弧BC,弧AD= 弧BD垂径定理证明图证明:连OA、OB分别交于点A、点B.∵OA、OB是⊙O的半径∴OA=OB∴△OAB是等腰三角形∵AB⊥DC∴AE=BE,∠AOE=∠BOE(等腰三角形的三线合一性质)∴弧AD=弧BD,∠AOC=∠BOC∴弧AC=弧BC3推论推论一:平分弦(不是直径)的直径垂直于这条弦,并且平分这条弦所对的两段弧推论二:弦的垂直平分线经过圆心,并且平分这条弦所对的弧推论三:平分弦所对的一条弧的直径垂直平分这条弦,并且平分这条弦所对的另一条弧推论四:在同圆或者等圆中,两条平行弦所夹的弧相等(证明时的理论依据就是上面的五条定理)但是在做不需要写证明过程的题目中,可以用下面的方法进行判断:一条直线,在下列5条中只要具备其中任意两条作为条件,就可以推出其他三条结论1.平分弦所对的优弧2.平分弦所对的劣弧(前两条合起来就是:平分弦所对的两条弧)3.平分弦 (不是直径)4.垂直于弦5.经过圆心4有关性质知识点圆、圆的对称性、点和圆的位置关系、不在同一直线上的三点确定一个圆、三角形的外接圆、垂径定理逆定理、圆心角、弧、弦、弦心距之间的关系、圆周角定理、圆内接四边形的性质大纲要求1.正确理解和应用圆的点集定义,掌握点和圆的位置关系;2.熟练地掌握确定一个圆的条件,即圆心、半径;直径;不在同一直线上三点。
一个圆的圆心只确定圆的位置,而半径也只能确定圆的大小,两个条件确定一条直线,三个条件确定一个圆,过三角形的三个顶点的圆存在并且唯一;3.熟练地掌握和灵活应用圆的有关性质:同(等)圆中半径相等、直径相等直径是半径的2倍;直径是最大的弦;圆是轴对称图形,经过圆心的任一条直线都是对称轴;圆是中心对称图形,圆心是对称中心;圆具有旋转不变性;垂径定理及其推论;圆心角、圆周角、弧、弦、弦心距之间的关系;4.掌握和圆有关的角:圆心角、圆周角的定义及其度量;圆心角等于同(等)弧上的圆周角的2倍;同(等)弧上的圆周角相等;直径(半圆)上的圆周角是直角;90°的圆周角所对的弦是直径;5.掌握圆内接四边形的性质定理:它沟通了圆内外图形的关系,并能应用它解决有关问题;6.注意:(1)垂径定理及其推论是指:一条弦在①过圆心②垂直于另一条弦③平分这另一条弦④平分这另一条弦所对的劣弧⑤平分这另一条弦所对的优弧的五个条件中任意具有两个条件,则必具有另外三个结论(当①③为条件时要对另一条弦增加它不是直径的限制),条理性的记忆,不但简化了对它实际代表的10条定理的记忆且便于解题时的灵活应用,垂径定理提供了证明线段相等、角相等、垂直关系等的重要依据;证明等积式、等比式及混合等式等。
此种结论的证明重点考查了相似三角形,切割线定理及其推论,相交弦定理及圆的一些知识。
常见题型以中档解答题为主,也有一些出现在选择题或填空题中。
梅涅劳斯定理梅涅劳斯(Menelaus)定理(简称梅氏定理)是由古希腊数学家梅涅劳斯首先证明的。
它指出:如果一条直线与△ABC的三边AB、BC、CA或其延长线交于F、D、E点,那么(AF/FB)×(BD/DC)×(CE/EA)=1。
或:设X、Y、Z分别在△ABC的BC、CA、AB所在直线上,则X、Y、Z共线的充要条件是(AZ/ZB)*(BX/XC)*(CY/YA)=1 。
1定理的证明首先给出完整的定理内容:当直线交三边所在直线于点时,以及逆定理:在三边所在直线上有三点,且,那么三点共线注意:以上定理严格来说应该用有向线段形式,且乘积为-1;另外,三点中有偶数个点在线段上时,才有梅氏定理,否则为塞瓦定理.证明一过点A作AG∥DF交BC的延长线于点G.则梅涅劳斯定理的证明证毕证明二过点C作CP∥DF交AB于P,则BD:DC=FB:PF,CE:EA=PF:AF两式相乘得(AF:FB)×(BD:DC)×(CE:EA)=(AF:FB)×(FB:PF)×(PF:AF)=1证明三连结CF、AD,根据“两个三角形等高时面积之比等于底边之比”的性质有。
AF:FB =S△ADF:S△BDF…………(1),BD:DC=S△BDF:S△CDF…………(2),CE:EA=S△CDE:S△ADE=S△FEC:S△FEA=(S△CDE+S△FEC):(S△ADE+S△FEA)=S△CDF:S△ADF (3)(1)×(2)×(3)得(AF:FB)×( BD:DC)×(CE:EA)=(S△ADF:S△BDF)×(S△BDF:S△CDF)×(S△CDF:S△ADF)=1证明四过三顶点作直线DEF的垂线AA‘,BB',CC',如图:充分性证明:△ABC中,BC,CA,AB上的分点分别为D,E,F。
连接DF交CA于E',则由充分性可得,(AF/FB)×(BD/DC)×(CE'/E'A)=1又∵(AF/FB)×(BD/DC)×(CE/EA)=1∴有CE/EA=CE'/E'A,两点重合。
所以DEF共线推论在△ABC的三边BC、CA、AB或其延长线上分别取L、M、N三点,又分比是λ=BL/LC、μ=CM/MA、ν=AN/NB。
于是AL、BM、CN三线交于一点的充要条件是λμν=-1。
(注意与塞瓦定理相区分,那里是λμν=1)此外,用[1]该定理可使其容易理解和记忆:第一角元形式的梅涅劳斯定理如图:若E,F,D三点共线,则(sin∠ACF/sin∠FCB)(sin∠BAD/sin∠DAC)(sin∠CBE/sin∠ABE)=1即图中的蓝角正弦值之积等于红角正弦值之积该形式的梅涅劳斯定理也很实用证明:可用面积法推出:第一角元形式的梅氏定理与顶分顶形式的梅氏定理等价。