【最新资料】湖南省娄底市2016年中考数学试卷及答案解析
湖南省娄底市2016年中考数学试题(附解析)

一、选择题(本大题共10小题,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣【答案】A.【解析】试题分析:只有符号不同的两个数互为相反数,由此可得2016的相反数是﹣2016,故答案选A.考点:相反数.2.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q【答案】D.【解析】试题分析:观察数轴可知,点Q到原点的距离最远,所以点Q的绝对值最大.故答案选D.考点:数轴;绝对值.3.下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y2【答案】C.考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.4.下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等【答案】D.答案选D.考点:命题.5.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.【答案】B.【解析】试题分析:选项A,圆锥的主视图是三角形,俯视图是带圆心的圆,本选项错误;选项B,圆柱的主视图是矩形、俯视图是矩形,本选项正确;选项C,球的主视图、俯视图都是圆,本选项错误;选项D,三棱柱的主视图为矩形和俯视图为三角形,本选项错误.故答案选B.考点:几何体的三视图.6.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°【答案】C.【解析】试题分析:根据圆周角定理可得∠B=∠D=40°,∠ACB=90°,所以∠CAB=90°﹣40°=50°.故答案选C.考点:圆周角定理.7.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差【答案】B.【解析】试题分析:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,知道中位数即可.故答案选B.考点:中位数.8.函数y=的自变量x的取值范围是()A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>2【答案】A.【解析】试题分析:由被开方数大于等于0,分母不等于0可得x≥0且x﹣2≠0,即x≥0且x≠2.故答案选A.考点:函数自变量的取值范围.9.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()A.C n H2n+2B.C n H2n C.C n H2n﹣2D.C n H n+3【答案】A.考点:数字规律探究题.10.如图,已知在Rt △ABC 中,∠ABC=90°,点D 沿BC 自B 向C 运动(点D 与点B 、C 不重合),作BE ⊥AD 于E ,CF ⊥AD 于F ,则BE+CF 的值( )A .不变B .增大C .减小D .先变大再变小 【答案】C .考点:锐角三角函数的增减性.二、填空题(本大题共8小题,每小题3分,共24分) 11.已知反比例函数y=xk的图象经过点A (1,﹣2),则k= . 【答案】﹣2. 【解析】试题分析:已知反比例函数y=xk的图象经过点A (1,﹣2),所以k=1×(-2)=-2. 考点:反比例函数图象上点的坐标特征.12.已知某水库容量约为112000立方米,将112000用科学记数法表示为 . 【答案】1.12×105. 【解析】试题分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数且为这个数的整数位数减1,,由于112000亿有6位,所以可以确定n=6﹣1=5.即112000=1.12×105.考点:科学记数法.13.如图,四边形ABCD 为⊙O 的内接四边形,已知∠C=∠D ,则AB 与CD 的位置关系是 .【答案】AB ∥CD . 【解析】试题分析:已知四边形ABCD 为⊙O 的内接四边形,由圆内接四边形的对角互补的性质可得∠A+∠C=180°又因∠C=∠D ,可得∠A+∠D=180°,所以AB ∥CD . 考点:圆内接四边形的对角互补的性质;平行线的判定.14.如图,已知∠A=∠D ,要使△ABC ∽△DEF ,还需添加一个条件,你添加的条件是 .(只需写一个条件,不添加辅助线和字母)【答案】∠B=∠DEF (答案不唯一,符合要求即可) 【解析】试题分析:已知∠A=∠D ,当∠B=∠DEF 时,△ABC ∽△DEF ,因为AB ∥DE 时,∠B=∠DEF ,添加AB ∥DE 时,使△ABC ∽△DEF . 考点:相似三角形的判定.15.将直线y=2x+1向下平移3个单位长度后所得直线的解析式是 . 【答案】y=2x ﹣2.考点:一次函数图象与几何变换.16.从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是 .【答案】54.试题分析:在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,所以取到的图形既是中心对称图形又是轴对称图形的概率为54. 考点:概率公式.17.如图,将△ABC 沿直线DE 折叠,使点C 与点A 重合,已知AB=7,BC=6,则△BCD 的周长为 .【答案】13.考点:翻折变换(折叠问题).18.当a 、b 满足条件a >b >0时,+=1表示焦点在x 轴上的椭圆.若+=1表示焦点在x 轴上的椭圆,则m 的取值范围是 . 【答案】3<m <8. 【解析】试题分析:由题意得,m+2>0,2m-6>0,m+2>2m-6,解得3<m <8,所以m 的取值范围是3<m <8, 考点:阅读理解题.三、解答题(本大题共2小题,每小题6分,满分12分)19.计算:(π﹣)0+|2﹣1|+()﹣1﹣2sin45°.【答案】2. 【解析】试题分析:根据零指数幂、绝对值的性质、负整数指数幂、特殊角的三角函数值依次计算后试题解析:原式==1+2﹣1+2﹣2=2. 考点:实数的运算.20.先化简,再求值:(1﹣)•,其中x 是从1,2,3中选取的一个合适的数.【答案】原式=3-x x,当x=2时,原式=2-.考点:分式的化简求值.四、解答题(本大题共2小题,每小题8分,满分16分)21.在2016CCTV 英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x 取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表: 根据所给信息,解答下列问题:(1)在表中的频数分布表中,m= ,n= .(2)请补全图中的频数分布直方图.(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参数,请估计约有多少人进入决赛?【答案】(1)80,0.20;(2)详见解析;(3)1200.【解析】试题分析:(1)用抽查的总人数乘以成绩在70≤x<80段的人数所占的百分比即可求得m;用成绩在80≤x<90段的频数除以总人数即可求得n;(2)根据(1)求出的m的值,直接补全频数分布直方图即可;(3)用娄底市共有的人数乘以80分以上(包括80分)所占的百分比,即可得出答案.答:估计约有1200人进入决赛.考点:频数(率)分布表;频数(率)分布直方图;用样本估计总体.22.芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.(结果精确到0.1米,≈1.732)【答案】立柱BH的长约为16.3米.【解析】试题分析:设DH=x米,由三角函数得出CH=3x,即可得BH=BC+CH=2+3x,再求得AH=3BH=23+3x,由AH=AD+DH得出方程23+3x=20+x,,解方程求出x,即可得出结果.解得:x=10﹣3,∴BH=2+3(10﹣3)=103﹣1≈16.3(米).答:立柱BH的长约为16.3米.考点:解直角三角形的应用.五、解答题(本大题共2小题,每小题9分,满分18分)23.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的21,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟. (1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【答案】(1)乙骑自行车的速度为300米/分钟;(2)当甲到达学校时,乙同学离学校还有600米. 【解析】试题分析:(1)设乙骑自行车的速度为x 米/分钟,则甲步行速度是21x 米/分钟,公交车的速度是2x 米/分钟,根据“甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟”列方程解方程即可;(2)用(1)的结果乘以2即可.