离散数学集合论练习题
离散数学集合论部分测试题

离散数学集合论部分测试题离散数学集合论部分综合练习本课程综合练习共分3次,分别是集合论部分、图论部分、数理逻辑部分的综合练习,这3次综合练习基本上是按照考试的题型安排练习题目,目的是通过综合练习,使同学自己检验学习成果,找出掌握的薄弱知识点,重点复习,争取尽快掌握。
本次是集合论部分的综合练习。
一、单项选择题1.若集合A={a,b},B={ a,b,{ a,b }},则().A.A⊂B,且A∈B B.A∈B,但A⊄BC.A⊂B,但A∉B D.A⊄B,且A∉B2.若集合A={2,a,{ a },4},则下列表述正确的是( ).A.{a,{ a }}∈A B.{ a }⊆AC.{2}∈A D.∅∈A3.若集合A={ a,{a},{1,2}},则下列表述正确的是( ).A.{a,{a}}∈A B.{2}⊆AC.{a}⊆A D.∅∈A4.若集合A={a,b,{1,2 }},B={1,2},则().A.B⊂ A,且B∈A B.B∈ A,但B⊄AC.B ⊂ A,但B∉A D.B⊄ A,且B∉A5.设集合A = {1, a },则P(A) = ( ).A.{{1}, {a}} B.{∅,{1}, {a}}C.{∅,{1}, {a}, {1, a }} D.{{1}, {a}, {1, a }}6.若集合A的元素个数为10,则其幂集的元素个数为().A.1024 B.10 C.100 D.17.集合A={1, 2, 3, 4, 5, 6, 7, 8}上的关系R={<x,y>|x+y=10且x, y∈A},则R 的性质为().A.自反的B.对称的C.传递且对称的D.反自反且传递的8.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b>⎢a , b∈A , 且a +b = 8},则R具有的性质为().A.自反的B.对称的C.对称和传递的D.反自反和传递的9.如果R1和R2是A上的自反关系,则R1∪R2,R1∩R2,R1-R2中自反关系有()个.A.0 B.2 C.1 D.310.设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},9.设A ={a ,b ,c },B ={1,2},作f :A →B ,则不同的函数个数为 .三、判断说明题(判断下列各题,并说明理由.)1.设A 、B 、C 为任意的三个集合,如果A ∪B =A ∪C ,判断结论B =C 是否成立?并说明理由.2.如果R 1和R 2是A 上的自反关系,判断结论:“R -11、R 1∪R 2、R 1⋂R 2是自反的” 是否成立?并说明理由.3. 若偏序集<A ,R >的哈斯图如图一所示,则集合A 的最大元为a ,最小元不存在. 4.若偏序集<A ,R >的哈斯图如图二所示,则集合A 的最大元为a ,最小元不存在.5.设N 、R 分别为自然数集与实数集,f :N→R ,f (x )=x +6,则f 是单射.四、计算题 1.设集合A ={a , b , c },B ={b , d , e },求(1)B ⋂A ; (2)A ⋃B ; (3)A -B ; (4)B ⊕A .2.设A ={{a , b }, 1, 2},B ={ a , b , {1}, 1},试计算(1)(A -B ) (2)(A ∪B ) (3)(A ∪B )-(A ∩B ).3.设集合A ={{1},{2},1,2},B ={1,2,{1,2}},试计算(1)(A -B ); (2)(A ∩B ); (3)A ×B .4.设A ={0,1,2,3,4},R ={<x ,y >|x ∈A ,y ∈A 且x +y <0},S ={<x ,y >|x ∈A ,y ∈A 且x +y ≤3},试求R ,S ,R •S ,R -1,S -1,r (R ).5.设A ={1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12},R 是A 上的整除关系,B ={2, 4, 6}.(1)写出关系R 的表示式; (2)画出关系R 的哈斯图;(3)求出集合B 的最大元、最小元.6.设集合A ={a , b , c , d }上的二元关系R 的关系图 如图三所示.(1)写出R 的表达式;(2)写出R 的关系矩阵;(3)求出R 2. 7.设集合A ={1,2,3,4},R ={<x , y >|x , y ∈A ;|x -y |=1或x -y =0},试(1)写出R 的有序对表示; (2)画出R 的关系图;(3)说明R 满足自反性,不满足传递性.五、证明题1.试证明集合等式:A ⋃ (B ⋂C )=(A ⋃B ) ⋂ (A ⋃C ).2.