复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版-习题1

合集下载

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

y
v ex ( y cos y x sin y) ex (sin y) ex ( y cos y x sin y sin y) x
v ex (cos y y( sin y ) x cos y) ex (cos y y sin y x cos y ) y
所以 u
v ,
u
v
xy
y
x
所以 f( z)处处可导,处处解析 .
v
xy
y
x
所以 v xv,v源自xyv ,即 u u v v 0
y
xyxy
从而 v 为常数, u 为常数,即 f(z)为常数 .
(3) Ref (z)=常数 .
证明:因为 Ref(z)为常数,即 u=C1, u x
u0 y
因为 f( z)解析, C-R 条件成立。故 u x
u 0 即 u=C2 y
从而 f( z)为常数 .
而 lim u x, y x, y 0,0
x 3 y3
lim
x, y 0,0
x2
y2
欢迎下载
7


x3 x2
y3 y2
xy x y 1 x2 y2
∴ 0≤
x3 x2
y3 3 y2 ≤ 2 x
y
x3 y3

lim
x, y 0,0
x2
y2
0
同理
x3
lim
x, y 0,0
x2
y3 y2
0
∴ lim f z 0 f 0 x, y 0,0
证明:因为 f ( z) 0 ,所以 u x
u 0, v
y
x
v 0.
y
所以 u,v 为常数,于是 f(z)为常数 .

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版)主编:马柏林(复旦大学出版社)——课后习题答案习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++.①解i 4πππe cos isin 44-⎛⎫⎛⎫⎛⎫=-+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ ②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+ 2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛⎫-+-- ⎪⎝⎭⎝⎭①: ∵设z =x +iy则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++ ∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭∴Re 1=⎝⎭, Im 0=⎝⎭.④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数①解:2i -+== ②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++④解:1i 1i 22++==4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0 ∴z =x 为实数.若z =x ,x ∈ ,则z x x ==. ∴z z =.命题成立.5、设z ,w ∈ ,证明: z w z w ++≤证明∵()()()()2z w z w z w z w z w +=+⋅+=++∴z wz w ++≤.6、设z ,w ∈ ,证明下列不等式. 并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和. 7.将下列复数表示为指数形式或三角形式 ①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--===其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.③解:ππi i 1e e -==④解:()28π116ππ3θ-+==-.∴()2πi 38π116πe--+=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭ 8.计算:(1)i 的三次根;(2)-1的三次根;(3) 的平方根.⑴i 的三次根. 解:∴1ππ1cosisin i 662=+z .2551cos πisin πi 662=+=+z ⑵-1的三次根 解:∴1ππ1cos isin 332=+=z的平方根.解:πi 4e ⎫⎪⎪⎝⎭)()1π12i 44ππ2π2π44e6cos isin 0,122k k k ⎛⎫++ ⎪=⋅+= ⎪⎝⎭∴π11i 8441ππ6cos isin 6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z911πi 8442996cos πisin π6e 88⎛⎫=⋅+=⋅ ⎪⎝⎭z .9.设2πe,2inz n =≥. 证明:110n z z -+++=证明:∵2πi e nz ⋅= ∴1n z =,即10n z -=.∴()()1110n z z z --+++=又∵n ≥2. ∴z ≠1从而211+0n z z z -+++=11.设Γ是圆周{:},0,e .i z r r a c r z c α=>=+-令:Im 0z a L z b β⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭, 其中e i b β=.求出L β在a 切于圆周Γ的关于β的充分必要条件. 解:如图所示.因为L β={z : Im z a b -⎛⎫⎪⎝⎭=0}表示通过点a 且方向与b 同向的直线,要使得直线在a 处与圆相切,则CA ⊥L β.过C 作直线平行L β,则有∠BCD =β,∠ACB =90° 故α-β=90°所以L β在α处切于圆周T 的关于β的充要条件是α-β=90°.12.指出下列各式中点z 所确定的平面图形,并作出草图. 解:(1)、argz =π.表示负实轴. (2)、|z -1|=|z |.表示直线z =12. (3)、1<|z +i|<2解:表示以-i 为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数参考答案(1-8章)

复变函数参考答案(1-8章)