试题解析:解:(1)设乙骑自行车的速度为x 米/分钟,则甲步行速度是21x 米/分钟,公交车的速度是2x 米/分钟,根据题意得230002600300021600-=-+x x x, 解得:x=300,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟; (2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米. 考点:分式方程的应用.24.如图,将等腰△ABC 绕顶点B 逆时针方向旋转α度到△A 1B 1C 1的位置,AB 与A 1C 1相交于点D ,AC 与A 1C 1、BC 1分别交于点E 、F . (1)求证:△BCF ≌△BA 1D .(2)当∠C=α度时,判定四边形A 1BCE 的形状并说明理由.【答案】(1)详见解析;(2)四边形A1BCE是菱形,理由详见解析.∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,在△BCF与△BA1D中,,∴△BCF≌△BA1D;(2)解:四边形A1BCE是菱形,∴A1B=BC,∴四边形A1BCE是菱形.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质.六、解答题(本大题共2小题,每小题10分,满分20分)25.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.【答案】(1)详见解析;(2)(i)CE=65;(ii)详见解析.【解析】试题分析:(1)因为∠ACB=∠DCO=90°,所以∠ACD=∠OCB,又因为点O是Rt△ACB 中斜边AB的中点,所以OC=OB,所以∠OCB=∠B,利用等量代换可知∠ACD=∠B;(2)(i )因为BC 2=AB •BE ,所以△ABC ∽△CBE ,所以∠ACB=∠CEB=90°,因为tan ∠ACD=tan∠B ,利用勾股定理即可求出CE 的值;(ii )过点A 作AF ⊥CD∴∠ACD=∠B ,(2)(i )∵BC 2=AB •BE , ∴ECBE AB BC , ∵∠B=∠B ,∴△ABC ∽△CBE ,∴∠ACB=∠CEB=90°,∵∠ACD=∠B ,∴tan ∠ACD=tan ∠B=43, 设BE=4x ,CE=3x ,由勾股定理可知:BE 2+CE 2=BC 2,∴(4x )2+(3x )2=100, ∴解得x=25,∴CE=65;∴直线CD与⊙A相切.考点:圆的综合题.26.如图,抛物线y=ax2+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0).(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.【答案】(1)y=x 2﹣5x ﹣6;(2)存在,P (2,﹣12);(3)Q 点一共有5个,(25,﹣25).【解析】试题分析:(1)抛物线经过点A (﹣1,0),B (5,﹣6),C (6,0),可利用两点式法设抛物线的解析式为y=a (x+1)(x ﹣6),代入B (5,﹣6)即可求得函数的解析式;(2)作辅助线,将四边形PACB 分成三个图形,两个三角形和一个梯形,设P (m ,m 2﹣5m ﹣6),四边形PACB 的面积为S ,用字母m 表示出四边形PACB、 a=1,∴y=(x+1)(x ﹣6)=x 2﹣5x ﹣6;(2)存在,如图1,分别过P 、B 向x 轴作垂线PM 和BN ,垂足分别为M 、N ,设P (m ,m 2﹣5m ﹣6),四边形PACB 的面积为S ,则PM=﹣m 2+5m+6,AM=m+1,MN=5﹣m ,CN=6﹣5=1,BN=5,∴S=S △AMP +S 梯形PMNB +S △BNC =21(﹣m 2+5m+6)(m+1)+21(6﹣m 2+5m+6)(5﹣m )+21×1×6 =﹣3m 2+12m+36=﹣3(m ﹣2)2+48,当m=2时,S 有最大值为48,这时m 2﹣5m ﹣6=22﹣5×2﹣6=﹣12,∴Q 3(25,﹣25).考点:二次函数综合题.。
娄底中考数学试题-中考 (2).doc

:2016年娄底中考数学试题-中考总结:话题作文与学期梳理课程特色:以写作问题为纲,以解决中高考语文写作问题和讲授踩分词为主,每节课仍会讲解2—3篇阅读题,作为对应练习和提高。
学习时,要求学生熟记理解每一讲的”地图内容”,以便考试时融会运用。
适合学员想扎实写作基础,稳固提高作文水平的初中生赠送《中学语文知识地图—中学必考文学常识一本通》第十五章:学期课程融汇与升华课程特色:以解决阅读问题为纲,融会踩分词和阅读答题要求,进行专题训练,侧重点分为两个方面,一是结合《中学语文知识地图踩分词》进行阅读答题运用,二是答题结构与题型,每节课中以阅读概括能力、理解表述能力、判定分析能力和鉴赏能力题为引导进行学习。
适合学员现代文阅读答题技巧掌握不够全面,想稳固提高的初中生赠送《中学语文知识地图—中学文言文必考140字》课程特色:全面地检测与分析学生考试丢分的问题,让学生清楚自己问题在哪,并且怎样改,通过思维训练,加以解决,重点教会学生如何凭借一张知识地图,去解决所有的语文阅读写作问题。
适合学员想夯实语文基础知识,成绩稳步提高的初中生赠送《学生优秀作品及点评指导(2.0版)》第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)第八章:以小见大与虚实相应课程特色:对考场三大作文类型悉数讲解,针对考场作文,黄保余老师现场充精彩点评得失。
适合学员作文写作水平寻求短期突破的初中生赠送《中学考场作文训练营》(图书)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
该课程两个重心:一是各类题型答题方法和技巧的分析,特别是易错点的点评;另一个方面是对概括能力、理解能力,表述能力的训练。
适合学员阅读能力迅速提升的5—7级学生赠送《语文阅读得高分策略与技巧》(小学版)课程特色:针对小学阶段学生最应该掌握的三种阅读考试能力进行讲解。
2016年中考数学真题试题及答案(word版)

(2)共12种情况,有6种情况两次摸到相同颜色棋子,所以概率为 . 24. 解:(1)设第一批购进水果x千克,则第二批购进水果2.5千克,依
据题意得: ,解得x=200,经检验x=200是原方程的解,∴x+2.5x=700, 答:这两批水果功够进700千克; (2)设售价为每千克a元,则: , 630a≥7500×1.26,∴ ,∴a≥15,答:售价至少为每千克15元. 25. (1)证明:在△GAD和△EAB中,∠GAD=90°+∠EAD, ∠EAB=90°+∠EAD, ∴∠GAD=∠EAB,又∵AG=AE,AB=AD,∴△GAD≌△EAB, ∴EB=GD; (2)EB⊥GD,理由如下:连接BD,由(1)得:∠ADG=∠ABE,则 在△BDH中, ∠DHB=180°-(∠HDB+∠HBD)=180°-90°=90°,∴EB⊥GD; (3)设BD与AC交于点O,∵AB=AD=2在Rt△ABD中,DB= , ∴EB=GD= . 26. 解:(1)由y=0得,ax2-2ax-3a=0,∵a≠0,∴x2-2x-3=0,解得 x1=-1,x2=3, ∴点A的坐标(-1,0),点B的坐标(3,0); (2)由y=ax2-2ax-3a,令x=0,得y=-3a,∴C(0,-3a),又 ∵y=ax2-2ax-3a=a(x-1)2-4a,得D(1,-4a),∴DH=1,CH=-4a(-3a)=-a,∴-a=1,∴a=-1,∴C(0,3),D(1,4), 设直线CD的解析式为y=kx+b,把C、D两点的坐标代入得, ,解得 , ∴直线CD的解析式为y=x+3; (3)存在.由(2)得,E(-3,0),N(-
保密 ★ 启用前
2016年中考真题数学试卷
一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的 四个选项中,只有一个是符合题目要求的,把正确答案的标号填在答题 卡内相应的位置上) 1、计算的结果是( ) A、 B、 C、1 D、22、若∠α的余角是30°,则cosα的值是( ) A、 B、 C、 D、 3、下列运算正确的是( ) A、 B、 C、 D、4、下列图形是轴对称图形,又是中心对称 图形的有( )
湖南省娄底市2016年中考数学试题及答案(图片版)

