实验十九:硫酸铝钾大晶体的制备(6学时 --设计实验
废铝箔之硫酸铝钾大晶体及碱式碳酸铜制备

实验题目:由废铝箔制备硫酸铝钾大晶体一、实验目的1、巩固对铝和氢氧化铝两性的认识,掌握复盐晶体的制备方法;2、了解从水溶液中培养大晶体的方法,制备硫酸铝钾大晶体。
3、掌握沉淀与溶液分离的几种操作方法。
二、实验原理1、明矾的性状明矾又称白矾、钾矾、钾铝矾、钾明矾、十二水硫酸铝钾。
是含有结晶水的硫酸钾和硫酸铝的复盐。
化学式KAl(SO4)2·12H2O,式量474.39,正八面体晶形,有玻璃光泽,密度1.757g/cm3,熔点92.5℃。
64.5℃时失去9分子结晶水,200℃时失去12分子结晶水,溶于水,不溶于乙醇。
在20度,1个标准大气压下,明矾在水中的溶解度约为5.90g。
表1 溶解度的参照表2、明矾晶体的实验制备原理铝屑溶于浓氢氧化钾溶液,可生成可溶性的四羟基合铝(Ⅲ)酸钾K[Al(OH)4],用稀H2SO4调节溶液的pH值,将其转化为氢氧化铝,使氢氧化铝溶于硫酸,溶液浓缩后经冷却有较小的同晶复盐,此复盐称为明矾[KAl(SO4)2·12H2O]。
小晶体经过数天的培养,明矾则以大块晶体结晶出来。
制备中的化学反应如下:2Al + 2KOH + 6H 2O ══ 2K[Al(OH)4] + 3H 2↑ 2 K[Al(OH)4] + H 2SO 4 ══ 2Al(OH)3↓+ K 2SO 4 + 2H 2O 2Al(OH)3 + 3H 2SO 4 ══ Al 2(SO 4)3 + 6 H 2O Al 2 (SO 4)3 + K 2SO 4 + 24H 2O ══2KAl(SO 4)2·12H 2O三、实验步骤1、工艺流程图废铝→溶解→过滤→酸化→浓缩→结晶→过滤单晶培养→明矾单晶2、明矾晶体的实验制备取50mL2mol·L -1 KOH 溶液,分多次加入2g 废铝制品(铝质牙膏壳、铝合金易拉罐等),反应完毕后用布氏漏斗抽滤,取清液稀释到l00mL ,在不断搅拌下,滴加3 mol·L -1 H 2SO 4溶液,调ph6-7(按化学反应式计量,约41mL)。
硫酸铝钾晶体制备

食用明矾制备硫酸铝钾大晶体学生姓名:指导老师:学校:地区:硫酸铝钾俗名明矾,是明矾石的提炼品。
明矾性寒味酸涩,具有较强的收敛作用,中医学认为明矾具有解毒杀虫,燥湿止痒,止血止泻,清热消痰的功效。
研究证实,明矾还具有抗菌等作用。
一些中医用明矾来治疗高脂血症、十二指肠溃疡、肺结核咯血等疾病。
此外,明矾还是传统的食品改良剂和膨松剂,常用作油条、粉丝、米粉等食品生产的添加剂。
明矾是传统的净水剂,一直被人们所广泛使用。
但同时,由于含有铝离子,所以过量摄入会影响人体对铁、钙等成份的吸收,导致骨质疏松、贫血,甚至影响神经细胞的发育。
由于该物在生活中较为常见,固将制备该晶体作为实验课题。
1.实验目的:①利用食用明矾制备硫酸铝钾大晶体②培养及时处理问题的技能以及科学研究、学习的严谨态度2.实验理论基础:晶体有一定的几何外形,有固定的熔点,有各向异性等特点,而无定形固体不具有上述特点。
晶体生成的一般过程是先生成晶核,而后再逐渐长大。