复变函数与积分变换同步练习参考答案中北大学复变函数教研室编印1复变函数同步练习第一章参考答案三、作业题1、(1)设23412i z i +⎛⎞=⎜⎟−⎝⎠,则z = 5 ,辐角主值为4arctan()3π−。

(2)设55(1)1(1)1i z i −−=++,则其实部为125−,虚部为3225−。

提示:本题注意到2(1)2i i −=−,2(1)2i i +=。

则52225222(1)1[(1)](1)1(2)(1)1132(1)1[(1)](1)1(2)(1)12525i i i i i z i i i i i i −−−−−−−−====−−+++++++ 。

(3)一复数对应的向量按逆时针方向旋转23π时对应的复数为1i +,则原复数为1122−+−+。

提示:本题相当于解23111(1)()(1)2222i z ei i i i π−−+−=+=−−+=+。

(4)设1z =2z i =−,则12z z 的指数式i122e π,12zz 的三角式为 155[cos sin 21212i ππ+。

(5)2122lim1z zz z z z →+−−=−32。

提示:211122(2)(1)23limlim lim 1(1)(1)12z z z zz z z z z z z z z z →→→+−−+−+===−−++。

(6)设复数z 满足arg(2)3z π+=,5arg(2)6z π−=,那么z=1−+。

提示:(利用复数的几何意义)向量2z −与向量2z +夹角为5632πππ−=,在复平面上,代表复数2z −、z 、2z +的点在平行于x 轴的直线上(由于此三点的虚轴没有发生变2化)。

连接0,2z +,2z −的三角形为Rt Δ。

因此推出向量2z =,2arg 3z π=,即1z =−+。

本题也可以利用代数法来做。

2、把复数πααα≤≤+−=0,sin cos 1i z 化为三角表示式与指数表示式,并求z 的辐角主值。

复变函数与积分变换习题册(含答案)

复变函数与积分变换习题册(含答案)

第1章 复数与复变函数 (作业1)一、填空题 1、ieπ2的值为 。

2、k 为任意整数,则34+k 的值为 。

3、复数i i (1)-的指数形式为 。

4、设b a ,为实数,当=a , b= 时,).35)(1()3()1(i i b i a ++=-++ 二、判断题(正确的划√,错误的划 ) 1、2121z z z z +=+ ( )2、()()())z Re(iz Im ;z Im iz Re =-= ( )3、()()i i i 125432+=++ ( ) 三、选择题1.当ii z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1-2.复数)(tan πθπθ<<-=2i z 的三角表示式是( )(A ))]2sin()2[cos(secθπθπθ+++i (B ))]23sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos(secθπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 3.使得22z z =成立的复数z 是( )(A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 4.若θi re i i=+--2)1(3,则( ) (A )πθ-==3arctan ,5r (B )πθ-==3arctan ,210r (C )3arctan ,210-==πθr (D )3arctan ,5-==πθr 5. 设复数z 位于第二象限,则z arg 等于( )。

(A) x y arctan 2+π (B) x y arctan +π (C) x y arctan 2-π (D) xy arctan +-π 四、计算与证明题 1、设ii i i z -+-=11,求.),Im(),Re(z z z z2、当x y ,等于什么实数时,等式()i iy i x +=+-++13531成立?3、求复数ii-+23的辐角。