2016娄底中考数学试卷及答案娄底市2016年初中毕业学业考试参考答案数 学一、选择题(本大题共10小题,每小题3分,满分30分)1-5 BDCDB 6-10 CBAAC二、填空题(本大题共8小题,每小题3分,满分24分)11.-2 12.1.12×10513.AB ∥CD 14.答案不唯一,符合题意即可,如:DE ∥BC15.y =2x -2 16.0.8,80%或4517.13 18.3<m <8三、解答题(本大题共2小题,每小题6分,满分12分)19.解:原式=1+2-1+2-2×22 ………………………………………………2分 =2+2-2………………………………………………4分 =2………………………………………………6分 20.解:原式=x -1-2x -1 ·x (x -1)(x -3)2…………2分 =x -3x -1 ·x (x -1)(x -3)2…………3分 =x x -3…………4分 当x =1或3时,x -1=0或x -3=0,分式无意义,故x =2…………5分 当x =2时,原式的值=22-3=-2 …………6分 四、解答题(本大题共2小题,每小题8分,满分16分)21.(1)m =80,n =0.20(2分);(2)图略(3分);(3)大约有4000×(0.20+0.10)=1200人。
(3分)22.BH ≈16.32m (7分)≈16.3m (8分)(之前的步骤省略,评卷人可酌情按步骤给分)五、解答题(本大题共2小题,每小题9分,满分18分)23.(1)解:设乙骑自行车的速度为x m /min 。
…………1分由题意,得 6000.5x +24002x +2=3000x…………2分 解得 x =300经检验,x =300是原方程的解。
…………4分 答:乙骑自行车的速度为300 m /min (或5m/s )。
…………5分(2)解:300 m /min ×2min =600m …………7分 答:当甲到达学校时,乙同学离学校还有600m 。
湖南省娄底地区中考数学试卷

湖南省娄底地区中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2016八上·南宁期中) -3的相反数是()A . -3B . 3C . ±3D .2. (2分) (2018九上·云安期中) 下面四个手机应用图标中,属于中心对称图形的是()A .B .C .D .3. (2分)一个物体的三个视图如图所示,则该物体是()A . 圆锥B . 球C . 圆柱D . 长方体4. (2分)(2016·江汉模拟) 下列式子中正确的是()A . ()﹣2=﹣9B . (﹣2)3=﹣6C . =﹣2D . (﹣3)0=15. (2分) (2018八上·揭西月考) 要使二次根式有意义,字母必须满足的条件是()A .B .C .D .6. (2分)已知反比例函数y=−,下列结论不正确的是()A . 图象必经过点(-1,2)B . y随x的增大而减小C . 图象在第二、四象限内D . 若x>1,则-2<y<07. (2分)如图,▱ABCD中,过对角线BD上一点作EF∥BC,GH∥AB,图中面积相等的平行四边形有()对.A . 2对B . 3对C . 4对D . 5对8. (2分)某工厂生产一种零件,计划在20天内完成,若每天多生产4个,则15天完成且还多生产10个.设原计划每天生产x个,根据题意可列分式方程为()A .B .C .D .9. (2分)已知△ABC∽△DEF,相似比为3:1,且△DEF的周长为18,则△ABC的周长为()A . 3B . 2C . 6D . 5410. (2分)(2018·大庆) 如图,二次函数y=ax2+bx+c的图象经过点A(﹣1,0)、点B(3,0)、点C(4,y1),若点D(x2 , y2)是抛物线上任意一点,有下列结论:①二次函数y=ax2+bx+c的最小值为﹣4a;②若﹣1≤x2≤4,则0≤y2≤5a;③若y2>y1 ,则x2>4;④一元二次方程cx2+bx+a=0的两个根为﹣1和其中正确结论的个数是()A . 1B . 2C . 3D . 4二、填空题 (共11题;共14分)11. (1分)纳米是一种长度单位,它用来表示微小的长度,1纳米微10亿分之一米,即1纳米=10﹣9米,1根头发丝直径是60000纳米,则一根头发丝的直径用科学记数法表示为________米.12. (1分)在,-26%,3,0,10.3,37,-100中属于负整数的是________.13. (1分)分解因式:9m2﹣24m+16=________。
2016湖南中考试卷(长沙、株洲、湘潭、娄底)

株洲市2016年初中毕业学为考试数学试题卷一、选择题(每小题只有一个正确答案,本题共10小题,共30分) 1、下列数中,-3的倒数是(A)A 、13-B 、13C 、-3D 、3 2、下列等式错误的是(D) A 、222(2)4mn m n =B 、222(2)4mn m n -=C 、22366(2)8m n m n =D 、22355(2)8m n m n -=-3、甲、乙、丙、丁四名射击队员考核赛的平均成绩(环)及方差统计如下表,现要根据这些数据,从中选出一人参加比赛,如果你是教练员,你的选择是C A 、甲 B 、乙 C 、丙 D 、丁4、如图,在三角形ABC中,∠ACB =90°,,∠B =50°,将此三角形绕点C 沿顺时针方向旋转后得到三角形``A B C ,若点`B 恰好落在线段AB 上,AC 、``A B 交于点O ,则∠CO `A 的度数是(B)A 、50°B 、60°C 、70°D 、80°第4小题图C'B第3小题5、不等式21120x x -≥⎧⎨-<⎩的解集在数轴上表示为CAB 、C 、D 6在解方程13132x x x -++=时,方程两边同时乘以6,去分母后,正确的是B A 、2163(31)x x x -+=+ B 、2(1)63(31)x x x-+=+ C 、2(1)3(31)x x x -+=+D 、(1)3(1)x x x -+=+7、已知四边形ABCD 是平行四边形,对角线AC 、BD 交于点O ,E 是BC 的中点,以下说法错误的是DA 、OE =12DC B 、OA=OCC 、∠BOE =∠OBAD 、∠OBE =∠OCE 8、如图,以直角三角形a 、b、c 为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四各情况的面积关系满足123S S S +=B 、2D 、4有两种理解方式:一、利用面积的计算方法来算出来 第一个图:222123,,S S S === 其他的依此类推二、利用相似,依题意所作出的三个图形都是相似形,故:222123::::S S S a b c =从而得出结论第7题图B9、已知,如图一次函数1y ax b=+与反比例函数2kyx=的图象如图示,当12y y<时,x的取值范围是DA、2x<B、5x>C、25x<<D、02x<<或5x>【解析】由图直接读出答案为D10、已知二次函数2(0)y ax bx c a=++>2,5)顶点坐标为(,)m n,则下说法错误的是(B)A、3c<B、12m≤C、2n≤D、1b<【解析】由已知可知:2425a b ca b c-+=⎧⎨++=⎩消去b得:323c a=-<消去c得:11b a=-<对称轴:111122222b axa a a-=-=-=-<故B错。
娄底市中考数学试题及答案

娄底市中考数学试题及答案第一节选择题1.已知a = 2, b = 3,则a²b + 3a + b的值为多少?A. 24B. 27C. 36D. 39解析:代入a和b的值,得到2²×3+3×2+3=36+6+3=45,所以选D. 39。
2.∠AOC是直角,则△BOC的外角∠BOC等于多少?A. 90°B. 180°C. 270°D. 360°解析:△BOC的外角等于180°减去∠BOC的度数,即180°-90°=90°,所以选A. 90°。
3.已知等差数列的前n项和Sn等于3n²-4n,则这个等差数列的公差d为多少?A. -4B. -3C. 2D. 3解析:根据等差数列前n项和的通项公式Sn=(n/2)(2a+(n-1)d),代入已知的Sn=3n²-4n,得到3n²-4n=(n/2)(2a+(n-1)d)。
将右边展开,化简得到3n²-4n=an+dn²-dn/2。
由此可推知a=0,d=-4/2=-2,所以选A. -4。
第二节解答题解答题考查学生的解题思路、分析能力和计算能力。
答案请参考答题卡。
1.一辆火车从A站出发前往B站,途中包括4个停靠站。
已知一次停靠和发车的间隔时间为5分钟,从A站到B站的总行驶时间为1小时20分钟,求平均每一站的行驶时间。
解析:一次停靠和发车的间隔时间为5分钟,一共有4个停靠站,所以4个停靠站的总时间为4×5=20分钟。
从A站到B站的总行驶时间为1小时20分钟,换算成分钟为80+20=100分钟。
平均每一站的行驶时间为100/4=25分钟。
2.已知甲乙两人一起做一件工作需要10天完成,按照甲独立做工作所需时间的三倍,乙独立做工作所需时间的两倍,问甲独立做工作需要多少天完成?解析:设甲独立做工作的时间为x天,则乙独立做工作的时间为2x 天。
湖南省娄底市中考数学试题(word版,含答案解析)

