运筹学应用实例
简单的运筹学实际应用案例

简单的运筹学实际应用案例运筹学(Operations Research)是一门研究如何有效利用有限资源进行决策的学科,它通过数学、统计学和经济学等方法,帮助管理者做出最佳决策。
下面将介绍几个简单的运筹学实际应用案例。
1.生产线优化假设一公司拥有多条生产线,每条生产线对应不同的产品。
公司希望通过优化生产线的调度,以达到最大的产出和利润。
运筹学可以通过数学模型和算法,对生产线进行优化调度。
例如,可以使用线性规划模型来确定每条生产线的产量和调度,以最大化总利润;也可以使用整数规划模型来考虑生产线的限制和约束条件。
2.物流网络设计一家物流公司需要设计其物流网络,以最小化成本并满足客户对快速物流的需求。
运筹学可以通过数学模型和算法,帮助物流公司优化物流网络的设计。
例如,可以使用网络流模型来确定货物在物流网络中的最佳路线和节点,以最小化总运输成本;也可以使用线性规划模型来决定在不同节点上的仓库和货物库存量,以满足客户的需求。
3.航班调度问题一家航空公司需要制定最佳航班调度计划,以最大化航班利润并排除延误风险。
运筹学可以通过数学模型和算法,帮助航空公司优化航班调度。
例如,可以使用线性规划模型来决定不同航班的起降时间和机型,以最大化航班利润;也可以使用排队论模型来评估航班的延误风险,并制定相应的调度策略。
4.人员调度问题一家超市需要制定最佳的员工调度计划,以最大化服务质量和节约人力成本。
运筹学可以通过数学模型和算法,帮助超市优化员工调度。
例如,可以使用整数规划模型来决定不同时间段需要多少员工,并考虑员工的技能匹配和工作时间的合理安排;也可以使用模拟仿真方法来评估不同调度策略的效果,并做出相应的决策。
以上是几个简单的运筹学实际应用案例,运筹学在实际生产和管理中有着广泛的应用。
通过数学模型和算法的应用,可以帮助企业优化资源配置、提高效率和决策质量,从而实现最佳的经济效益。
运筹学实例 含解析

案例1. 工程项目选择问题某承包企业在同一时期内有八项工程可供选择投标。
其中有五项住宅工程,三项工业车间。
由于这些工程要求同时施工,而企业又没有能力同时承担,企业应根据自身的能力,分析这两类工程的盈利水平,作出正确的投标方案。
有关数据见下表:表1 可供选择投标工程的有关数据统计工程类型 预期利润/元 抹灰量/m 2混凝土量/ m 3砌筑量/ m 3住宅每项 50011 25 000 280 4 200 工业车间每项 80 000480 880 1 800 企业尚有能力108 0003 68013 800试建立此问题的数学模型。
解:设承包商承包X 1项住宅工程,X 2项工业车间工程可获利最高,依题意可建立如下整数模型:目标是获利最高,故得目标函数为21X 80000X 50011z Max +=根据企业工程量能力限制与项目本身特性,有约束:利用WinSQB 建立模型求解:1080002X 4801X 25000≤+3680X 880X 28021≤+13800X 1800X 420021≤+为整数,;,2121X X 3X 5X ≤≤综上,承包商对2项住宅工程,3项车间工程进行投标,可获利最大,目标函数Max z=340022 元。
案例2. 生产计划问题某厂生产四种产品。
每种产品要经过A,B两道工序加工。
设该厂有两种规格的设备能完成A工序,以A1 ,A2表示;有三种规格的设备能完成B工序,以B1 ,B2,B3 表示。
产品D可在A,B任何一种规格的设备上加工。
产品E可在任何规格的A设备上加工,但完成B工序时只能在B1设备上加工。
产品F可在A2及B2 ,B3上加工。
产品G可在任何一种规格的A设备上加工,但完成B工序时只能在B1 ,B2设备上加工。