试证明集合等式A ⋂ (B ⋃C )=(A ⋂B ) ⋃ (A ⋂C ).图一 图二a dbc 图三3.设R 是集合A 上的对称关系和传递关系,试证明:若对任意a ∈A ,存在b ∈A ,使得<a , b >∈R ,则R 是等价关系.4.若非空集合A 上的二元关系R 和S 是偏序关系,试证明:S R ⋂也是A 上的偏序关系.参考解答一、单项选择题1.A 2.B 3.C 4.B 5.C 6.A 7.B 8.B 9.B 10.C 11.C 12.B 13.B二、填空题1.2n2.{∅,{a ,b },{a },{b }}3.{<2, 2>,<2, 3>,<3, 2>},<3, 3>4.⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡011000011 5.{<a . c >, <b , c >}6.反自反的7.{<1, 1>, <2, 2>}8.{<1, a >, <2, b >},{<1, b >, <2, a >}9.8三、判断说明题(判断下列各题,并说明理由.)1.解:错.设A ={1, 2},B ={1},C ={2},则A ∪B =A ∪C ,但B ≠C .2.解:成立.因为R 1和R 2是A 上的自反关系,即I A ⊆R 1,I A ⊆R 2。
离散数学试题及答案

离散数学试题及答案一、选择题1. 设A、B、C为三个集合,下列哪个式子是成立的?A) \(A \cup (B \cap C) = (A \cup B) \cap (A \cup C)\)B) \(A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\)C) \(A \cup (B \cup C) = (A \cup B) \cup (A \cup C)\)答案:B2. 对于一个有n个元素的集合S,S的幂集中包含多少个元素?A) \(n\)B) \(2^n\)C) \(2 \times n\)答案:B二、判断题1. 对于两个关系R和S,若S是自反的,则R ∩ S也是自反的。
答案:错误2. 若一个关系R是反对称的,则R一定是反自反的。
答案:正确三、填空题1. 有一个集合A,其中包含元素1、2、3、4和5,求集合A的幂集的大小。
答案:322. 设a和b是实数,若a \(\neq\) b,则a和b之间的关系是\(\__\_\)关系。
答案:不等四、解答题1. 证明:如果关系R是自反且传递的,则R一定是反自反的。
解答:假设关系R是自反的且传递的,即对于集合A中的任意元素x,都有(x, x) ∈ R,并且当(x, y) ∈ R和(y, z) ∈ R时,(x, z) ∈ R。
反证法:假设R不是反自反的,即存在一个元素a∈A,使得(a, a) ∉ R。
由于R是自反的,所以(a, a) ∈ R,与假设矛盾。
因此,R一定是反自反的。
答案完整证明了该结论。
2. 已知集合A={1, 2, 3},集合B={2, 3, 4},求集合A和B的笛卡尔积。
解答:集合A和B的笛卡尔积定义为{(a, b) | a∈A,b∈B}。
所以,集合A和B的笛卡尔积为{(1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 2), (3, 3), (3, 4)}。
《离散数学》练习题和参考答案

《离散数学》练习题和参考答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)⌝Q=>Q→P (2)⌝Q=>P→Q (3)P=>P→Q (4)⌝P∧(P∨Q)=>⌝P 答:(1),(4)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→⌝R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ⌝(P→Q)=>P (6) ⌝P∧(P∨Q)=>⌝P 答:(2),(3),(4),(5),(6)4、公式∀x((A(x)→B(y,x))∧∃z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z5、判断下列语句是不是命题。
若是,给出命题的真值。
( )北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
(5) 前进! (6) 给我一杯水吧!答:(1)是,T (2)是,F (3)不是(4)是,T (5)不是(6)不是6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。