娄底市初中毕业学业考试数学试题卷一、选择题(本大题共12小题,每小题3分,满分36分,每小题给出四个选项中,只有一个选项是符合题目要求,请把你认为符合题目要求选项填涂在答题卡上相应题号下方框里)1. 2018相反数是()A. B. 2018 C. -2018 D.【答案】C【解析】【分析】根据只有符号不同两个数互为相反数进行解答即可得.【详解】2018与-2018只有符号不同,由相反数定义可得2018相反数是-2018,故选C.【点睛】本题考查了相反数定义,熟练掌握相反数定义是解题关键.2. 一组数据-3,2,2,0,2,1众数是()A. -3B. 2C. 0D. 1【答案】B【解析】【分析】一组数据中次数出现最多数据是众数,根据众数定义进行求解即可得.【详解】数据数据-3,2,2,0,2,1中,2出现了3次,出现次数最多,其余都出现了1次,所以这组数据众数是2,故选B.【点睛】本题考查了众数定义,熟练掌握众数定义是解题关键.3. 随着我国综合国力提升,中华文化影响日益增强,学中文外国人越来越多,中文已成为美国居民第二外语,美国常讲中文人口约有210万,请将“210万”用科学记数法表示为()A. B. C. D.【答案】B【解析】【分析】科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数、确定n值时,要看把原数变成a时,小数点移动了多少位,n绝对值与小数点移动位数相同、当原数绝对值>1时,n是正数;当原数绝对值<1时,n是负数、【详解】210万=2100000,2100000=2.1×106,故选B、【点睛】本题考查科学记数法表示方法、科学记数法表示形式为a×10n形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a值以及n值、4. 下列运算正确是()A. B.C. D.【答案】D【解析】【分析】根据同底数幂乘法、积乘方、完全平方公式、多项式乘法法则逐项进行计算即可得.【详解】A. ,故A选项错误,不符合题意;B. ,故B选项错误,不符合题意;C. ,故C选项错误,不符合题意;D. ,正确,符合题意,故选D.【点睛】本题考查了整式运算,熟练掌握同底数幂乘法、积乘方、完全平方公式、多项式乘法运算法则是解题关键.5. 关于一元二次方程根情况是()A. 有两不相等实数根B. 有两相等实数根C. 无实数根D. 不能确定【答案】A【解析】【分析】根据一元二次方程根判别式进行判断即可.【详解】,△=[-(k+3)]2-4k=k2+6k+9-4k=(k+1)2+8,∵(k+1)2≥0,∴(k+1)2+8>0,即△>0,∴方程有两个不相等实数根,故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)根判别式△=b2-4ac、当△>0时,方程有两个不相等实数根;当△=0时,方程有两个相等实数根;当△<0时,方程没有实数根、6. 不等式组最小整数解是()A. -1B. 0C. 1D. 2【答案】B【解析】【分析】分别求出不等式组中每一个不等式解集,然后确定出不等式组解集,即可求出最小整数解. 【详解】,解不等式①得,x≤2,解不等式②得,x>-1,所以不等式组解集是:-1<x≤2,所以最小整数解为0,故选B.【点睛】本题考查了解一元一次不等式组,不等式组整数解,熟练掌握一元一次不等式组解法是关键.7. 下图所示立体图形俯视图是()A. B. C. D.【答案】B【解析】【分析】主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到图形,根据俯视图是从物体上面看得到视图即可、【详解】从物体上面看可看到有两列小正方形,左边一列有1个,右边一列有两个,得到图形如图所示:故选B.【点睛】本题考查了几何体三视图,明确每个视图是从几何体哪一面看得到是解题关键.8. 函数中自变量取值范围是()A. B. C. 且x≠3 D.【答案】C【解析】【分析】根据二次根式有意义条件、分式有意义条件进行求解即可得.【详解】由题意得:,解得:x≥2且x≠3,故选C.【点睛】本题考查了函数自变量范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式分母不能为0;(3)当函数表达式是二次根式时,被开方数非负、9. 将直线向右平移2个单位,再向上平移3个单位后,所得直线表达式为()A. B. C. D.【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”原则进行解答即可、【详解】由“左加右减”原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数图象与几何变换,熟知函数图象平移法则是解答此题关键、10. 如图,往竖直放置在处由软管连接粗细均匀细管组成“形装置中注入一定量水,水面高度为,现将右边细管绕处顺时针方向旋转到位置,则中水柱长度约为()A. B. C. D.【答案】C【解析】【分析】根据旋转后两侧液面高度相等,而且软管中液体总长度与原来是一样,结合已知可知此时AB 中水柱长度为左边水柱长度2倍,据此即可得.【详解】如图,旋转后AB中水柱长度为AD,左侧软管中水柱长度为EF,由题意则有EF+AD=2×6=12cm,∵∠DAM=90°-60°=30°,∠AMD=90°,∴AD=2DM,∵EF=DM,∴AD=8cm,故选C.【点睛】本题主要考查了30度角所对直角边是斜边一半,旋转性质等,解本题关键是明确旋转前后软管中水柱长度是不变.11. 如图,由四个全等直角三角形围成大正方形面积是169,小正方形面积为49,则()A. B. C. D.【答案】D【解析】【分析】设直角三角形直角边长分别为x、y(x>y),根据大正方形面积为169,小正方形面积为49可得关于x、y方程组,解方程组求得x、y值,然后利用正弦、余弦定义进行求解即可得.【详解】设直角三角形直角边长分别为x、y(x>y),由题意得,解得:或(舍去),∴直角三角形斜边长为13,∴sinα-cosα=,故选D.【点睛】本题考查了解直角三角形应用,根据题意求出直角三角形三边长是解题关键.12. 已知: 表示不超过最大整数,例: ,令关于函数(是正整数),例:=1,则下列结论错误..是()A. B.C. D. 或1【答案】C【解析】【分析】根据新定义运算逐项进行计算即可做出判断.【详解】A. ==0-0=0,故A选项正确,不符合题意;B. ===,=,所以,故B选项正确,不符合题意;C. =,= ,当k=3时,==0,= =1,此时,故C选项错误,符合题意;D.设n为正整数,当k=4n时,==n-n=0,当k=4n+1时,==n-n=0,当k=4n+2时,==n-n=0,当k=4n+3时,==n+1-n=1,所以或1,故D选项正确,不符合题意,故选C.【点睛】本题考查了新定义运算,明确运算法则,运用分类讨论思想是解题关键.二、填空题(本大题共6小题,每小题3分,满分18分)13. 如图,在平面直角坐标系中,为坐标原点,点是反比例函数图象上一点,轴于点,则面积为___________.【答案】1【解析】【分析】设P点坐标为(m,n),根据三角形面积公式以及点P在反比例函数图象上即可得.【详解】设P点坐标为(m,n),则有mn=2,OA=|m|,PA=|n|,S△POA=OA•PA=|m|•|n|=1,故答案为:1.【点睛】本题考查了反比例函数比例系数k几何意义,有到知识为:在反比例函数图象上点横纵坐标积等于反比例函数比例系数、14. 如图,是内心,连接,面积分别为,则___________.(填“<”或“=”或“>”)【答案】<【解析】【分析】根据点P是△ABC内心,可知点P到△ABC三边距离相等,设这个距离为h,根据三角形面积公式表示出S1、S2+S3,然后再根据三角形三边关系进行判断即可.【详解】∵点P是△ABC内心,∴点P到△ABC三边距离相等,设这个距离为h,∴S1=AB•h,S2+S3=BC•h+AC•h,∵AB<BC+AC,∴S1<S2+S3,故答案为:<.【点睛】本题考查了三角形内心性质,三角形三边关系,熟知三角形内心到三角形三边距离相等是解本题关键.15. 从·2018·高中一年级学生开始,湖南省全面启动高考综合改革,学生学习完必修课程后,可以根据高校相关专业选课要求和自身兴趣、志向、优势,从思想政治、历史、地理、物理、化学、生物6个科目中,自主选择3个科目参加等级考试.学生已选物理,还想从思想政治、历史、地理3个文科科目中选1科,再从化学、生物2个理科科目中选1科.若他选思想政治、历史、地理可能性相等,选化学、生物可能性相等,则选修地理和生物概率为___________.【答案】【解析】【分析】列表格得出所有等可能情况,然后再找出符合题意情况,根据概率公式进行计算即可得. 【详解】列表格:政治历史地理化学化学,政治化学,历史化学,地理生物生物,政治生物,历史生物,地理从表格中可以看出一共有6种等可能情况,选择地理和生物有1种情况,所以选择地理和生物概率是,故答案为:.【点睛】本题考查了列表法或树状图法求概率,用到知识点为:概率=所求情况数与总情况数之比、16. 如图,中,,于点,于点,于点,,则__________.