已知生产单件产品的设备工时,原材料费,及产品单价,各种设备有效台时如下表,要求安排最优的生产计划,使该厂利润最大?设设产品设备有效台时1 2 3 4A1 A2 B1 B2 B357647109812111068108601110000400070004000原料费(元/件)单价(元/件)0.251.250.352.000.502.800.42.4解:设Xia(b)j为i产品在a(b)j设备上的加工数量,i=1,2,3,4;j=1,2,3,得变量列表设备产品设备有效台时Ta(b)j1 2 3 4A1 A2 B1 B2 B3X1a1X1a2X1b1X1b2X1b3X2a1X2a2X2b1X3b2X3b3X3a1X3a2X3b1X3b2X3b3X4a1X4a2X4b1X4b2X4b3601110000400070004000原料费Ci (元/件) 单价Pi (元/件) 0.25 1.25 0.352.00 0.50 2.80 0.4 2.4其中,令X 3a 1,X 3b 1,X 3b 2,X 3b 3,X 4b 3=0 可建立数学模型如下: 目标函数: ∑∑==-=4121)](*[Maxi j iaj Ci Pi X z=1.00*(X 1a 1+X 1a 2)+1.65*(X 2a 1+X 2a 2)+2.30* X 3a 2+2.00*( X 4a 1+X 4a 2)约束条件:利用WinSQB 求解(X1~X4,X5~X8,X9~X12,X13~X17,X18~X20分别表示各行变量):4,3,2,1X21j 31==∑∑==i X j ibjiaj2,1T X 41iaj=<=∑=j Taj i iaj 3,2,141=<=∑=j TbjT Xi ibj ibj2,1;4,3,2,10X iaj ==>=j i 且为整数32,1;4,3,2,10X ibj ,且为整数==>=j i 0X X X X X 4b33b33b23b13a1=====综上,最优生产计划如下:设备产品1 2 3 4A1 A2 B1 B2 B3774235004004008732875目标函数zMax=3495,即最大利润为3495案例3. 高校教职工聘任问题 (建摸)由校方确定的各级决策目标为:P 1 要求教师有一定的学术水平。
运筹学案例集

运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示。
又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2-25)、某公司面临一个是外包协作还是自行生产的问题。
该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。
甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。
问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。
设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成B 工序。
Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。
问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。
该厂现有工人100人,每月白坯纸供应量为3万公斤。
已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。
运筹学应用案例

运筹学应用案例运筹学是一门应用数学,研究如何在资源有限的情况下,最优地组织和管理这些资源。
运筹学的应用范围非常广泛,涉及到各个领域。
以下是一个关于运筹学应用的实际案例。
某公司是一家制造业企业,主要生产产品A和产品B。
这家公司有两个生产车间和一个物流中心,每个车间配备了不同的生产设备。
公司的目标是最大化利润。
产品A在车间1中生产,车间1的生产设备可以在一小时内生产5个单位的产品A。
产品B在车间2中生产,车间2的生产设备可以在一小时内生产4个单位的产品B。
物流中心负责将产品A和产品B运送到市场,物流中心的运输能力为每小时20个单位。
同时,公司还面临一个资源的限制,即每天生产的产品A和产品B的总数不能超过400个单位。
另外,公司还有一个库存的限制,即每天生产的产品A和产品B的总数不能超过600个单位。