(1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校(3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)PQ→⌝(2)QP⌝→(3)QP⌝↔(4)QP→⌝8、设个体域为整数集,则下列公式的意义是( )。
(1) ∀x∃y(x+y=0) (2) ∃y∀x(x+y=0)答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=09、设全体域D是正整数集合,确定下列命题的真值:(1) ∀x∃y (xy=y) ( ) (2) ∃x∀y(x+y=y) ( )(3) ∃x∀y(x+y=x) ( ) (4) ∀x∃y(y=2x) ( )答:(1) F (2) F (3)F (4)T10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式∃x(P(x)∨Q(x))在哪个个体域中为真?( )(1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学集合论练习题

离散数学集合论练习题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN集合论练习题一、选择题1.设B = { {2}, 3, 4, 2},那么下列命题中错误的是( ).A .{2}∈B B .{2, {2}, 3, 4}BC .{2}BD .{2, {2}}B2.若集合A ={a ,b ,{ 1,2 }},B ={ 1,2},则( ).A .B ⊂ A ,且B ∈A B .B ∈ A ,但B ⊄AC .B ⊂ A ,但B ∉AD .B ⊄ A ,且B ∉A3.设集合A = {1, a },则P (A ) = ( ).A .{{1}, {a }}B .{∅,{1}, {a }}C .{∅,{1}, {a }, {1, a }}D .{{1}, {a }, {1, a }}4.已知A ⊕B ={1,2,3}, A ⊕C ={2,3,4},若2∈ B,则( )A . 1∈CB .2∈C C .3∈CD .4∈C5. 下列选项中错误的是( )A . ∅⊆∅B . ∅∈∅C . {}∅⊆∅D .{}∅∈∅6. 下列命题中不正确的是( )A . x ∈{x }-{{x }}B .{}{}{{}}x x x ⊆-C .{}A x x =⋃,则x ∈A 且x A ⊆D . A B A B -=∅⇔=7. A , B 是集合,P (A ),P (B )为其幂集,且A B ⋂=∅,则()()P A P B ⋂=( )A . ∅B . {}∅C . {{}}∅D .{,{}}∅∅8. 空集∅的幂集()P ∅的基数是( )A . 0B .1C .3D .49.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b>⎢a , b∈A , 且a +b = 8},则R具有的性质为().A.自反的 B.对称的C.对称和传递的 D.反自反和传递的10.设集合A={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S是R的()闭包.A.自反 B.传递 C.对称 D.以上都不对11. 设A={1,2,3,4},下列关系中为等价关系。
离散数学习题集(十五套含答案)

离散数学试题与答案试卷一一、填空20% (每小题2分)1.设}7|{)},5()(|{<∈=<∈=+xExxBxNxxA且且(+=⋃BA{0,1,2,3,4,6} 。
2.A,B,C表示三个集合,文图中阴影部分的集合表达式为。
3R,S的真值为1,则)()))(((SRPRQP⌝∨→⌝∧→∨⌝的真值= 1 。
4.公式PRSRP⌝∨∧∨∧)()(的主合取范式为)()(RSPRSP∨⌝∨⌝∧∨∨⌝。
5.若解释I的论域D仅包含一个元素,则)()(xxPxxP∀→∃在I下真值为1 。
6.设A={1,2,3,4},A上关系图为则R2 = {<a.b>,<a,c>,<a,d>,<b,d>,<c,d> 。
7.设A={a,b,c,d},其上偏序关系R的哈斯图为则R= {<a.b>,<a,c>,<a,d>,<b,d>,<c,d>} I A。
8.图的补图为9.设A={a,b,c,d} ,A上二元运算如下:那么代数系统<A,*>的幺元是 a ,有逆元的元素为a , b , c ,d,它们的逆元分别为 a , d , c , d 。
10.下图所示的偏序集中,是格的为 c 。
二、选择20% (每小题2分)1、下列是真命题的有(CD)A.}}{{}{aa⊆;B.}}{,{}}{{ΦΦ∈Φ;C.}},{{ΦΦ∈Φ;D.}}{{}{Φ∈Φ。