【答案】6【解析】【分析】由等腰三角形性质可得∠C =∠ABC, BD=DC=BC,再根据∠BED=∠CFB=90°,可证△BED∽△CFB,根据相似三角形对应边成比例即可求得.【详解】∵AB=AC,∴∠C =∠ABC ,又∵AD ⊥BC于D 点,∴ BD=DC=BC,又DE ⊥AB,BF ⊥AC,∴∠BED=∠CFB=90°,∴△BED∽△CFB,∴DE:BF=BD:BC=1:2,∴BF=2DE=2×3=6cm ,故答案为:6.【点睛】本题考查了等腰三角形性质、相似三角形判定与性质,得到△BED∽△CFB是解本题关键.17. 如图,已知半圆与四边形边都相切,切点分别为,半径,则___________.【答案】1【解析】【分析】连接OE,由切线长定理可得∠AOE=∠DOE,∠BOE=∠EOC,再根据∠DOE+∠EOC=180°,可得∠AOB=90°,继而可证△AEO∽△OEB,根据相似三角形对应边成比例即可得. 【详解】连接OE,∵AD、AB与半圆O 相切,∴ OE⊥AB,OA平分∠DOE,∴∠AOE=∠DOE,同理∠BOE=∠EOC,∵∠DOE+∠EOC=180°,∴∠AOE+∠BOE=90°,即∠AOB=90°,∴∠ABO+∠BAO=90°,∵∠BAO+∠AOE=90°,∴∠ABO=∠AOE,∵∠OEA=∠BEO=90°,∴△AEO∽△OEB,∴AE:OE=OE:BE,∴AE•BE=OE²=1,故答案为:1.【点睛】本题考查了切线长定理、相似三角形判定与性质等,证得△AEO∽△OEB是解题关键. 18. 设是一列正整数,其中表示第一个数,表示第二个数,依此类推,表示第个数(是正整数)已知,.则___________.【答案】4035【解析】【分析】整理得,从而可得a n+1-a n=2或a n=-a n+1,再根据题意进行取舍后即可求得a n表达式,继而可得a2018.【详解】∵,∴,∴,∴a n+1=a n+1-1或a n+1=-a n+1+1,∴a n+1-a n=2或a n=-a n+1,又∵是一列正整数,∴a n=-a n+1不符合题意,舍去,∴a n+1-a n=2,又∵a1=1,∴a2=3,a3=5,……,a n=2n-1,∴a2018=2×2018-1=4035,故答案为:4035.【点睛】本题考查了完全平方公式应用、平方根应用、规律型题,解题关键是通过已知条件推导得出a n+1-a n=2.三、解答题19. 计算: .【答案】10【解析】【分析】先分别进行0次幂计算、负指数幂计算、二次根式以及绝对值化简、特殊角三角函数值,然后再按运算顺序进行计算即可.【详解】原式=1+9-+4=10-+=10.【点睛】本题考查了实数混合运算,涉及到0指数幂、负指数幂、特殊角三角函数值等,熟练掌握各运算运算法则是解题关键.20. 先化简,再求值: ,其中.【答案】原式==3+2【详解】原式===,当x=时,原式==3+2.【点睛】本题考查了分式化简求值,熟练掌握分式混合运算法则是解题关键.21. 为了取得扶贫工作胜利,某市对扶贫工作人员进行了扶贫知识培训与测试,随机抽取了部分人员测试成绩作为样本,并将成绩划分为四个不同等级,绘制成不完整统计图如下图,请根据图中信息,解答下列问题;(1)求样本容量;(2)补全条形图,并填空: ;(3)若全市有5000人参加了本次测试,估计本次测试成绩为级人数为多少?【答案】(1)60;(2)10;(3)2000【解析】【分析】(1)根据B等级人数为18,占比为30%即可求得样本容量;(2)用样本容量减去A等级、B等级、D等级人数求得C等级人数,补全条形图,用D等级人数除以样本容量再乘以100%即可求得n;(3)用5000乘以A等级所占比即可求得.【详解】(1)样本容量为:18÷30%=60;(2)C等级人数为:60-24-18-6=12,补全条形图如图所示:6÷60×100%=10% ,所以n=10,故答案为:10;(3)估计本次测试成绩为级人数为:5000×=2000(人).【点睛】本题考查了条形统计图、扇形统计图、利用样本估计总体,能从统计图中得到必要信息是解题关键.22. 如图,长沙九龙仓国际金融中心主楼高达,是目前湖南省第一高楼,和它处于同一水平面上第二高楼高,为了测量高楼上发射塔高度,在楼底端点测得仰角为α,,在顶端E测得A仰角为,求发射塔高度.【答案】AB高度为28米【解析】【分析】设AB高度为x米,过点E作EF⊥AC于F,则FC=DE=340米,继而可得BF=112米,从而可得AF=(112+x)米,在Rt△AEF中,根据等腰直角三角形性质可得EF=AF=CD=(112+x)米,Rt△ACD中,由sina=,可得tana=,再由tana=得到关于x方程,解方程即可求得AB长. 【详解】设AB高度为x米,过点E作EF⊥AC于F,则FC=DE=340米,∴BF=452-340=112米,∴AF=(112+x)米,在Rt△AEF中,∠FAB=∠AEF=45°,∴EF=AF=CD=(112+x)米,Rt△ACD中,sina==,设AC=24k,AD=25k(k>0),由勾股定理则有CD==7k,∴tana==,Rt△ACD中,AC=(452+x)米,tana==,解得x=28,答:发射塔AB高度是28米..【点睛】此题主要考查了解直角三角形应用,解题关键是从题目中整理出直角三角形并正确利用边角关系求解、23. “绿水青山,就是金山银山”,某旅游景区为了保护环境,需购买两种型号垃圾处理设备共10台,已知每台型设备日处理能力为12吨;每台型设备日处理能力为15吨,购回设备日处理能力不低于140吨.(1)请你为该景区设计购买两种设备方案;(2)已知每台型设备价格为3万元,每台型设备价格为4.4万元.厂家为了促销产品,规定货款不低于40万元时,则按9折优惠;问:采用(1)设计哪种方案,使购买费用最少,为什么?【答案】(1)共有4种方案,具体方案见解析;(2)购买A型设备2台、B型设备8台时费用最少.(2)针对(1)中方案逐一进行计算即可做出判断.【详解】(1)设该景区购买设计A型设备为x台、则B型设备购买(10-x)台,其中0 ≤x ≤10,由题意得:12x+15(10-x)≥140,解得x≤,∵0 ≤x ≤10,且x是整数,∴x=3,2,1,0,∴B型相应台数分别为7,8,9,10,∴共有4种方案:方案一:A型设备3 台、B型设备7 台;方案二:A型设备2 台、B型设备8 台;方案三:A型设备1 台、B型设备9 台;方案四:A型设备0 台、B型设备10 台.(2)方案二费用最少,理由如下:方案一购买费用: 3 ×3+4.4 ×7=39.8 (万元)<40 (万元)∴费用为39.8(万元),方案二购买费用: 2 ×3+4.4 ×8=41.2 (万元)>40 (万元)∴费用为41.2 ×90%=37.08(万元)方案三购买费用:3 ×1+4.4 ×9=42.6 (万元)>40 (万元)∴费用为42.6 ×90%=38.34(万元)方案四购买费用:4.4 ×10=44 (万元)>40 (万元)∴费用为44 ×90%=39.6(万元)∴方案二费用最少,即A型设备2台、B型设备8台时费用最少.【点睛】本题考查了一元一次不等式应用、最优购买方案,弄清题意,找到不等关系列出不等式是解题关键.24. 如图,已知四边形中,对角线相交于点,且,,过点作,分别交于点.(1)求证: ;(2)判断四边形形状,并说明理由.【答案】(1)证明见解析;(2)四边形BED是菱形,理由见解析.【解析】【分析】(1)根据对角线互相平分四边形是平行四边形,由已知可得四边形ABCD是平行四边形,继而可根据ASA证明ΔAOE≌ΔCOF;(2)由ΔAOE≌ΔCOF可得OE=OF,再根据OB=OD可得四边形BEDF是平行四边形,再根据对角线互相垂直平行四边形是菱形即可证得四边形BEDF是菱形.【详解】(1)∵OA=OC、OB=OD,∴四边形ABCD是平行四边形,∴AD∥BC,∴∠DAC=∠BCA,又∵∠AOE=∠COF,OA=OC,∴△AOE≌△COF(ASA);(2)四边形BEDF是菱形,理由如下:∵△AOE≌△COF,∴OE=OF,又∵OB=OD,∴四边形DEBF是平行四边形,又∵EF⊥BD,∴平行四边形DEBF是菱形.【点睛】本题考查了平行四边形判定与性质、菱形判定,熟记平行四边形判定与性质定理、菱形判定定理是解本题关键.25. 如图,是以为直径上点,,弦交于点.(1)当是切线时,求证: ;(2)求证: ;(3)已知,是半径中点,求线段长.【答案】(1)证明见解析;(2)证明见解析;(3)DE=【解析】【分析】(1)由AB是直径,可得∠DAB+∠ABD=90°,再根据PB是⊙O切线,可得∠ABD+∠PBD=90°,根据同角余角相等即可证得∠PBD=∠DAB;(2)证明△BCE∽△DCB,根据相似三角形对应边成比例可得BC2=CE•CD,再根据CD=CE+DE 经过推导即可得BC2- CE2= CE•DE;(3) 连接OC,由,AB是直径,可得∠AOC=∠BOC=90°,根据勾股定理则有CE²=OE²+CO², BC²=OB²+CO²,再根据OA=4 ,E 是半径OA 中点,继而可得BC=4,CE=2,再根据(2)中BC²-CE²=CE·DE,即可求得DE长.