离散数学 3集合论基础
离散数学(集合论)课后总结

第三章集合论基础1、设A={a,{a},{a,b},{{a,b},c}}判断下面命题的真值。
⑴{a}∈A T ⑵⌝({a}⊆ A) F⑶c∈A F ⑷{a}⊆{{a,b},c} F⑸{{a}}⊆A T ⑹{a,b}∈{{a,b},c} T⑺{{a,b}}⊆A T ⑻{a,b}⊆{{a,b},c} F⑼{c}⊆{{a,b},c} T ⑽({c}⊆A)→(a∈Φ) T2、证明空集是唯一的。
(性质1:对于任何集合A,都有Φ⊆A。
)证明:假设有两个空集Φ1 、Φ2 ,则因为Φ1是空集,则由性质1得Φ1 ⊆Φ2 。
因为Φ2是空集,则由性质1得Φ2 ⊆Φ1 。
所以Φ1=Φ2 。
3、设A={Φ},B=P(P(A)).问:(这道题要求知道幂集合的概念)a)是否Φ∈B?是否Φ⊆B?b)是否{Φ}∈B? 是否{Φ}⊆B?c)是否{{Φ}}∈B? 是否{{Φ}}⊆B?解:设A={Φ},B=P(P(A)) P(A)= {Φ,{Φ}}在求P(P(A))时,一些同学对集合{Φ,{Φ}}难理解,实际上你就将{Φ,{Φ}}中的元素分别看成Φ=a ,{Φ}=b, 于是{Φ,{Φ}}={a,b}B=P(P(A))=P({a,b}) ={B0, B1 , B2 , B3 }={B00, B01,B10 ,B11}={Φ, {b}, {a}, {a,b}}然后再将a,b代回即可B=P(P(A))=P({Φ,{Φ}})={Φ,{Φ} ,{{Φ}}, {Φ,{Φ}}}以后熟悉后就可以直接写出。
a) Φ∈B Φ⊆Bb) {Φ}∈B {Φ} ⊆ Bc) {{Φ}}∈B {{Φ}}⊆Ba)、b)、c)中命题均为真。
4、证明A⊆B ⇔ A∩B=A成立。
证明:A∩B=A ⇔∀x(x∈A∩B ↔x∈A)⇔∀x((x∈A∩B → x∈A)∧(x∈A→ x∈A∩B))⇔∀x((x∉A∩B∨x∈A)∧(x∉A∨x∈A∩B))⇔∀x((⌝(x∈A∧x∈B)∨x∈A)∧(x∉A∨(x∈A∧x∈B))⇔∀x(((x∉A∨x∉B)∨x∈A)∧(x∉A∨(x∈A∧x∈B)))⇔∀x(T∧(T∧( x∉A∨x∈B)))⇔∀x( x∉A∨x∈B)⇔∀x(x∈A→x∈B)⇔ A⊆B5、(A-B)-C=(A-C)-(B-C)证明:任取x∈(A-C)-(B-C)⇔x∈(A-C)∧x∉(B-C)⇔(x∈A∧x∉C)∧⌝(x∈B∧x∉C)⇔(x∈A∧x∉C)∧(x∉B∨x∈C)⇔(x∈A∧x∉C∧x∉B)∨(x∈A∧x∉C∧x∈C)⇔x∈A∧x∉C∧x∉B⇔x∈A∧x∉B∧x∉C⇔(x∈A∧x∉B)∧x∉C⇔x∈A-B∧x∉C⇔x∈(A-B)-C所以(A-B)-C=(A-C)-(B-C)6、A-(B∪C)=(A-B)∩(A-C)证明:任取x∈A-(B∪C)⇔x∈A∧x∉(B∪C)⇔x∈A∧⌝(x∈B∨x∈C)⇔x∈A∧(x∉B∧x∉C)⇔(x∈A∧x∉B)∧(x∈A∧x∉C )⇔x∈A-B∧x∈A-C⇔x∈(A-B)∩(A-C)所以A-(B∪C)=(A-B)∩(A-C))7、~(A∩B)=~A∪~B ~(A∪B)=~A∩~B 这两个公式称之为底-摩根定律。
离散数学结构练习题