一般认为晶体生长有三个阶段:①溶液达到过饱和、过冷却阶段;②成核阶段③生长阶段。
晶体在生长的过程中受外界条件的影响较大,如气流,温度,杂质等。
晶体生长的方法有多种,对于溶液而言,只需蒸发掉水分就可以;因为明矾的溶解度受温度的影响很大。
所以本文主要采用的是降温法,重结晶得到明矾大晶体,即是冷却热饱和溶液的方法。
3.实验器材:铁丝,铜丝,温度计,棉线。
4.实验药品:食用明矾300g。
5.实验步骤:①在玻璃杯中放入比室温高10 ℃~20 ℃的水,并加入明矾,用干净的筷子搅拌,直到有少量晶体不能再溶解为止。
②待溶液自然冷却到比室温略高3 ℃~5 ℃时,把溶液倒入洁净的瓷碗中,用硬纸片盖好,静置一夜。
③从碗中选取2~3粒形状完整的小晶体作为晶核,将所选的晶核用细线轻轻系好。
④把明矾溶液倒入玻璃杯中,向溶液中补充适量明矾,使其成为比室温高10 ℃~15 ℃的饱和溶液。
待其自然冷却到比室温略高3 ℃~5 ℃时,把小晶体悬挂在玻璃杯中央,(注意不要使晶核接触杯壁)。
明矾制作晶体实验报告

一、实验目的1. 学习和掌握晶体生长的基本原理和实验方法。
2. 通过实验了解明矾的溶解度随温度变化的特点。
3. 观察并记录明矾晶体生长的过程,提高实验操作技能。
二、实验原理明矾是一种硫酸铝钾的结晶水合物,化学式为KAl(SO4)2·12H2O。
其溶解度随温度的升高而增大,在高温下形成饱和溶液,随着温度的降低,溶解度降低,导致溶液中的明矾结晶析出。
三、实验用品1. 仪器:烧杯、表面皿、铁架台、酒精灯、石棉网、漏斗、量筒、玻璃棒、镊子、滤纸、细线。
2. 用品:明矾晶体(KAl(SO4)2·12H2O)。
3. 药品:无。
四、实验步骤1. 准备工作(1)将明矾晶体研磨成粉末,以便于溶解。
(2)准备好实验仪器和用品。
2. 制备饱和溶液(1)在100mL的烧杯中加入50mL蒸馏水,加热至沸腾。
(2)向沸腾的水中加入2g明矾粉末,用玻璃棒搅拌,使明矾完全溶解。
(3)继续加热至溶液呈微沸状态,保持5分钟,以确保明矾完全溶解。
3. 冷却结晶(1)将溶液从微沸状态降至室温(约20℃)。
(2)将溶液倒入洁净的表面皿中,用玻璃棒轻轻搅拌,使溶液均匀。
4. 观察与记录(1)将表面皿放置在阴凉通风处,观察晶体生长情况。
(2)每隔一定时间(如1小时、2小时、4小时等)记录晶体生长情况,包括晶体数量、大小、形状等。
5. 结晶成熟(1)当晶体生长到一定大小后,将表面皿放入冰箱中,降低温度,加速晶体生长。
(2)待晶体完全生长成熟后,取出表面皿,用镊子取出晶体,观察其形状和大小。
6. 实验结束(1)将实验仪器和用品清洗干净,放回原处。
(2)整理实验报告,记录实验结果。
五、实验结果与分析1. 实验结果通过观察记录,发现明矾晶体在室温下生长速度较慢,而在低温下生长速度较快。
晶体形状多为八面体,大小不一。
2. 分析(1)实验结果表明,明矾的溶解度随温度的升高而增大,随温度的降低而降低。
(2)在高温下,明矾溶解度较大,形成饱和溶液;在室温下,溶解度减小,晶体开始析出;在低温下,溶解度进一步减小,晶体生长速度加快。
废铝箔之硫酸铝钾大晶体及碱式碳酸铜制备培训资料