为了系统地解决这个问题,公司决定使用运筹学的方法进行决策。
首先,公司需要确定目标函数。
由于公司的目标是最大化利润,所以可以将目标函数定义为利润函数。
假设公司每个单位的产品A的利润为10美元,每个单位的产品B的利润为8美元。
那么公司的目标函数可以定义为:Z=10A+8B。
然后,公司需要确定约束条件。
根据资源的限制,可以得到以下约束条件:A≤5×小时数(车间1的生产能力)B≤4×小时数(车间2的生产能力)A+B≤400(每天生产的总数限制)A+B≤600(库存的限制)20A+20B≤600(物流中心的运输能力)接下来,公司需要确定变量的取值范围。
由于产量和库存数量为实数,所以可以将A和B的取值范围定义为非负实数。
最后,公司需要使用线性规划算法来求解最优解。
线性规划算法可以通过求解目标函数的最大值来找到最优解。
在这个案例中,可以使用单纯形法来求解最优解。
通过使用运筹学的方法,公司可以得到最优的生产和运输计划,以最大化利润。
对于公司而言,这个案例展示了如何在资源有限的情况下,通过合理的规划和管理,实现最优的生产和销售策略。
运筹学案例集

运筹学案例集常州宝菱重工机械有限公司孔念荣收集整理运筹学的一些典型性应用•合理利用材料问题:如何在保证生产的条件下,下料最少•配料问题:在原料供应量的限制下,如何获取最大收益•投资问题:从投资项目中选取最佳组合,使投资回报最大•产品生产计划:合理利用人力、物力、财力等,使获利最大•劳动力安排:用最少的劳动力来满足工作的需要•运输问题:如何制定最佳调运方案,使总运费最少一、生产计划问题案例1(2-4)、某工厂用A、B、C、D四种原料生产甲、乙两种产品,生产甲和乙所需各种原料的数量以及在一个计划期内各种原料的现有数量见下表所示。
又已知每单位产品甲、乙的售价分别为400元和600元,问应如何安排生产才能获得最大收益?已知生产单位产品所需的设备台时及A、B两种原材料的消耗、资源的限制,如下表:问题:工厂应分别生产多少单位Ⅰ、Ⅱ产品才能使工厂获利最多?案例3(2-25)、某公司面临一个是外包协作还是自行生产的问题。
该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。
甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量,数据如下表所示。
问题:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?案例4(2-28)、永久机械厂生产Ⅰ、Ⅱ、Ⅲ三种产品,均要经过A、B两道工序加工。
设有两种规格的设备A1、A2能完成A工序;有三种规格的设备B1、B2、B3能完成 B 工序。
Ⅰ可在A、B的任何规格的设备上加工;Ⅱ可在任意规格的A设备上加工,但对B工序,只能在B1设备上加工;Ⅲ只能在A2与B2设备上加工,数据如下表所示。
问题:为使该厂获得最大利润,应如何制定产品加工方案?案例5、某造纸厂用原材料白坯纸生产原稿纸、笔记本和练习本三种产品。
该厂现有工人100人,每月白坯纸供应量为3万公斤。
已知工人的劳动生产率为:每人每月生产原稿纸30捆,或生产日记本30打,或练习本30箱。
运筹学在工业领域的应用案例

运筹学在工业领域的应用案例运筹学是一门研究如何通过数学模型和优化方法来解决实际问题的学科。
它广泛应用于工业领域,帮助企业提高生产效率、优化资源利用以及优化决策。
本文将以一些实际案例来展示运筹学在工业领域的应用。
案例一:物流调度在现代物流中心,卡车调度是一个重要而复杂的问题。
一家物流企业面临着如何合理安排卡车的运输路线以及如何将货物分配给不同的卡车的问题。
运筹学通过建立数学模型和优化算法,可以帮助企业快速找到最佳的调度方案。
通过考虑货物的重量、体积、运输距离等因素,运筹学能够帮助企业节省时间和成本,提高物流效率。
案例二:生产计划在工业生产中,合理的生产计划对企业的运营至关重要。
运筹学可以通过建立生产计划的数学模型,考虑原材料、人力资源、设备利用率等因素,制定最优的生产计划。