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

习题二1. 求映射1w z z=+下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则 2222221i i i i i()i x y x y u v x y x y x y x y x y x y x y -+=++=++=++-++++ 因为224x y +=,所以53i 44u iv x y +=+ 所以 54u x =,34v y =+ 5344,u v x y == 所以()()2253442uv +=即()()222253221u v +=,表示椭圆.2. 在映射2w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ϕρ=或i w u v =+.(1)π02,4r θ<<=; (2)π02,04r θ<<<<; (3) x=a, y=b .(a, b 为实数) 解:设222i ()2i w u v x iy x y xy =+=+=-+所以22,2.u x y v xy =-=(1) 记e i w ϕρ=,则π02,4r θ<<=映射成w 平面内虚轴上从O 到4i 的一段,即 π04,.2ρϕ<<=(2) 记e i w ϕρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即π04,0.2ρϕ<<<<(3) 记w u iv =+,则将直线x =a 映成了22,2.u a y v ay =-=即2224().v a a u =-是以原点为焦点,张口向左的抛物线将y =b 映成了22,2.u x b v xb =-=即2224()v b b u =+是以原点为焦点,张口向右抛物线如图所示.3. 求下列极限.(1) 21lim 1z z →∞+; 解:令1z t=,则,0z t →∞→. 于是22201lim lim 011z t t z t →∞→==++. (2) 0Re()lim z z z→; 解:设z =x +y i ,则Re()i z x z x y=+有 000Re()1lim lim i 1i z x y kx z x z x kx k →→=→==++ 显然当取不同的值时f (z )的极限不同所以极限不存在.(3) 2lim (1)z i z i z z →-+; 解:2lim (1)z i z i z z →-+=11lim lim ()()()2z i z i z i z i z z i z i z →→-==-+-+.(4) 2122lim 1z zz z z z →+---. 解:因为222(2)(1)2,1(1)(1)1zz z z z z z z z z z +--+-+==-+-+ 所以2112223lim lim 112z z zz z z z z z →→+--+==-+.4. 讨论下列函数的连续性: (1) 22,0,()0,0;xy z x y f z z ⎧≠⎪+=⎨⎪=⎩ 解:因为220(,)(0,0)lim ()lim z x y xy f z x y →→=+, 若令y =kx ,则222(,)(0,0)lim1x y xy k x y k →=++, 因为当k 取不同值时,f (z )的取值不同,所以f (z )在z =0处极限不存在. 从而f (z )在z =0处不连续,除z =0外连续. (2) 342,0,()0,0.x y z f z x y z ⎧≠⎪=+⎨⎪=⎩ 解:因为33422022x y x x y x y x y ≤≤=+, 所以342(,)(0,0)lim 0(0)x y x y f x y →==+ 所以f (z )在整个z 平面连续.5. 下列函数在何处求导?并求其导数.(1) 1()(1)n f z z -=- (n 为正整数);解:因为n 为正整数,所以f (z )在整个z 平面上可导.1()(1)n f z n z -'=-. (2) 22()(1)(1)z f z z z +=++. 解:因为f (z )为有理函数,所以f (z )在2(1)(1)0z z ++=处不可导. 从而f (z )除1,i z z =-=±外可导.2222232222(2)(1)(1)(1)[(1)(1)]()(1)(1)2543(1)(1)z z z z z z f z z z z z z z z ''+++-+++'=++-+++=++ (3) 38()57z f z z +=-. 解:f (z )除7=5z 外处处可导,且223(57)(38)561()(57)(57)z z f z z z --+'==---. (4) 2222()i x y x y f z x y x y +-=+++. 解:因为2222222i()i i(i )(i )(1i)(1i)1i ()x y x y x y x y x y z f z x y x y x y z z ++--+--+++=====+++. 所以f (z )除z =0外处处可导,且2(1i)()f z z+'=-.6. 试判断下列函数的可导性与解析性.(1) 22()i f z xy x y =+; 解:22(,),(,)u x y xy v x y x y ==在全平面上可微.22,2,2,y u v v y xy xy x x y x y∂∂∂∂====∂∂∂∂ 所以要使得u v x y ∂∂=∂∂, u v y x∂∂=-∂∂, 只有当z =0时,从而f (z )在z =0处可导,在全平面上不解析.(2) 22()i f z x y =+.解:22(,),(,)u x y x v x y y ==在全平面上可微.2,0,0,2u u v v x y x y x y∂∂∂∂====∂∂∂∂ 只有当z =0时,即(0,0)处有u v x y ∂∂=∂∂,u v y y∂∂=-∂∂. 所以f (z )在z =0处可导,在全平面上不解析.(3) 33()23i f z x y =+;解:33(,)2,(,)3u x y x v x y y ==在全平面上可微.226,0,9,0u u v v x y x y x y∂∂∂∂====∂∂∂∂=时,才满足C-R 方程.从而f (z )0=处可导,在全平面不解析. (4) 2()f z z z =⋅.解:设i z x y =+,则23232()(i )(i )i()f z x y x y x xy y x y =-⋅+=+++ 3232(,),(,)u x y x xy v x y y x y =+=+22223,2,2,3u u v v x y xy xy y x x y x y∂∂∂∂=+===+∂∂∂∂ 所以只有当z =0时才满足C-R 方程.从而f (z )在z =0处可导,处处不解析.7. 证明区域D 内满足下列条件之一的解析函数必为常数.(1) ()0f z '=;证明:因为()0f z '=,所以0u u x y ∂∂==∂∂,0v v x y∂∂==∂∂. 所以u ,v 为常数,于是f (z )为常数.(2) ()f z 解析. 证明:设()i f z u v =-在D 内解析,则()u v u v x y x y∂∂-∂∂=⇒=-∂∂∂∂ ()u v v y x y∂-∂-∂==+∂∂∂ ,u v u v x y y x∂∂∂∂=-=∂∂∂∂ 而f (z )为解析函数,所以,u u u v x y y x ∂∂∂∂==-∂∂∂∂ 所以,,v v v v x x y y ∂∂∂∂=-=-∂∂∂∂即0u u v v x y x y∂∂∂∂====∂∂∂∂ 从而v 为常数,u 为常数,即f (z )为常数.(3) Re f (z )=常数.证明:因为Re f (z )为常数,即u =C 1, 0u u x y∂∂==∂∂ 因为f (z )解析,C-R 条件成立。