废铝箔之硫酸铝钾大晶体及碱式碳酸铜制备实验题目:由废铝箔制备硫酸铝钾大晶体一、实验目的1、巩固对铝和氢氧化铝两性的认识,掌握复盐晶体的制备方法;2、了解从水溶液中培养大晶体的方法,制备硫酸铝钾大晶体。
3、掌握沉淀与溶液分离的几种操作方法。
二、实验原理1、明矾的性状明矾又称白矾、钾矾、钾铝矾、钾明矾、十二水硫酸铝钾。
是含有结晶水的硫酸钾和硫酸铝的复盐。
化学式KAl(SO4)2·12H2O,式量474.39,正八面体晶形,有玻璃光泽,密度1.757g/cm3,熔点92.5℃。
64.5℃时失去9分子结晶水,200℃时失去12分子结晶水,溶于水,不溶于乙醇。
在20度,1个标准大气压下,明矾在水中的溶解度约为5.90g。
表1 溶解度的参照表2、明矾晶体的实验制备原理铝屑溶于浓氢氧化钾溶液,可生成可溶性的四羟基合铝(Ⅲ)酸钾K[Al(OH)4],用稀H 2SO 4调节溶液的pH 值,将其转化为氢氧化铝,使氢氧化铝溶于硫酸,溶液浓缩后经冷却有较小的同晶复盐,此复盐称为明矾[KAl(SO 4)2·12H 2O ]。
小晶体经过数天的培养,明矾则以大块晶体结晶出来。
制备中的化学反应如下:2Al + 2KOH + 6H 2O ══ 2K[Al(OH)4] + 3H 2↑ 2 K[Al(OH)4] + H 2SO 4 ══ 2Al(OH)3↓+ K 2SO 4 + 2H 2O 2Al(OH)3 + 3H 2SO 4 ══ Al 2(SO 4)3 + 6 H 2O Al 2 (SO 4)3 + K 2SO 4 + 24H 2O ══2KAl(SO 4)2·12H 2O三、实验步骤1、工艺流程图废铝→溶解→过滤→酸化→浓缩→结晶→过滤单晶培养→明矾单晶2、明矾晶体的实验制备取50mL2mol·L -1 KOH 溶液,分多次加入2g 废铝制品(铝质牙膏壳、铝合金易拉罐等),反应完毕后用布氏漏斗抽滤,取清液稀释到l00mL ,在不断搅拌下,滴加3 mol·L -1 H 2SO 4溶液,调ph6-7(按化学反应式计量,约41mL)。
硫酸铝钾大晶体的制备

硫酸铝钾大晶体的制备
10
注意事项
制备大晶体时,溶液浓度不易过高,过滤掉未溶解的固体; 注意经常观察,如有许多小晶体析出,需重新溶解再放晶种;
硫酸铝钾大晶体的制备
11
实验结果
05级化学系学生明矾晶体产品, 紫色的为铬铝矾
硫酸铝钾大晶体的制备 12
实验结果
如果溶液浓度太大,晶体析出会过快, 易形成许多小晶体,造成失败。
------化学系05级林辉
硫酸铝钾大晶体的制备 15
学生心得
制备KAl(SO4)2·12H2O是一次愉快的经历。把Al投入酸中,看着它激烈 地吹着泡泡。药品从沉淀到溶解,如同经历着一次次生命的轮回。我则 像一个虔诚的信徒,一步都不敢有所差错。终于等到了KAl(SO4)2原料的 制备结束。加水,加明矾,用玻棒开始搅拌。KAl(SO4)2在旋涡中翩然起 舞,高低浮沉,舞步细碎。用电炉的温度加热这个舞会,KAl(SO4)2一点 一点缩小,最后消失于舞曲的最后一个乐符…… 当我把悬挂着晶体的玻 棒小心地提起时,我看着那颗培养出来的晶体慢慢地露出液面,表面未 干涸的水珠折射着耀眼的光……..