2、下列集合中相等的有(BC )A.{4,3}Φ⋃;B.{Φ,3,4};C.{4,Φ,3,3};D.{3,4}。
3、设A={1,2,3},则A上的二元关系有( C )个。
A.23 ;B.32 ;C.332⨯;D.223⨯。
4、设R,S是集合A上的关系,则下列说法正确的是(A )A.若R,S 是自反的,则SR 是自反的;B.若R,S 是反自反的,则SR 是反自反的;C .若R ,S 是对称的, 则S R是对称的;D .若R ,S 是传递的, 则S R 是传递的。
离散数学考研试题及答案

离散数学考研试题及答案一、单项选择题(每题3分,共15分)1. 在集合论中,集合A和集合B的交集表示为:A. A∪BB. A∩BC. A-BD. A∘ B答案:B2. 以下哪个命题是真命题?A. 所有天鹅都是白色的。
B. 至少有一只天鹅是白色的。
C. 存在一只天鹅不是白色的。
D. 所有天鹅都不是白色的。
答案:B3. 在图论中,一个图中的顶点的度定义为:A. 与该顶点相连的边的数量B. 该顶点的出度C. 该顶点的入度D. 与该顶点相连的顶点的数量答案:A4. 以下哪个是二元关系R的自反性?A. 对于所有x,(x, x)∈RB. 对于所有x,(x, x)∉RC. 对于所有x和y,(x, y)∈RD. 对于所有x和y,(x, y)∉R答案:A5. 布尔代数中,逻辑与操作表示为:A. ∧B. ∨C. ¬D. →答案:A二、填空题(每题4分,共20分)1. 如果一个集合有n个元素,那么它的子集个数为2^n。
2. 在命题逻辑中,一个命题的否定记作¬P。
3. 一个有向图中的环是指一个起点和终点相同的路径。
4. 一个图G是连通的,如果对于任意两个顶点,都存在一条路径连接它们。
5. 在布尔代数中,德摩根定律表明:¬(P∧Q) = ¬P∨¬Q。
三、解答题(每题10分,共20分)1. 给定一个集合A={1, 2, 3, 4},请列出它的所有子集。
答案:∅, {1}, {2}, {3}, {4}, {1,2}, {1,3}, {1,4}, {2,3}, {2,4}, {3,4}, {1,2,3}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}2. 证明:对于任意命题P和Q,(P→Q)∧(Q→P)等价于P⇔Q。
答案:证明略。
四、证明题(每题15分,共30分)1. 证明:对于任意的集合A和B,(A∪B)∩C = (A∩C)∪(B∩C)。
答案:证明略。
《离散数学》题库及答案

《离散数学》题库及答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?()(1)Q=>Q→P(2)Q=>P→Q(3)P=>P→Q(4)P(PQ)=>P答:(1),(4)2、下列公式中哪些是永真式?()(1)(┐PQ)→(Q→R)(2)P→(Q→Q)(3)(PQ)→P(4)P→(PQ)答:(2),(3),(4)3、设有下列公式,请问哪几个是永真蕴涵式()(1)P=>PQ(2)PQ=>P(3)PQ=>PQ(4)P(P→Q)=>Q(5)(P→Q)=>P(6)P(PQ)=>P答:(2),(3),(4),(5),(6)4、公式某((A(某)B(y,某))zC(y,z))D(某)中,自由变元是(变元是()。
答:某,y,某,z5、判断下列语句是不是命题。
若是,给出命题的真值。
((1)北京是中华人民共和国的首都。
(2)陕西师大是一座工厂。
),约束)(3)你喜欢唱歌吗?(4)若7+8>18,则三角形有4条边。
(5)前进!(6)给我一杯水吧!答:(1)是,T(2)是,F(3)不是(4)是,T(5)不是(6)不是6、命题“存在一些人是大学生”的否定是(),而命题“所有的人都是要死的”的否定是()。
答:所有人都不是大学生,有些人不会死7、设P:我生病,Q:我去学校,则下列命题可符号化为()。
(1)只有在生病时,我才不去学校(2)若我生病,则我不去学校(3)当且仅当我生病时,我才不去学校(4)若我不生病,则我一定去学校答:(1)QP(2)PQ(3)PQ(4)PQ8、设个体域为整数集,则下列公式的意义是()。
(1)某y(某+y=0)(2)y某(某+y=0)答:(1)对任一整数某存在整数y满足某+y=0(2)存在整数y对任一整数某满足某+y=09、设全体域D是正整数集合,确定下列命题的真值:(1)某y(某y=y)()(2)某y(某+y=y)()(3)某y(某+y=某)()(4)某y(y=2某)()答:(1)F(2)F(3)F(4)T10、设谓词P(某):某是奇数,Q(某):某是偶数,谓词公式某(P(某)Q(某))在哪个个体域中为真()2(1)自然数(2)实数(3)复数(4)(1)--(3)均成立答:(1)11、命题“2是偶数或-3是负数”的否定是()。