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题1

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题1

习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i -++++++.①解:i 4πππe cos isin 442222-⎛⎫⎛⎫⎛⎫=-+-=+-=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解: ()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+④解: ()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 333;;;.n z i①解: ∵设z =x +iy 则 ()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y-++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+- ∴()332Re 3z x xy =-, ()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭ ()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭.⑤解: ∵()()1,2i 211i,k n k n k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩.∴当2n k =时,()()Re i 1k n =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1k n =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2i i i i +-+-++①解:2i -+== 2i 2i -+=-- ②解:33-= 33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i++=+⋅+=-⋅-=-④解:1i1i 22++== ()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数.证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z =x 为实数.若z =x ,x ∈,则z x x ==. ∴z z =. 命题成立. 5、设z ,w ∈,证明: z w z w ++≤ 证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w w z zw z w wz wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅ ()2222222z w z wz w z w z w ++⋅=++⋅=+≤ ∴z w z w ++≤. 6、设z ,w ∈,证明下列不等式.()2222Re z w z z w w +=+⋅+()2222Re z w z z w w -=-⋅+ ()22222z w z w z w ++-=+并给出最后一个等式的几何解释. 证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了.下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w -=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证. ∴()22222z w z w z w ++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3 352π2π;;1;8π(1);.cos sin7199ii ii+⎛⎫--+⎪+⎝⎭①解:()()()()35i17i35i7i117i17i+-+=++-3816i198ie5025iθ⋅--===其中8πarctan19θ=-.②解:e iiθ⋅=其中π2θ=.π2e ii=③解:ππi i1e e-==④解:()28π116ππ3θ-==-.∴()2πi38π116πe--=⋅⑤解:32π2πcos isin99⎛⎫+⎪⎝⎭解:∵32π2πcos isin199⎛⎫+=⎪⎝⎭.∴322πiπ.3i932π2πcos isin1e e99⋅⎛⎫+=⋅=⎪⎝⎭8.计算:(1)i的三次根;(2)-1的三次根;的平方根.⑴i的三次根.()13ππ2π2πππ22cos sin cos isin0,1,22233++⎛⎫+=+=⎪⎝⎭k ki k∴1ππ1cos isin i662=+z.2551cosπisinπi662=+=z3991cosπisinπi662=+=z⑵-1的三次根()()132π+π2ππcosπisinπcos isin0,1,233k kk++=+=∴1ππ1cos isin332=+=z2cosπisinπ1=+=-z3551cosπisinπ332=+=-z的平方根.解:πi4e⎫=⎪⎪⎝⎭)()1π12i44ππ2π2π44e6cos isin0,122k kk⎛⎫++⎪=⋅+=⎪⎝⎭∴π11i8441ππ6cos isin6e88⎛⎫=⋅+=⋅⎪⎝⎭z911πi8442996cosπisinπ6e88⎛⎫=⋅+=⋅⎪⎝⎭z.9.设2πe,2inz n=≥. 证明:110nz z-+++=证明:∵2πie nz⋅=∴1nz=,即10nz-=.∴()()1110nz z z--+++=又∵n≥2.∴z≠1从而211+0nz z z-+++=11.设Γ是圆周{:},0,e.iz r r a c rz cα=>=+-令:Im0z aL zbβ⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭,其中e ibβ=.求出Lβ在a切于圆周Γ的关于β的充分必要条件.解:如图所示.因为Lβ={z: Imz ab-⎛⎫⎪⎝⎭=0}表示通过点a且方向与b同向的直线,要使得直线在a处与圆相切,则CA⊥Lβ.过C作直线平行Lβ,则有∠BCD=β,∠ACB=90°故α-β=90°所以Lβ在α处切于圆周T的关于β的充要条件是α-β=90°.12.指出下列各式中点z所确定的平面图形,并作出草图.(1)argπ;(2);1(3)1|2;(4)Re Im;(5)Im1 2.zz zz iz zz z==-<+<>><且解:(1)、argz=π.表示负实轴.(2)、|z-1|=|z|.表示直线z=12.(3)、1<|z+i|<2解:表示以-i为圆心,以1和2为半径的周圆所组成的圆环域。