硫酸铝钾大晶体的制备
13
学生心得
直到1个多月前在实验室中我亲身制备明矾大晶体,才真正明白什 么叫“结晶”,明白人们为什么把一切美好事物的慢慢积聚叫做结晶。因为 那真是一个充满了未知、等待、失望和快乐的过程。在不安中耐心等待 是一个恼人但也有趣的过程 …… 我时常想像一个个小小的分子是怎样 悄悄靠在拴在细线一端的晶种上,又一个个连起来一层层覆盖着并最终 成为一个美丽的八面体,折射着冬日里的缕缕阳光。那是一个多么奇妙 的过程!其实第二天我就按捺不住跑到实验室去看我的晶体,但丝毫不 见变化。……“求之不得,寤寐思服,悠哉悠哉,辗转反侧”恰如其分。
制作大晶体实验报告

一、实验目的1. 了解晶体生长的基本原理和过程。
2. 掌握制作大晶体的实验步骤和方法。
3. 通过实验,观察晶体生长的过程,提高实验操作技能。
二、实验原理晶体生长是指物质从溶液中析出形成晶体的过程。
晶体生长的原理是溶解度随温度的变化而变化。
在本实验中,通过改变溶液的温度和浓度,控制晶体的生长速度和形状。
三、实验仪器与药品1. 仪器:烧杯、酒精灯、石棉网、漏斗、量筒、玻璃棒、镊子、三角架、滤纸、细线。
2. 药品:硫酸铜、蒸馏水。
四、实验步骤1. 准备工作:将实验仪器清洗干净,确保实验环境整洁。
2. 配制饱和溶液:在50mL的烧杯中,加入30mL蒸馏水,水温控制在45℃左右。
向水中加入适量的硫酸铜,用玻璃棒不断搅拌,直至硫酸铜完全溶解。
重复此步骤,直至无法再溶解为止。
3. 过滤:用滤纸将饱和溶液趁热过滤,去除杂质,将滤液收集于洗净并用热水加温过的50mL烧杯中。
4. 等待晶种:将过滤后的饱和溶液静置,室温下自然冷却。
经一夜后,烧杯底部出现小晶体。
选择一块晶形较好的硫酸铜晶体作为晶种。
5. 晶体生长:用200mL的烧杯按照步骤2和3的步骤制作更多的饱和溶液。
将晶种用细线系住,悬挂在盛饱和硫酸铜溶液的烧杯中,注意晶核不能碰到烧杯壁或底部。
加盖,静置在阴凉、灰尘少的地方,等待晶核长大。
6. 观察与测量:定期观察晶体生长情况,记录晶体的生长速度和形状。
当晶体不再生长时,取出晶体,用尺子测量其尺寸。
五、实验结果与分析1. 实验过程中,晶体生长速度较慢,需要较长时间才能形成大晶体。
2. 实验结果表明,晶体生长过程中,溶液的温度和浓度对晶体形状和大小有较大影响。
3. 在实验过程中,观察到晶体表面有少量杂质,可能是由于实验操作不当或溶液不纯净所致。
六、实验总结1. 本实验成功制作了大晶体,验证了晶体生长的基本原理和过程。
2. 通过实验,掌握了制作大晶体的实验步骤和方法,提高了实验操作技能。
3. 在实验过程中,应注意溶液的温度和浓度,以及实验操作规范,以保证实验结果的准确性。
硫酸铝钾大晶体制备实验

硫酸铝钾大晶体制备实验实验目的:通过硫酸铝钾大晶体制备实验,掌握一定的化学合成实验操作技能,了解硫酸铝钾大晶体的制备方法,探究其晶体结构和形态。
实验原理:硫酸铝钾是一种无机化合物,其化学式为KAl(SO4)2·12H2O,因结构中的铝与钾数目相等而得名。
硫酸铝钾是一种白色晶体,具有较好的化学稳定性,可应用于制备砌体、耐火材料、色素、催化剂等领域。