这种方法可以帮助企业合理安排生产任务、减少生产成本,并确保产品按时交付。
案例三:库存管理有效的库存管理对于企业的正常运营非常重要。
过多的库存会增加企业的成本,而库存不足则会导致订单无法及时完成。
运筹学可以利用数学模型和优化算法,预测需求并制定合理的库存策略。
通过运筹学的方法,企业可以实时调整库存水平,减少库存成本,同时确保生产进度和客户需求之间的平衡。
案例四:供应链优化供应链优化是一个复杂的问题,涉及到多个环节和多个参与者之间的协调。
运筹学可以帮助企业建立供应链的数学模型,考虑供应商、生产商、分销商等各个环节的需求和约束,通过优化算法找到最佳的供应链配置方案。
通过运筹学的方法,企业可以提高供应链的响应速度和灵活性,降低整体成本,提供更好的服务。
案例五:设备维护与优化在工业领域,设备的维护和优化是保证生产连续性和降低成本的关键。
运筹学可以利用数据分析和模型建立,制定设备的维护计划和优化方案。
通过预测设备故障、制定维护策略和排班方案,运筹学可以帮助企业降低设备故障率,最大限度地提高设备利用率,进而提高生产效率和降低成本。
综上所述,运筹学在工业领域有着广泛的应用。
2.6-运筹学应用实例汇总

一、生产计划问题例:某工厂拥有A、B、C三种类型的设备,生产甲、乙、丙、丁四种产品。
每件产品在生产中需要占用的设备机时数,每件产品可以获得的利润以及三种设备每月可利用的时数如下表所示,求使总利润最大的月度生产计划。
建模思路■用线性规划制订使总利润最大的生产计划。
■设变量X1为第i种产品的生产件数(i=1, 2, 3, 4),目标函数z为相应的生产计划可以获得的总利润。
在加工时间以及利润与产品产量成线性关系的假设下,可以建立如下的线性规划模型:建模max z= 5.24X1 +7.30x2 +8.34x3 +4.18x4目标函数1.5Xj +1.0x2+2.4X3+1.0X4<2000LOX1 +5.0X2+1.0X3+3.5X4<8000 约束条件1・5X] +3.0X2+3.5X3+1.0X4<5000Xp X2, X3, X4 >0 变量非负约束练习:某公司面临一个是外包协作还是自行生产的问题。
该公司生产甲、乙、丙三种产品,都需要经过铸造、机加工和装配三个车间。
甲、乙两种产品的铸件可以外包协作,亦可以自行生产,但产品丙必须本厂铸造才能保证质量。
数据如下表。
问:公司为了获得最大利润,甲、乙、丙三种产品各生产多少件?甲、乙两种产品的铸造中,由本公司铸造和由外包协作各应多少件?甲 .乙丙资源限制铸造工时(小时/件)51078000机加工工时(小时/件)64812000装配工时(小时/件)32210000自产铸件成本(兀/件)354外协铸件成本(兀/件)56一机加工成本(元/件)213装配成本(元/件)322产品售价(元/件)231816解:设孙孙寺分别为三道工序都由本公司加工的甲、乙、丙三种产品的件数,同,幅分别为由外协铸造再由本公司加工和装配的甲、乙两种产品的件数。
求占的利润:利润二售价-各成本之和产品甲全部自制的利润产品甲铸造外协,其余自制的利润产品乙全部自制的利润产品乙铸造外协,其余自制的利润产品丙的利润可得到毛(i = 1,2, 3,4,5)的利润分别为15、10、7、13、9=23-(3+2+3)=15 =23-(5+2+3)=13 =18-(5+1+2)=10 =18-(6+1+2)=9 =16-(4+3+2)=7通过以上分析,可建立如下的数学模型:目标函数:Max 15百+ 10电+ 7两+ 13题+ 9不约束条件:5为+ 10西+ 7玛<80006为+ 4出+ 8^ + 6々+ 4不3百+ 2X2 + 2均+ 3局+ 2不毛,演,传,演,与12000 10000二、混合配料问题例:某工厂要用四种合金T1, T2, T3和T4为原料,经熔炼成为一种新的不锈钢G。
运筹学经典案例

运筹学经典案例案例一:鲍德西((B AWDSEY)雷达站的研究20世纪 30 年代,德国内部民族沙文主义及纳粹主义日渐抬头。
以希特勒为首的纳粹势力夺取了政权开始为以战争扩充版图,以武力称霸世界的构想作战争准备。
欧洲上空战云密布。