复变函数与积分变换(修订版-复旦大学)课后的习题答案

复变函数与积分变换(修订版-复旦大学)课后的习题答案

(
)
证明∵ z + w = ( z + w) ⋅ ( z + w) = ( z + w) z + w = z ⋅ z + z ⋅ w + w⋅ z + w⋅ w = z + zw+ z⋅ w + w = z + w

2 2 2 2
(
)
∴ −8π 1 + 3i = 16π ⋅ e 2π 2π ⎞ ⑤解: ⎛ + i sin ⎟ ⎜ cos 9 9 ⎠ ⎝
5、Imz>1,且|z|<2. 解:表示圆盘内的一弓形域。
iϕ (2) 记 w = ρ e ,则
0<θ <
π ,0 < r < 2 4 映成了 w 平面 π . 2
习题二 1 z 下圆周 | z |= 2 的像.
上扇形域,即
0 < ρ < 4, 0 < ϕ <
−7i
⎤ = x ( x − y ) − 2 xy + ⎡ ⎣ y ( x − y ) + 2x y ⎦ i
2 2 2 2 2 2
= x3 − 3 xy2 + ( 3 x2 y − y3 ) i

Re ( z
3
)=x
3
− 3 xy
2
,
Im ( z 3 ) = 3 x 2 y − y 3 .
⎛ 1 + i ⎞ (1 + i ) 1 − i ⎜ 2 ⎟= 2 = 2 ⎝ ⎠
复变函数与积分变换(修订版)课后答案(复旦大学出版社)
π ⎛ 2 i 2 ⎞ 4 解: 3 + 3i= 6 ⋅ ⎜ + i = 6 ⋅ e ⎟ ⎜ 2 ⎟ 2 ⎠ ⎝