【详解】(1)∵AB是直径,∴∠ADB=90°,即∠DAB+∠ABD=90°,又∵ PB是⊙O切线,∴PB⊥AB,∴∠ABP=90°,即∠ABD+∠PBD=90°,∴∠PBD=∠DAB;(2)∵,∴∠BDC=∠EBC,又∵∠BCE=BCD,∴△BCE∽△DCB,∴BC:CE=CD:BC,∴BC2=CE•CD,∴BC2=CE(CE+DE),∴BC2=CE2+CE•DE,∴BC2- CE2= CE•DE;(3)连接OC,∵,AB是直径,∴∠AOC=∠BOC=90°,∴CE²=OE²+CO², BC²=OB²+CO²,∵OA=4 ,E 是半径OA 中点,∴BC=4,CE=2,由(2)中BC²-CE²=CE·DE,所以DE=(BC²-CE²)÷CE=12÷2= ,故DE=.【点睛】本题是综合题,考查了切线性质、相似三角形判定与性质、圆周角定理等,解题关键是正确添加辅助线、熟练应用切线性质、相似三角形判定与性质是解题关键.26. 如图,抛物线与两坐标轴相交于点,是抛物线顶点,是线段中点.(1)求抛物线解析式,并写出点坐标;(2) 是抛物线上动点;①当时,求面积最大值;②当时,求点坐标.【答案】(1)y=-x2+2x+3,D(1,4); (2) ①当x=2时,S最大值=1;②F(-,-2-2)或(2-,-2+2)【解析】【分析】(1)利用待定系数法可求得抛物线解析式,然后再配方成顶点式即可得点D坐标;(2)①由x>1,y>0,可以确定点F是直线BD上方抛物线上动点,F(x, -x2+2x+3),过点F作FH⊥x轴交直线BD于M,由B、D坐标易得y BD=-2x+6,继而得M(x,-2x+6),从而得到FM=-(x-2)2+1,再根据S△BDF=S△DFM+S△BFM,从而可得S△BDF=-(x-2)2+1,根据二次函数性质即可得;②分点F在x轴上方抛物线上,点F在x轴下方、y轴左侧抛物线上两种情况进行讨论即可得. 【详解】(1)抛物线与两坐标轴相交于点由题意得:,解得:,所以抛物线解析式为:y=-x2+2x+3,配方得y=-(x-1)2+4,∴抛物线顶点D坐标为(1,4);(2)①∵x>1,y>0,∴点F是直线BD上方抛物线上动点,则F(x, -x2+2x+3),过点F作FH⊥x轴交直线BD于M,∵B(3,0), D(1,4),∴y BD=-2x+6,则M(x,-2x+6),∴FM=-x2+2x+3-(-2x+6)= -x2+4x-3=-(x-2)2+1,∵S△BDF=S△DFM+S△BFM,∴S△BDF=FM•(x-1|)+FM•(3-x)=FM•(x-1+3-x)=FM =-(x-2)2+1,∴当x=2时,S最大值=1;②当FE∥BD,且点F在x轴上方抛物线上时,设FE解析式为y=-2x+b,∵直线FE过点E(1,0),∴b=2,y FE=-2x+2,联立y=-2x+2与y=-x2+2x+3,解得F(2-,-2+2);当F在x轴下方、y轴左侧抛物线上时,设直线EF与直线BD交于点N,∵∠AEF=∠NEB,又∵∠AEF=∠DBE,∴∠NEB=∠DBE,∴NE=NB,∴点N横坐标为2,又∵点N在直线y BD=-2x+6上,∴N(2,2),∴yEN=2x-2,联立y=2x-2与y=-x2+2x+3,解得F(-,-2-2),综上所述F(-,-2-2)或(2-,-2+2).【点睛】本题是二次函数综合题,涉及到待定系数法、二次函数最值、解方程组、分类讨论等,解题关键是正确添加辅助线.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新资料•中考数学2016年湖南省娄底市中考数学试卷一、选择题(本大题共10小题,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣2.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q3.下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y24.下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等5.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.6.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°7.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差8.函数y=的自变量x的取值范围是()A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>29.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()D.C n H n+3A.C n H2n+2B.C n H2n C.C n H2n﹣210.如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小二、填空题(本大题共8小题,每小题3分,共24分)11.已知反比例函数y=的图象经过点A(1,﹣2),则k=.12.已知某水库容量约为112000立方米,将112000用科学记数法表示为.13.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD 的位置关系是.14.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是.(只需写一个条件,不添加辅助线和字母)15.将直线y=2x+1向下平移3个单位长度后所得直线的解析式是.16.从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是.17.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为.18.当a、b满足条件a>b>0时,+=1表示焦点在x轴上的椭圆.若+=1表示焦点在x轴上的椭圆,则m的取值范围是.三、解答题(本大题共2小题,每小题6分,满分12分)19.计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.20.先化简,再求值:(1﹣)•,其中x是从1,2,3中选取的一个合适的数.四、解答题(本大题共2小题,每小题8分,满分16分)21.在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:根据所给信息,解答下列问题:(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参数,请估计约有多少人进入决赛?22.芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索(结顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.果精确到0.1米,≈1.732)五、解答题(本大题共2小题,每小题9分,满分18分)23.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?24.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.六、解答题(本大题共2小题,每小题10分,满分20分)25.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.26.如图,抛物线y=ax2+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0).(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.2016年湖南省娄底市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,满分30分,每小题给出的四个选项中,只有一项是符合题目要求的,请把你认为符合题目要求的选项填涂在答题卡上相应题号下的方框里)1.2016的相反数是()A.2016 B.﹣2016 C.D.﹣【考点】相反数.【分析】根据相反数的定义:只有符号不同的两个数互为相反数解答即可.【解答】解:2016的相反数是﹣2016,故选:B.2.已知点M、N、P、Q在数轴上的位置如图,则其中对应的数的绝对值最大的点是()A.M B.N C.P D.Q【考点】绝对值;数轴.【分析】根据各点到原点的距离进行判断即可.【解答】解:∵点Q到原点的距离最远,∴点Q的绝对值最大.故选:D.3.下列运算正确的是()A.a2•a3=a6B.5a﹣2a=3a2C.(a3)4=a12D.