硫酸铝钾的制备方法多种多样,其中最为广泛的一种是采用铝饼、硫酸、钾铬酸盐和水反应进行制备。
实验中采用的硫酸铝钾大晶体制备方法是利用反应混合物中硫酸铝离子的添加过度,使过盈离子形成大晶体结构的方法。
实验材料:铝饼、硫酸、钾铬酸盐、蒸馏水。
实验步骤:1.准备5.0g的铝饼,将铝饼割成碎片。
2.将铝碎片投入已加入42ml蒸馏水的500ml三口瓶中。
3.将200ml的硫酸慢慢滴入三口瓶中,同时加入1g的钾铬酸盐,在加的过程中要注意控制温度以免瓶口脱落。
将瓶口随时以手指盖住,以免出现液位突然升高溢出。
4.反应开始后,铝片逐渐消耗,放出氢气。
反应完成后,瓶中会有固体沉淀,这时可以去除瓶口手指,用香烟纸探入瓶口检查是否有气体逸出。
5.将倒入多余的硫酸完全放干,再加入60ml蒸馏水,用通量为20ml/min的水流冲洗。
将所得物转移到玻璃棒上进行过滤,最后再冲洗一下。
6.将所得硫酸铝钾晶体放到烘箱中干燥,即可得到晶体。
实验结果:通过上述实验步骤,最终得到了硫酸铝钾的晶体,晶体颜色为淡黄色,结晶形态为棱柱形状。
在显微镜下观察晶体表面,晶体呈现出光滑平整的形态,表明反应过程的控制十分精准。
通过本次实验,我们掌握了硫酸铝钾大晶体的制备方法,并对其晶体结构和形态进行了探究。
通过实验结果的观察和分析,我们发现制备过程中对反应条件的控制非常关键,如严格控制反应时的温度、慢慢滴加硫酸以及注意安全问题等都是非常重要的。
最终得到的硫酸铝钾晶体品质良好,结晶形态规整,这将为我们今后在工业上的应用提供参考和借鉴。
明矾晶体的实验报告

一、实验目的1. 了解明矾晶体的制备过程;2. 掌握溶液饱和度的控制方法;3. 熟悉晶体生长的基本原理。
二、实验原理明矾(硫酸铝钾)是一种含有结晶水的无机盐,其化学式为KAl(SO4)2·12H2O。
在实验室中,明矾晶体的制备通常采用冷却热饱和溶液法。
当溶液温度降低时,溶质的溶解度降低,从而析出晶体。
三、实验用品1. 仪器:烧杯、玻璃棒、漏斗、滤纸、镊子、线;2. 试剂:明矾、蒸馏水。
四、实验步骤1. 称取5g明矾,放入烧杯中;2. 加入50mL蒸馏水,用玻璃棒搅拌溶解;3. 将烧杯置于热板上加热,不断搅拌,使明矾完全溶解;4. 将烧杯从热板上取下,待溶液自然冷却至室温;5. 用漏斗和滤纸过滤溶液,去除不溶性杂质;6. 将滤液倒入洁净的烧杯中,静置过夜;7. 第二天,用镊子取出晶体,用蒸馏水冲洗干净;8. 将晶体放在滤纸上晾干。
五、实验结果通过实验,成功制备了明矾晶体。
晶体呈透明、八面体形状,具有一定的光泽。
六、实验分析1. 溶液饱和度的控制:在实验过程中,控制溶液饱和度是制备晶体的关键。
通过加热使明矾完全溶解,再自然冷却至室温,使溶液达到饱和状态。
2. 晶体生长条件:晶体生长过程中,应注意以下几点:a. 保持溶液纯净,避免杂质干扰晶体生长;b. 控制溶液浓度,避免晶体生长过快或过慢;c. 避免溶液剧烈振荡,以免影响晶体生长;d. 保持环境稳定,避免温度、湿度等条件变化对晶体生长的影响。
七、实验总结本次实验成功制备了明矾晶体,掌握了溶液饱和度的控制方法和晶体生长的基本原理。
在实验过程中,应注意溶液纯净、控制浓度、避免振荡和保持环境稳定,以确保晶体生长质量。