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

复变函数与积分变换答案(马柏林、李丹横、晏华辉)修订版,习题2

习题二1. 求映射1w z z =+下圆周||2z =的像. 解:设i ,i z x y w u v =+=+则 2222221i i i i i()i x y x y u v x y x y x y x y x y x y x y -+=++=++=++-++++ 因为224x y +=,所以53i 44u iv x y +=+ 所以 54u x =,34v y =+ 5344,u v x y == 所以()()2253442uv +=即()()222253221u v +=,表示椭圆.2. 在映射2w z =下,下列z 平面上的图形映射为w 平面上的什么图形,设e i w ϕρ=或i w u v =+.(1)π02,4r θ<<=; (2)π02,04r θ<<<<; (3) x=a, y=b .(a, b 为实数) 解:设222i ()2i w u v x iy x y xy =+=+=-+所以22,2.u x y v xy =-=(1) 记e i w ϕρ=,则π02,4r θ<<=映射成w 平面内虚轴上从O 到4i 的一段,即 π04,.2ρϕ<<=(2) 记e i w ϕρ=,则π0,024r θ<<<<映成了w 平面上扇形域,即π04,0.2ρϕ<<<<(3) 记w u iv =+,则将直线x =a 映成了22,2.u a y v ay =-=即2224().v a a u =-是以原点为焦点,张口向左的抛物线将y =b 映成了22,2.u x b v xb =-=即2224()v b b u =+是以原点为焦点,张口向右抛物线如图所示.3. 求下列极限.(1) 21lim 1z z →∞+; 解:令1z t=,则,0z t →∞→. 于是22201lim lim 011z t t z t →∞→==++. (2) 0Re()lim z z z→; 解:设z =x +y i ,则Re()i z x z x y=+有 000Re()1lim lim i 1i z x y kx z x z x kx k →→=→==++ 显然当取不同的值时f (z )的极限不同所以极限不存在.(3) 2lim (1)z i z i z z →-+; 解:2lim (1)z i z i z z →-+=11lim lim ()()()2z i z i z i z i z z i z i z →→-==-+-+.(4) 2122lim 1z zz z z z →+---. 解:因为222(2)(1)2,1(1)(1)1zz z z z z z z z z z +--+-+==-+-+ 所以2112223lim lim 112z z zz z z z z z →→+--+==-+.4. 讨论下列函数的连续性: (1) 22,0,()0,0;xy z x y f z z ⎧≠⎪+=⎨⎪=⎩ 解:因为220(,)(0,0)lim ()limz x y xy f z x y →→=+, 若令y =kx ,则222(,)(0,0)lim1x y xy k x y k →=++, 因为当k 取不同值时,f (z )的取值不同,所以f (z )在z =0处极限不存在. 从而f (z )在z =0处不连续,除z =0外连续. (2) 342,0,()0,0.x y z f z x y z ⎧≠⎪=+⎨⎪=⎩ 解:因为33422022x y x x y x y x y ≤≤=+, 所以342(,)(0,0)lim 0(0)x y x y f x y →==+ 所以f (z )在整个z 平面连续.5. 下列函数在何处求导?并求其导数.(1) 1()(1)n f z z -=- (n 为正整数);解:因为n 为正整数,所以f (z )在整个z 平面上可导.1()(1)n f z n z -'=-. (2) 22()(1)(1)z f z z z +=++. 解:因为f (z )为有理函数,所以f (z )在2(1)(1)0z z ++=处不可导. 从而f (z )除1,i z z =-=±外可导.2222232222(2)(1)(1)(1)[(1)(1)]()(1)(1)2543(1)(1)z z z z z z f z z z z z z z z ''+++-+++'=++-+++=++ (3) 38()57z f z z +=-. 解:f (z )除7=5z 外处处可导,且223(57)(38)561()(57)(57)z z f z z z --+'==---. (4) 2222()i x y x y f z x y x y +-=+++. 解:因为2222222i()i i(i )(i )(1i)(1i)1i ()x y x y x y x y x y z f z x y x y x y z z ++--+--+++=====+++. 所以f (z )除z =0外处处可导,且2(1i)()f z z+'=-.6. 试判断下列函数的可导性与解析性.