(x+y)2=x2+y2【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】分别利用同底数幂的乘法运算法则以及合并同类项法则、幂的乘方运算法则、完全平方公式分别计算得出答案.【解答】解:A、a2•a3=a5,故此选项错误;B、5a﹣2a=3a,故此选项错误;C、(a3)4=a12,正确;D、(x+y)2=x2+y2+2xy,故此选项错误;故选:C.4.下列命题中,错误的是()A.两组对边分别平行的四边形是平行四边形B.有一个角是直角的平行四边形是矩形C.有一组邻边相等的平行四边形是菱形D.内错角相等【考点】命题与定理.【分析】根据平行四边形、矩形、菱形的判定方法即可判断A、B、C正确.【解答】解:A、两组对边分别平行的四边形是平行四边形,正确.B、有一个角是直角的平行四边形是矩形,正确.C、有一组邻边相等的平行四边形是菱形,正确.D、内错角相等,错误,缺少条件两直线平行,内错角相等.故选D.5.下列几何体中,主视图和俯视图都为矩形的是()A.B.C.D.【考点】简单几何体的三视图.【分析】分别分析四个选项中圆锥、圆柱、球体、三棱柱的主视图、俯视图,从而得出都为矩形的几何体.【解答】解:A、圆锥的主视图是三角形,俯视图是带圆心的圆,故本选项错误;B、圆柱的主视图是矩形、俯视图是矩形,故本选项正确;C、球的主视图、俯视图都是圆,故本选项错误;D、三棱柱的主视图为矩形和俯视图为三角形,故本选项错误.故选:B.6.如图,已知AB是⊙O的直径,∠D=40°,则∠CAB的度数为()A.20° B.40° C.50° D.70°【考点】圆周角定理.【分析】先根据圆周角定理求出∠B及∠ACB的度数,再由直角三角形的性质即可得出结论.【解答】解:∵∠D=40°,∴∠B=∠D=40°.∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣40°=50°.故选C.7.11名同学参加数学竞赛初赛,他们的等分互不相同,按从高分录到低分的原则,取前6名同学参加复赛,现在小明同学已经知道自己的分数,如果他想知道自己能否进入复赛,那么还需知道所有参赛学生成绩的()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】11人成绩的中位数是第6名的成绩.参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.【解答】解:由于总共有11个人,且他们的分数互不相同,第6的成绩是中位数,要判断是否进入前6名,故应知道中位数.故选:B.8.函数y=的自变量x的取值范围是()A.x≥0且x≠2 B.x≥0 C.x≠2 D.x>2【考点】函数自变量的取值范围.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,x≥0且x﹣2≠0,解得x≥0且x≠2.故选A.9.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()D.C n H n+3A.C n H2n+2B.C n H2n C.C n H2n﹣2【考点】规律型:数字的变化类.【分析】设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,列出部分a n的值,根据数值的变化找出变化规律“a n=2n+2”,依次规律即可解决问题.【解答】解:设碳原子的数目为n(n为正整数)时,氢原子的数目为a n,观察,发现规律:a1=4=2×1+2,a2=6=2×2+2,a3=8=2×3+2,…,∴a n=2n+2.∴碳原子的数目为n(n为正整数)时,它的化学式为C n H2n+2.故选A.10.如图,已知在Rt△ABC中,∠ABC=90°,点D沿BC自B向C运动(点D与点B、C不重合),作BE⊥AD于E,CF⊥AD于F,则BE+CF的值()A.不变B.增大C.减小D.先变大再变小【考点】相似三角形的判定与性质;锐角三角函数的增减性.【分析】设CD=a,DB=b,∠DCF=∠DEB=α,易知BE+CF=BC•cosα,根据0<α<90°,由此即可作出判断.【解答】解:∵BE⊥AD于E,CF⊥AD于F,∴CF∥BE,∴∠DCF=∠DBF,设CD=a,DB=b,∠DCF=∠DEB=α,∴CF=DC•cosα,BE=DB•cosα,∴BE+CF=(DB+DC)cosα=BC•cosα,∵∠ABC=90°,∴O<α<90°,当点D从B→D运动时,α是逐渐增大的,∴cosα的值是逐渐减小的,∴BE+CF=BC•cosα的值是逐渐减小的.故选C.二、填空题(本大题共8小题,每小题3分,共24分)11.已知反比例函数y=的图象经过点A(1,﹣2),则k=﹣2.【考点】反比例函数图象上点的坐标特征.【分析】直接把点A(1,﹣2)代入y=求出k的值即可.【解答】解:∵反比例函数y=的图象经过点A(1,﹣2),∴﹣2=,解得k=﹣2.故答案为:﹣2.12.已知某水库容量约为112000立方米,将112000用科学记数法表示为1.12×105.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:112000=1.12×105,故答案为:1.12×105.13.如图,四边形ABCD为⊙O的内接四边形,已知∠C=∠D,则AB与CD 的位置关系是AB∥CD.【考点】圆内接四边形的性质.【分析】由圆内接四边形的对角互补的性质以及等角的补角相等求解即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠A+∠C=180°又∵∠C=∠D,∴∠A+∠D=180°.∴AB∥CD.故答案为:AB∥CD.14.如图,已知∠A=∠D,要使△ABC∽△DEF,还需添加一个条件,你添加的条件是AB∥DE.(只需写一个条件,不添加辅助线和字母)【考点】相似三角形的判定.【分析】根据有两组角对应相等的两个三角形相似进行添加条件.【解答】解:∵∠A=∠D,∴当∠B=∠DEF时,△ABC∽△DEF,∵AB∥DE时,∠B=∠DEF,∴添加AB∥DE时,使△ABC∽△DEF.故答案为AB∥DE.15.将直线y=2x+1向下平移3个单位长度后所得直线的解析式是y=2x﹣2.【考点】一次函数图象与几何变换.【分析】根据函数的平移规则“上加下减”,即可得出直线平移后的解析式.【解答】解:根据平移的规则可知:直线y=2x+1向下平移3个单位长度后所得直线的解析式为:y=2x+1﹣3=2x ﹣2.故答案为:y=2x﹣2.16.从“线段,等边三角形,圆,矩形,正六边形”这五个圆形中任取一个,取到既是轴对称图形又是中心对称图形的概率是.【考点】概率公式;轴对称图形;中心对称图形.【分析】先找出既是轴对称图形又是中心对称图形的个数,再根据概率公式进行计算即可.【解答】解:∵在线段、等边三角形、圆、矩形、正六边形这五个图形中,既是中心对称图形又是轴对称图形的有线段、圆、矩形、正六边形,共4个,∴取到的图形既是中心对称图形又是轴对称图形的概率为,故答案为:.17.如图,将△ABC沿直线DE折叠,使点C与点A重合,已知AB=7,BC=6,则△BCD的周长为13.【考点】翻折变换(折叠问题).【分析】利用翻折变换的性质得出AD=CD,进而利用AD+CD=AB得出即可.【解答】解:∵将△ABC沿直线DE折叠后,使得点A与点C重合,∴AD=CD,∵AB=7,BC=6,∴△BCD的周长=BC+BD+CD=BC+BD+AD=BC+AB=7+6=13.故答案为:1318.当a、b满足条件a>b>0时,+=1表示焦点在x轴上的椭圆.若+=1表示焦点在x轴上的椭圆,则m的取值范围是3<m<8.【考点】解一元一次不等式.【分析】根据题意就不等式组,解出解集即可.【解答】解:∵+=1表示焦点在x轴上的椭圆,a>b>0,∵+=1表示焦点在x轴上的椭圆,∴,解得3<m<8,∴m的取值范围是3<m<8,故答案为:3<m<8.三、解答题(本大题共2小题,每小题6分,满分12分)19.计算:(π﹣)0+|﹣1|+()﹣1﹣2sin45°.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【分析】直接利用特殊角的三角函数值以及绝对值、零指数幂的性质分析得出答案.【解答】解:(π﹣)0+|﹣1|+()﹣1﹣2sin45°=1+﹣1+2﹣=2.20.先化简,再求值:(1﹣)•,其中x是从1,2,3中选取的一个合适的数.【考点】分式的化简求值.【分析】先括号内通分,然后计算除法,最后取值时注意使得分式有意义,最后代入化简即可.【解答】解:原式=•=.当x=2时,原式==﹣2.四、解答题(本大题共2小题,每小题8分,满分16分)21.在2016CCTV英语风采大赛中,娄底市参赛选手表现突出,成绩均不低于60分.为了更好地了解娄底赛区的成绩分布情况,随机抽取利了其中200名学生的成绩(成绩x取整数,总分100分)作为样本进行了整理,得到如图的两幅不完整的统计图表:根据所给信息,解答下列问题:(3)按规定,成绩在80分以上(包括80分)的选手进入决赛.