离散数学集合论练习题

集合论练习题一、选择题1.设B = { {2}, 3, 4, 2},那么下列命题中错误的就是( ).A.{2}∈BB.{2, {2}, 3, 4}⊂BC.{2}⊂BD.{2, {2}}⊂B2.若集合A ={a ,b ,{ 1,2 }},B ={ 1,2},则( ).A.B ⊂ A ,且B ∈AB.B ∈ A ,但B ⊄AC.B ⊂ A ,但B ∉AD.B ⊄ A ,且B ∉A3.设集合A = {1, a },则P (A ) = ( ).A.{{1}, {a }}B.{∅,{1}, {a }}C.{∅,{1}, {a }, {1, a }}D.{{1}, {a }, {1, a }}4、已知A ⊕B ={1,2,3}, A ⊕C ={2,3,4},若2∈ B,则( )A. 1∈CB.2∈CC.3∈CD.4∈C5、 下列选项中错误的就是( )A. ∅⊆∅B. ∅∈∅C. {}∅⊆∅D.{}∅∈∅6、 下列命题中不正确的就是( )A. x ∈{x }-{{x }}B.{}{}{{}}x x x ⊆-C.{}A x x =⋃,则x ∈A 且x A ⊆D. A B A B -=∅⇔=7、 A , B 就是集合,P (A ),P (B )为其幂集,且A B ⋂=∅,则()()P A P B ⋂=( )A. ∅B. {}∅C. {{}}∅D.{,{}}∅∅8、 空集∅的幂集()P ∅的基数就是( )A. 0B.1C.3D.49.设集合A = {1,2,3,4,5,6 }上的二元关系R ={<a , b >⎢a , b ∈A , 且a +b = 8},则R 具有的性质为( ).A.自反的B.对称的C.对称与传递的D.反自反与传递的10、 设集合A ={1 , 2 , 3 , 4}上的二元关系R = {<1 , 1>,<2 , 2>,<2 , 3>,<4 , 4>},S = {<1 , 1>,<2 , 2>,<2 , 3>,<3 , 2>,<4 , 4>},则S就是R的( )闭包.A.自反B.传递C.对称D.以上都不对11、设A={1,2,3,4},下列关系中为等价关系。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
、选择题
1设B = { {2}, 3, 4, 2},那么下列命题中错误的是().
A. {2} B
C. {2} B
2. 若集合A={ a, b, { 1, 2 }} , B={
A. B A,且BA
C. B A,但B A
3. 设集合A = {1, a },则P(A)=(
A . {{1}, { a}}
C. { ,{1}, { a}, {1, a }}
4•已知A B={1,2,3}, A C={2,3,4},若2
A. 1 C
B. 2 C
5.下列选项中错误的是()
A .
B .
6. 下列命题中不正确的:是()
A .x {x}-{{ x}}
C .A {x} x ,则x A且x A
7. A, B 是集合,P(A),I P (B)为其幕集,
且
A .
B .{ }
C .
8. 空集的幕集P()的基
数;
是(
A . 0
B .1
C . 3
B,U()
C . 3 C
D .4 C
C .{ }
D . { }
B .{x} {x} {{ x}}
D .A B A B
A B ,则P(A) P(B)() {{ }} D.{ ,{ }}
)
D . 4
9. 设集合A = {1 , 2, 3, 4, 5, 6 }上的二元关系R ={ a , b 具有的性质为().
A.自反的
C.对称和传递的
B .对称的
D .反自反和传递的
集合论练习题
B . {2, {2}, 3, 4} B
D. {2, {2}} B
1, 2},则( ).
B . B A,但B A
D . B A,且B A
).
B . { ,{1}, { a}}
D . {{1}, { a}, {1, a }}
a ,
b A ,且a +b = 8},贝U R
10. 设集合A={1 , 2,3,4}上的二元关系
则S 是R 的( )闭包.
12. 非空集合A 上的二元关系 R ,满足(
A .自反性,对称性和传递性 C .反自反性,反对称性和传递性
13. 设集合A={a, b },则A 上的二元关系
A .是等价关系但不是偏序关系 C .既是等价关系又是偏序关系 14. 设R 和S 是集合A 上的等价关系,则 A .一定成立
B .不一定成立
15. 整数集合Z 上“V”关系的自反闭包是
A . =
B .工
C .>
16. 关系R 的传递闭包t(R)可由( A . t(R)是包含R 的二元关系 C . t(R)是包含R 的一个传递关系
17. 设R 是集合A 上的偏序关系, ),则称R 是等价关系.