(1) 22()i f z xy x y =+; 解:22(,),(,)u x y xy v x y x y ==在全平面上可微.22,2,2,y u v v y xy xy x x y x y∂∂∂∂====∂∂∂∂ 所以要使得u v x y ∂∂=∂∂, u v y x∂∂=-∂∂, 只有当z =0时,从而f (z )在z =0处可导,在全平面上不解析.(2) 22()i f z x y =+.解:22(,),(,)u x y x v x y y ==在全平面上可微.2,0,0,2u u v v x y x y x y∂∂∂∂====∂∂∂∂ 只有当z =0时,即(0,0)处有u v x y ∂∂=∂∂,u v y y∂∂=-∂∂. 所以f (z )在z =0处可导,在全平面上不解析.(3) 33()23i f z x y =+;解:33(,)2,(,)3u x y x v x y y ==在全平面上可微.226,0,9,0u u v v x y x y x y∂∂∂∂====∂∂∂∂=时,才满足C-R 方程.从而f (z )0=处可导,在全平面不解析. (4) 2()f z z z =⋅.解:设i z x y =+,则23232()(i )(i )i()f z x y x y x xy y x y =-⋅+=+++ 3232(,),(,)u x y x xy v x y y x y =+=+22223,2,2,3u u v v x y xy xy y x x y x y∂∂∂∂=+===+∂∂∂∂ 所以只有当z =0时才满足C-R 方程.从而f (z )在z =0处可导,处处不解析.7. 证明区域D 内满足下列条件之一的解析函数必为常数.(1) ()0f z '=;证明:因为()0f z '=,所以0u u x y ∂∂==∂∂,0v v x y∂∂==∂∂. 所以u ,v 为常数,于是f (z )为常数.(2) ()f z 解析. 证明:设()i f z u v =-在D 内解析,则()u v u v x y x y∂∂-∂∂=⇒=-∂∂∂∂ ()u v v y x y∂-∂-∂==+∂∂∂ ,u v u v x y y x∂∂∂∂=-=∂∂∂∂ 而f (z )为解析函数,所以,u u u v x y y x ∂∂∂∂==-∂∂∂∂ 所以,,v v v v x x y y ∂∂∂∂=-=-∂∂∂∂即0u u v v x y x y∂∂∂∂====∂∂∂∂ 从而v 为常数,u 为常数,即f (z )为常数.(3) Re f (z )=常数.证明:因为Re f (z )为常数,即u =C 1,0u u x y ∂∂==∂∂ 因为f (z )解析,C-R 条件成立。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题一1. 用复数的代数形式a +ib 表示下列复数π/43513;;(2)(43);711i i e i i i i i-++++++. ①解:i 4πππecos isin 44-⎛⎫⎛⎫⎛⎫=-+-=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭②解:()()()()35i 17i 35i 1613i 7i 11+7i 17i 2525+-+==-++- ③解: ()()2i 43i 834i 6i 510i ++=-++=+ ④解:()31i 1335=i i i 1i 222-+-+=-+2.求下列各复数的实部和虚部(z =x +iy )(z a a z a -∈+); 33311;;;.22n z i ⎛⎛-+-- ⎝⎭⎝⎭①解: ∵设z =x +iy 则()()()()()()()22i i i i i i x a y x a y x y a x a y z a z a x y a x a y x a y -++-⎡⎤⎡⎤+--+-⎣⎦⎣⎦===+++++++∴()22222Re z a x a y z a x a y ---⎛⎫= ⎪+⎝⎭++, ()222Im z a xy z a x a y -⎛⎫= ⎪+⎝⎭++. ②解: 设z =x +iy∵()()()()()()()()323222222223223i i i 2i i 22i33iz x y x y x y x y xy x y x x y xy y x y x y x xy x y y =+=++=-++⎡⎤=--+-+⎣⎦=-+-∴()332Re 3z x xy =-,()323Im 3z x y y =-.③解:∵(()(){}33232111313188-+⎡⎤⎡⎤==--⋅-⋅+⋅-⎢⎥⎢⎥⎣⎦⎣⎦⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ④解:∵()()(()2332313131i 8⎡⎤--⋅-⋅+⋅-⎢⎥⎣⎦=⎝⎭()180i 18=+=∴Re 1=⎝⎭, Im 0=⎝⎭. ⑤解: ∵()()1,2i 211i,knkn k k n k ⎧-=⎪=∈⎨=+-⋅⎪⎩. ∴当2n k =时,()()Re i 1kn =-,()Im i 0n =;当21n k =+时,()Re i 0n =,()()Im i 1kn =-.3.