英国海军大臣丘吉尔反对主政者的“绥靖”政策,认为英德之战不可避免,而且已日益临近。
他在自己的权力范围内作着迎战德国的准备,其中最重要、最有成效之一者是英国本土防空准备。
1935 年,英国科学家沃森—瓦特( R.Watson-Wart )发明了雷达。
丘吉尔敏锐地认识到它的重要意义,并下令在英国东海岸的 Bawdsey 建立了一个秘密的雷达站。
当时,德国已拥有一支强大的空军,起飞 17 分钟即可到达英国。
在如此短的时间内,如何预警及做好拦截,甚至在本土之外或海上拦截德机,就成为一大难题。
雷达技术帮助了英国,即使在当时的演习中已经可以探测到160 公里之外的飞机,但空防中仍有许多漏洞,1939 年,由曼彻斯特大学物理学家、英国战斗机司令部科学顾问、战后获诺贝尔奖金的P.M.S.Blachett 为首,组织了一个小组,代号为“ Blachett 马戏团”,专门就改进空防系统进行研究。
这个小组包括三名心理学家、两名数学家、两名应用数学家、一名天文物理学家、一名普通物理学家、一名海军军官、一名陆军军官及一名测量人员。
研究的问题是:设计将雷达信息传送给指挥系统及武器系统的最佳方式;雷达与防空武器的最佳配置;对探测、信息传递、作战指挥、战斗机与防空火力的协调,作了系统的研究,并获得了成功,从而大大提高了英国本土防空能力,在以后不久对抗德国对英伦三岛的狂轰滥炸中,发挥了极大的作用。
二战史专家评论说,如果没有这项技术及研究,英国就不可能赢得这场战争,甚至在一开始就被击败。
“ Blackett 马戏团”是世界上第一个运筹学小组。
在他们就此项研究所写的秘密报告中,使用了“Operatio nal Research” 一词,意指作战研究”或"运用研究"。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Wij— 第 i 年年初购进的新设备一直使用到第 j 年年初
这段 期间的全部费用。
精品课件
v2
15
21
15 40 29
30
21
v1
29
40 55
v3
16 22
23
v4
17
v6
18
v5
求解得v1到v6得最短路径为: v1-v3-v6,最短路长为51。 设备更新的计划是:第一年初购置一台新设备,使用到第二年末, 第三年初购置一台新设备,使精用品到课件第五年末,总费用为51。
V5 V6
89 69 25 14 03 30
V V1 V2 V3 V4 V5 V6
1
V 11 2345
2
V
C6= 3
V
4
V
22 23 33 44
2345 3345 4445 4555
5 55 5566
V
6
考虑各点的学习人数,对矩阵D6的每一行乘以相应各点的 人数,得到:
精品课件
0 50 150 175 200 275 40 0 80 100 120 180 180 120 0 30 60 150 D= 70 50 10 0 10 40 280 210 70 35 0 105 495 405 225 180 135 0
2
V
C0= 3
V
22 2 33 3 44 4
222 333 444
4
V 8 3 1 0 3
4
V 55 5 5 5 5
5 6 3 0
5 66 6 6 6 6
V
V0和相应的中间点矩阵C0如下:
精品课件
V
1
V
2
V D6=3V
4
V
5
V
6
V1 V2 V3 V4
02 67 20 45 64 01 75 10 8 621 11 9 5 4
年份
1
购置费
10
使用年限 0 -1
维修费
5
2
3
10
11
1- 2 2- 3
6
8
精品课件
4
5
表1
12 13
3- 4 4- 5 表2 11 15
解:为解决好这一问题,建立下述网络模型,并用最短路
令法:求解vi。— 第 i 年年初购进一台新设备,i=1 , 2 , 3 ,
4,5,6 v6 指第五年年末。
(vi,vj)— 第 i年年初引进新设备一直使用到第 j 年
下图是一个城镇的地图,现在要在该城镇的各地点铺设 管道,已知各点相互之间的铺设费用(单位:千元), 如何设计铺设线路,使各地互通的总铺设费用最少?