B .反自反性,对称性和传递性 D .自反性,反对称性和传递性
R={< a, a>, <b, b>}是 A 上的(
)关
B .是偏序关系但不是等价关系 D .不是等价关系也不是偏序关系 R U S 的对称性( )
C . 一定不成立
D .不可能成立
( )
关系
D . <
A . R 1 ={<1 , 1>, <1, 2>, <2, 1>, <2 , 2>, <3
,
3>}
B . R 2 ={<1 , 1>, <1, 3>, <2, 2>, <3, 3>, <4, 4>}
C
. R 3 ={<1 , 1>, <1, 3>, <2, 2>, <3, 1>, <3, 3>, <4, 4>}
D . R 4 ={<1 , 1>, <1, 3>, <2, 2>, <3, 2>, <4, 4>}
,2, 3, 4},下列关系中
为等价关
系。
A •自反
B .传递
C .对称
D .以上都不对
11.设 A={1
)来定义
B . t(R)是包含R 的最小的传递关系 D . t(R)是任何包含R 的传递关系
R U R c 是(
)
R c 是R 的逆关系,则
A.偏序关系
B.等价关系
C.相容关系
D.都不是
18•设偏序集(A, W )关系W的哈斯图如下所示,若A的子集B = {2,3,4,5},贝U元素6为B的( )。
(A)下界(B)上界
(C)最小上界(D)以上答案都不对
二、填空题
1 •设集合A有n个元素,那么A的幕集合P(A)的元素个数为_________________ .
2. 集合{ { }}的幕集为______________________________________
3. 设集合A = {1 , 2, 3, 4, 5 }, B = {1 , 2, 3} , R 从A 到B 的二元关系,
R ={ a , b a A, b B 且2 a + b 4}
贝y R的集合表示式为___________________________________ .
4. 设集合A={0, 1,2} , B={0, 2, 4}, R是A到B的二元关系,
R { x, y x A且y B且x, y A B}
则R的关系矩阵M R= ________________________________
5. 设集合A={a,b,c}, A上的二元关系
R={< a, b>,<c. a>} , S={< a, a>,<a, b>,<c, c>}
贝H (R?S) 1= __________________ ; domR= _________________ran (R?S)= ____________ 6. 设集合A= {a,b,c,d}, A 上的二元关系R={< a, b>, < b, a>, < b, c>, < c, d>},则二元关系R
具有的性质是________________ .
7. 设R是集合A = {1 , 2 ,…,10}上的模7同余关系则[2] R_=______________ .
8. A={ 1,2,3,4,5,6,8,10,24,36},RA 是上的整除关系,子集B={1,2,3,4},则
的最大元_________ ,最小元 __________ ,极大元 _____________,极小元____________ ,
上界___________ ,下界____________ ,上确界 _____________ ,下确界 ____________ 。
三、计算题
1. 设集合A {{ },{ ,1},{ 1,1, }}, B {{ ,1},{ 1}},求
(1) B A;(2) A B;(3) A- B; (4) A B; (5)P(A)
2. 设A {{0},0},计算P(A) {0}, P(A) A.
3.设A={1,2,3},写出下列图示关系的关系矩阵,并讨论它们的性质:
(1) B={{1,3,6},{2,8,10},{4,5,7}};
(2) C={{1,5,7},{2,4,8,9},{3,5,6,10}};
(3) D={{1,2,7},{3,5,10},{4,6,8},{9}}
5. R是A={1,2,3,4,5,6}上的等价关系,
R=I A {<1,5>,<5,1>,<2,4>,<4,2>,<3,6>,<6,3>}
求R诱导的划分。
6. A上的偏序关系的Hasse图如下。
(1) 下列哪些关系式成立: a b, b a ,c e, e f , d f, c f;
⑵分别求出下列集合关于的极大(小)元、最大(小)元、上(下)界及上(下)确界
(a) A ; (b) {b,d}; (c) {b,e}; (d) {b,d,e}
A的划分?若是划分,则它们诱导的等价关系是什么?
A
7. 设集合A={1,2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} , R 是A 上的整除关系,B={2, 4, 6}.
(1)写出关系R的表示式;
(2)画出关系R的哈斯图;
(3)求出集合B的最大元、最小元.
8. 设集合A = { a, b, c, d}上的二元关系R的关系图如右图所示.
(1)写出R的表达式;
(2)写出R的关系矩阵;
(3)求出R2.
9. 设A={0 , 1, 2, 3,4}, R={< x, y>|x A, y A 且
x+y<0}, S={< x, y>|x A, y A 且x+y<=3}, 试求R, S, RS, R-1, S1, r(R), s(R), t(R), r(S), s(S), t(S).
四、证明题
1. 设R是集合A上的对称关系和传递关系,试证明:若对任意a A,存在b A,使得<a, b> R, 则R 是等价关系.
2. 若非空集合A上的二元关系R和S是偏序关系,试证明:R S也是A上的偏序关系.。