若娄底市共有4000人参数,请估计约有多少人进入决赛?【考点】频数(率)分布直方图;用样本估计总体;频数(率)分布表.【分析】(1)用抽查的总人数乘以成绩在70≤x<80段的人数所占的百分比求出m;用成绩在80≤x<90段的频数除以总人数即可求出n;(2)根据(1)求出的m的值,直接补全频数分布直方图即可;(3)用娄底市共有的人数乘以80分以上(包括80分)所占的百分比,即可得出答案.【解答】解:(1)根据题意得:m=200×0.40=80(人),n=40÷200=0.20;故答案为:80,0.20;(2)根据(1)可得:70≤x<80的人数有80人,补图如下:(3)根据题意得:4000×(0.20+0.10)=1200(人).答:估计约有1200人进入决赛.22.芜湖长江大桥是中国跨度最大的公路和铁路两用桥梁,大桥采用低塔斜拉桥桥型(如甲图),图乙是从图甲引申出的平面图,假设你站在桥上测得拉索AB与水平桥面的夹角是30°,拉索CD与水平桥面的夹角是60°,两拉索(结顶端的距离BC为2米,两拉索底端距离AD为20米,请求出立柱BH的长.果精确到0.1米,≈1.732)【考点】解直角三角形的应用.【分析】设DH=x米,由三角函数得出=x,得出BH=BC+CH=2+x,求出AH=BH=2+3x,由AH=AD+DH得出方程,解方程求出x,即可得出结果.【解答】解:设DH=x米,∵∠CDH=60°,∠H=90°,∴CH=DH•sin60°=x,∴BH=BC+CH=2+x,∵∠A=30°,∴AH=BH=2+3x,∵AH=AD+DH,∴2+3x=20+x,解得:x=10﹣,∴BH=2+(10﹣)=10﹣1≈16.3(米).答:立柱BH的长约为16.3米.五、解答题(本大题共2小题,每小题9分,满分18分)23.甲、乙两同学的家与学校的距离均为3000米.甲同学先步行600米,然后乘公交车去学校、乙同学骑自行车去学校.已知甲步行速度是乙骑自行车速度的,公交车的速度是乙骑自行车速度的2倍.甲乙两同学同时从家发去学校,结果甲同学比乙同学早到2分钟.(1)求乙骑自行车的速度;(2)当甲到达学校时,乙同学离学校还有多远?【考点】一元一次方程的应用.【分析】(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意列方程即可得到结论;(2)300×2=600米即可得到结果.【解答】解:(1)设乙骑自行车的速度为x米/分钟,则甲步行速度是x米/分钟,公交车的速度是2x米/分钟,根据题意得+=﹣2,解得:x=300米/分钟,经检验x=300是方程的根,答:乙骑自行车的速度为300米/分钟;(2)∵300×2=600米,答:当甲到达学校时,乙同学离学校还有600米.24.如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,AB与A1C1相交于点D,AC与A1C1、BC1分别交于点E、F.(1)求证:△BCF≌△BA1D.(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由.【考点】旋转的性质;全等三角形的判定与性质;等腰三角形的性质.【分析】(1)根据等腰三角形的性质得到AB=BC,∠A=∠C,由旋转的性质得到A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,根据全等三角形的判定定理得到△BCF≌△BA1D;(2)由旋转的性质得到∠A1=∠A,根据平角的定义得到∠DEC=180°﹣α,根据四边形的内角和得到∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,证得四边形A1BCE是平行四边形,由于A1B=BC,即可得到四边形A1BCE是菱形.【解答】(1)证明:∵△ABC是等腰三角形,∴AB=BC,∠A=∠C,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,∴A1B=AB=BC,∠A=∠A1=∠C,∠A1BD=∠CBC1,在△BCF与△BA1D中,,∴△BCF≌△BA1D;(2)解:四边形A1BCE是菱形,∵将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,∴∠A1=∠A,∵∠ADE=∠A1DB,∴∠AED=∠A1BD=α,∴∠DEC=180°﹣α,∵∠C=α,∴∠A1=α,∴∠ABC=360°﹣∠A1﹣∠C﹣∠A1EC=180°﹣α,∴∠A1=∠C,∠A1BC=∠AEC,∴四边形A1BCE是平行四边形,∴A1B=BC,∴四边形A1BCE是菱形.六、解答题(本大题共2小题,每小题10分,满分20分)25.如图所示,在Rt△ABC与Rt△OCD中,∠ACB=∠DCO=90°,O为AB的中点.(1)求证:∠B=∠ACD.(2)已知点E在AB上,且BC2=AB•BE.(i)若tan∠ACD=,BC=10,求CE的长;(ii)试判定CD与以A为圆心、AE为半径的⊙A的位置关系,并请说明理由.【考点】圆的综合题.【分析】(1)因为∠ACB=∠DCO=90°,所以∠ACD=∠OCB,又因为点O是Rt△ACB中斜边AB的中点,所以OC=OB,所以∠OCB=∠B,利用等量代换可知∠ACD=∠B;(2)(i)因为BC2=AB•BE,所以△ABC∽△CBE,所以∠ACB=∠CEB=90°,因为tan∠ACD=tan∠B,利用勾股定理即可求出CE的值;(ii)过点A作AF⊥CD于点F,易证∠DCA=∠ACE,所以CA是∠DCE的平分线,所以AF=AE,所以直线CD与⊙A相切.【解答】解:(1)∵∠ACB=∠DCO=90°,∴∠ACB﹣∠ACO=∠DCO﹣∠ACO,即∠ACD=∠OCB,又∵点O是AB的中点,∴OC=OB,∴∠OCB=∠B,∴∠ACD=∠B,(2)(i)∵BC2=AB•BE,∴=,∵∠B=∠B,∴△ABC∽△CBE,∴∠ACB=∠CEB=90°,∵∠ACD=∠B,∴tan∠ACD=tan∠B=,设BE=4x,CE=3x,由勾股定理可知:BE2+CE2=BC2,∴(4x)2+(3x)2=100,∴解得x=2,∴CE=6;(ii)过点A作AF⊥CD于点F,∵∠CEB=90°,∴∠B+∠ECB=90°,∵∠ACE+∠ECB=90°,∴∠B=∠ACE,∵∠ACD=∠B,∴∠ACD=∠ACE,∴CA平分∠DCE,∵AF⊥CE,AE⊥CE,∴AF=AE,∴直线CD与⊙A相切.26.如图,抛物线y=ax2+bx+c(a、b、c为常数,a≠0)经过点A(﹣1,0),B(5,﹣6),C(6,0).(1)求抛物线的解析式;(2)如图,在直线AB下方的抛物线上是否存在点P使四边形PACB的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;(3)若点Q为抛物线的对称轴上的一个动点,试指出△QAB为等腰三角形的点Q一共有几个?并请求出其中某一个点Q的坐标.【考点】二次函数综合题.【分析】(1)抛物线经过点A(﹣1,0),B(5,﹣6),C(6,0),可利用两点式法设抛物线的解析式为y=a(x+1)(x﹣6),代入B(5,﹣6)即可求得函数的解析式;(2)作辅助线,将四边形PACB分成三个图形,两个三角形和一个梯形,设P(m,m2﹣5m﹣6),四边形PACB的面积为S,用字母m表示出四边形PACB 的面积S,发现是一个二次函数,利用顶点坐标求极值,从而求出点P的坐标.(3)分三种情况画图:①以A为圆心,AB为半径画弧,交对称轴于Q1和Q4,有两个符合条件的Q1和Q4;②以B为圆心,以BA为半径画弧,也有两个符合条件的Q2和Q5;③作AB的垂直平分线交对称轴于一点Q3,有一个符合条件的Q3;最后利用等腰三角形的腰相等,利用勾股定理列方程求出Q3坐标.【解答】解:(1)设y=a(x+1)(x﹣6)(a≠0),把B(5,﹣6)代入:a(5+1)(5﹣6)=﹣6,a=1,∴y=(x+1)(x﹣6)=x2﹣5x﹣6;(2)存在,如图1,分别过P、B向x轴作垂线PM和BN,垂足分别为M、N,设P(m,m2﹣5m﹣6),四边形PACB的面积为S,则PM=﹣m2+5m+6,AM=m+1,MN=5﹣m,CN=6﹣5=1,BN=5,∴S=S△AM P+S梯形PM N B +S△B NC=(﹣m2+5m+6)(m+1)+(6﹣m2+5m+6)(5﹣m)+×1×6=﹣3m2+12m+36=﹣3(m﹣2)2+48,当m=2时,S有最大值为48,这时m2﹣5m﹣6=22﹣5×2﹣6=﹣12,∴P(2,﹣12),(3)这样的Q点一共有5个,连接Q3A、Q3B,y=x2﹣5x﹣6=(x﹣)2﹣;因为Q3在对称轴上,所以设Q3(,y),∵△Q3AB是等腰三角形,且Q3A=Q3B,由勾股定理得:(+1)2+y2=(﹣5)2+(y+6)2,y=﹣,∴Q3(,﹣).2016年6月30日。