求下列复数的模和共轭复数12;3;(2)(32);.2ii i i +-+-++①解:2i -+==2i 2i -+=--②解:33-=33-=-③解:()()2i 32i 2i 32i ++=++()()()()()()2i 32i 2i 32i 2i 32i 47i ++=+⋅+=-⋅-=-④解:1i 1i 22++==()1i 11i222i ++-⎛⎫== ⎪⎝⎭4、证明:当且仅当z z =时,z 才是实数. 证明:若z z =,设i z x y =+,则有 i i x y x y +=-,从而有()2i 0y =,即y =0∴z=x为实数.若z=x,x∈,则z x x==.∴z z =.命题成立.5、设z ,w ∈,证明: z w z w ++≤证明:∵()()()()2z w z w z w z w z w +=+⋅+=++()()22222Re z z z w w z w wz zw z w w z wz w =⋅+⋅+⋅+⋅=++⋅+=++⋅()2222222z w z wz w z w z w ++⋅=++⋅=+≤∴z wz w ++≤.6、设z ,w ∈,证明下列不等式. ()2222Re z w z z w w +=+⋅+ ()2222Re z w z z w w -=-⋅+()22222z w z w z w++-=+并给出最后一个等式的几何解释.证明:()2222Re z w z z w w +=+⋅+在上面第五题的证明已经证明了. 下面证()2222Re z w z z w w -=-⋅+.∵()()()()222z w z w z w z w z w z z w w z w-=-⋅-=--=-⋅-⋅+()222Re z z w w =-⋅+.从而得证.∴()22222z w z w z w++-=+几何意义:平行四边形两对角线平方的和等于各边的平方的和.7.将下列复数表示为指数形式或三角形式3352π2π;;1;8π(13);.cos sin 7199i i i i i +⎛⎫--+ ⎪+⎝⎭①解:()()()()35i 17i 35i 7i 117i 17i +-+=++-3816i 198i e 5025i θ⋅--=== 其中8πarctan 19θ=-. ②解:e i i θ⋅=其中π2θ=.π2e ii =③解:ππi i 1e e -==④解:()28π116ππ3θ-==-.∴()2πi 38π116πe--=⋅⑤解:32π2πcos isin 99⎛⎫+ ⎪⎝⎭ 解:∵32π2πcos isin 199⎛⎫+= ⎪⎝⎭.∴322πi π.3i 932π2πcos isin 1e e 99⋅⎛⎫+=⋅= ⎪⎝⎭8.计算:(1)i 的三次根;(2)-1的三次根;(3) 的平方根.⑴i 的三次根.()13ππ2π2πππ22cos sin cosisin 0,1,22233++⎛⎫+=+= ⎪⎝⎭k k i k∴1ππ1cos isin i 662=+z .2551cos πisin πi 662=+=z3991cos πisin πi 662=+=z⑵-1的三次根()()132π+π2ππcos πisin πcosisin 0,1,233k k k ++=+=∴1ππ1cos isin 332=+=z2cos πisin π1=+=-z3551cos πisin π332=+=-z的平方根.解:πi4e⎫=⎪⎪⎝⎭∴()() 1π12i44ππ2π2π4433i6e6cos isin0,122k kk⎛⎫++⎪+=⋅=⋅+=⎪⎝⎭∴π11i8441ππ6cos isin6e88⎛⎫=⋅+=⋅⎪⎝⎭z911πi8442996cosπisinπ6e88⎛⎫=⋅+=⋅⎪⎝⎭z.9.设2πe,2inz n=≥. 证明:110nz z-+++=证明:∵2πie nz⋅=∴1nz=,即10nz-=.∴()()1110nz z z--+++=又∵n≥2.∴z≠1从而211+0nz z z-+++=11.设Γ是圆周{:},0,e.iz r r a c rz cα=>=+-令:Im0z aL zbβ⎧-⎫⎛⎫==⎨⎬⎪⎝⎭⎩⎭,其中e ibβ=.求出Lβ在a切于圆周Γ的关于β的充分必要条件.解:如图所示.因为Lβ={z: Im z ab-⎛⎫⎪⎝⎭=0}表示通过点a且方向与b同向的直线,要使得直线在a处与圆相切,则CA⊥Lβ.过C作直线平行Lβ,则有∠BCD=β,∠ACB=90°故α-β=90°所以Lβ在α处切于圆周T的关于β的充要条件是α-β=90°.12.指出下列各式中点z所确定的平面图形,并作出草图.(1)argπ;(2);1(3)1|2;(4)Re Im;(5)Im1 2.zz zz iz zzz==-<+<>><且解:(1)、argz=π.表示负实轴.(2)、|z-1|=|z|.表示直线z=12.(3)、1<|z+i|<2解:表示以-i为圆心,以1和2为半径的周圆所组成的圆环域。

(4)、Re(z)>Im z.解:表示直线y=x的右下半平面5、Im z>1,且|z|<2.解:表示圆盘内的一弓形域。

本文档部分内容来源于网络,如有内容侵权请告知删除,感谢您的配合!。

相关文档
最新文档