8
3
74
5
10
7
2
6
7 9
8 12
51
5
4
精品课件
解:求各边相通且总费用最少的方案,实际上求最小树, 保证了各点之间连通且费用最少。
3
4
7
5
2
1
4
5
其总费用为:31千元
精品课件
市场 仓库
A1 A2 A3
B1 B2 B3 B4
30 10 0 40 0 0 10 50 20 10 40 5
需 求 量 20 20 60 20
精品课件
例 6:网络运输容量问题
有三个仓库运送某种产品到四个市场上去,仓库的供应量 是20、20和100件,市场需求量是20、20、60和20件。仓库 与市场之间的线路上的容量如下表所示(容量零表示两点 之间无直接的线路可通)。确定现有线路容量是否能满足 市场的需求。若不能,应修改哪条线路的容量。
v2
6
2
1
v1
48
7
v3
3
v4 6
1
v6
3 v5
精品课件
解:首先计算各点对间的最短路,每个学习者为使所走的路 程最短,应走最短路。
V V1 V2 V3 V4 V5 V6
1
V V1 V2 V3 V4 V5
1
V6
V 0 2 7
V 11 1 1 1 1
2
V
D0= 3
V
2 04 6 8 74 0 1 3 6 1 0 1 6
用一条边把代表这两个项目
v2
的顶点连接起来。这样得到
v3
下图
v1
为了解决这个问题,只需
找到一条包含所有顶点的
v4
初等链。
v5
如:{v4,v1,v2,v3,v5}是一条初等链,对应的比赛是: 100m自由泳,50m仰泳,50m蛙泳,100m碟泳,200m自由泳。
此问题的方案不唯一。 精品课件
例 2.线路铺设问题
例4.房屋设计问题
下图是某建筑物的平面图,要求在建筑物的内部从每一房间 都能走到别的所有房间,问至少要在墙上开多少门?试给出 一个开门的方案。
C B
A
D
E
I J
H
K G
F
精品课件
解:
把每一房间看作一个顶点,如果两房间相邻(有共同的隔 墙),则用边把对应的两个顶点连起来,这样就得到一个 无向图,如图。
§4.7 应 用 举 例
例1:比赛安排问题 有五名运动员参加游泳比赛,下表给出了每位运动员参加的 比赛项目,问如何安排比赛,才能使每位运动员都不连续地 参加比赛?
运动员 50m仰泳 50m蛙泳 100m蝶泳 100m自由泳 200m自由泳
A
*
B
*
*
*
C
*
*
D
*
*
E
*
*
精品课件
解:
用顶点v1,v2,v3,v4,v5表示五项比赛项目 如果两项比赛没有同一名运动员参加,把这两项紧排在一起
I H
G F
对应的开门方案如图所 示,共开10个门。
J B C IJ
K A
H D GK
E
F
精品课件
开门方案
例5:选址问题
有六个居民点v1,v2,v3,v4,v5,v6,拟定建一夜校,已知 各点参加学习的人数为25、20、30、10、35、45人,其道路 如图所示,试确定学校位于哪一个居民点,才能使学习者所 走的总路程最少?(图中边旁的数字为路段长度)
从一个房间到另一房间相当于从这个顶点有一条链能到另一 个顶点。
C
I
B
J 图的任意一个连通
H
A
D
G
的生成子图,在它
的所有边对应的隔 K 墙上开门,即可达
到要求。
E
F 精品课件
令所有边的权为1,为了使开的门尽可能少,就要使这个连 通子图的生成子图的边尽可能少,即求图的最小生成树。
B
C
D A
E
最小生成树
D = [1065 835 535 520 525 750]
V1…….V4:V1- V2 - V3 V4
V2…….V4: V2 - V3 - V4 V3…….V4: V3 - V4 V5…….V4: V5 - V4 V6…….V4: V6- V5 - V4
最短路程为520,即夜校应设在v4点,由
C6得到相应路径。
精品课件
例3.设备更新问题
某单位使用一台生产设备,在每年年底,单位领导都要决 策下年度是购买新设备还是继续使用旧设备。
若购置新设备,需要支付一笔购置费;如果继续使用旧的, 则要支付一定的维修费用。
一般说来,维修费随设备使用年限的延长而增加。根据以 往的统计资料,已经估算出设备在各年年初的价格和不同 使用年限的年维修费用,分别示于表1和表2。