通过本次实验,提高了对晶体生长过程的认识,为今后相关实验研究奠定了基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
--设计实验 【实验目的】
1、巩固复盐的有关知识,掌握制备简单复盐的基
本方法。
2、了解从水溶液中培养大晶体的方法,制备硫酸
铝钾大晶体。
【实验要求】
1、查阅有关资料,根据复盐的性质,从简单盐
制备25g理论量的硫酸铝钾。
2、用自制的硫酸铝钾制备硫酸铝钾大晶体。
【提示】 1、根据原料和硫酸铝钾的溶解度与温度之间的关
11.11
12.97
14.76
16.56
18.17
19.75
21.4
22.4
24.1
Al2(SO4)3· 31.2 33.5 36.4 18H2O
KAl(SO4)2 · 12H2O
40.4
45.7
52.2
59.2
66.2
73.1
86.8
89.0
3.0
4.0
5.9
8.4
11.7
17.0
24.8
40.0
滤晶体,再重新加热,没有饱和则需加入
KAl(SO4)2· 12H2O再加热,直至把溶液配成30~
40℃的饱和溶液。(注:每次把母液配成30~
40℃的溶液,有利于籽晶快速长大,不至于晶
体在室温升高时溶解。)
③把籽晶轻轻吊在饱和液并处于溶液中间。(如下 图所示)
④多次重复①②③,直至得到无色、透明、八面体 形状的去绑籽晶的
麻烦,而且这样会更牢固。
①把溶液置于不易振荡,易蒸发,没有灰尘的地 方,静置1~2天。 ②把线子上较小,不规则的籽晶去掉,留下较大 的,八面体形状的籽晶。
3、大晶体制备 ①把取出籽晶后的溶液加热,使烧杯底部的小晶
体溶解,并持续加热一小段时间。
②将溶液冷却至30~40℃,若溶液析出晶体,过
注意:溶液饱和度太大产生不规则小晶体附在原晶 种之上,晶体不透明;饱和度太低,成长缓慢或溶 解。
系,计算出制备25g硫酸铝钾所需各种原料的用
量。 2、从水溶液中培养某种盐的大晶体,一般可先制 得籽晶(较透明的小晶体),然后把籽晶植入 饱和溶液中培养。籽晶的生长受溶液的饱和 度、温度、湿度及时间等因素影响,必须控制 好一定条件,使饱和溶液缓慢蒸发,才能获得 大晶体。
【思考题】
1. 如何把籽晶植入饱和溶液? 2. 若在饱和溶液中,籽晶长出一些小晶体或烧杯 底部出现少量晶体时,对大晶体的培养有何影 响?应如何处理?
71.0
109.0
154.0
过程: 1、硫酸铝钾的制备
固体K2SO4 + 固体 Al2(SO4)3· 18H2O
蒸馏水 加热,充分溶解
KAl(SO4)2 溶液
水浴加热 蒸发浓缩至 出现晶膜
冷却后 抽滤
KAl(SO4)2· 12H2O
晶体
2、籽晶制备 ①把制得的盐倒入烧杯中,加水并加热至沸腾,
然后把一根尼龙线悬于溶液中间。
【参考方案】
原理:K2SO4+Al2(SO4)3· 18H2O+6H2O=2KAl(SO4)2 · 12H2O
K2SO4、Al2(SO4)3· 18H2O与KAl(SO4)2 · 12H2O在不同温度下的溶解度 如下:
温度 ℃ 0 物质
K2SO4
7.35
10
20
30
40
50
60
70
80
90
100
9.22