离散数学结构练习题1. 集合论基础- 定义集合A={1,2,3}和集合B={2,3,4},求A∩B(A和B的交集)。
- 给定集合C={x|x是小于10的正整数},求C的子集数量。
- 证明如果A⊆B且B⊆C,则A⊆C。
2. 逻辑运算- 写出命题p: "x是偶数"和命题q: "x能被4整除"的逻辑表达式,并求p∧q(p和q的合取)。
- 给定命题r: "今天是星期一"和命题s: "明天是星期二",判断r∨s(r或s的析取)的真值。
- 证明德摩根定律:(A∪B)' = A'∩B' 和(A∩B)' = A'∪B'。
3. 函数与关系- 定义函数f: N→N,f(x) = 2x,求f(3)的值。
- 给定关系R={(1,2),(2,3),(3,4)}在集合{1,2,3,4}上,判断R是否为等价关系,并说明理由。
- 证明如果f是从集合A到集合B的单射函数,那么对于任意的a1, a2∈A,若a1≠a2,则f(a1)≠f(a2)。
4. 组合数学- 计算5个不同的球放入3个不同的盒子中,每个盒子至少有一个球的不同放法数量。
- 给定n个不同的元素,求从这n个元素中选取k个元素的所有可能组合的总数。
- 证明二项式定理:(a+b)^n = ∑(从k=0到n) C(n,k) * a^(n-k) * b^k。
5. 图论基础- 画出一个有5个顶点的无向图,使得该图是连通的且没有环。
- 给定一个有向图,找出所有可能的简单路径。
- 证明欧拉路径和欧拉回路的存在条件。
6. 布尔代数- 给定布尔表达式A∧(B∨C),使用布尔代数的规则将其简化。
- 构造一个布尔函数f(A,B,C)=A⊕B⊕C的真值表。
- 证明布尔代数中的分配律:A∧(B∨C) = (A∧B)∨(A∧C)。
7. 归纳与递归- 使用数学归纳法证明对于所有自然数n,1+2+3+...+n =n(n+1)/2成立。
离散数学第三章 集合

别地,以集合为元素的集合称为集合族或集合类,
如A={{1,2,3}, { 8,9,6}}。
14
2018/11/12
2. 子集、全集与空集 子集是描述一个集合与另一个集合之间的 关系,其定义如下。
定义3.1.1 设A和B是任意两个集合,如果集合 A 的每个元素,都是集合 B 中的一个元素,则
称A是B的子集,或称A被包含于B中,或者说
正则公理的一个自然推论是: 对任何集合S, {S} S (否则有…SSS),
从而规定了集合{S}与 S的不同层次性。
6
2018/11/12
集合与其成员是两个截然不同的概念, 集合 的元素可以是任何具体或抽象事物, 包括别的集
合, 但不能是本集合自身。
因为一个集合是由它的成员构成的, 是先有
10ቤተ መጻሕፍቲ ባይዱ
2018/11/12
表示一个特定集合,基本上有两种方法:
一是枚举法,在可能时列出它的元素,元素之 间用逗号分开,再用花括号括起。如 A={a,e,i,o,u}
表明集合A是由字母a, e, I ,o和u为元素构成的。
11
2018/11/12
二是谓词法,用谓词公式来确定集合。即个体 域中能使谓词公式为真的那些元素,确定了一 个集合,因为这些元素都具有某种特殊性质。 若P(x)含有一个自由变元的谓词公式,则 {x|P(x)}定义了集合S,并可表为 S={x|P(x)}
17
2018/11/12
定义3.1.3 如果一个集合包含了所要讨论的每 一个集合,则称该集合为全集,记为U或E。 它可形式地表为 U={x|P(x)∨┐P(x)}
其中P(x)为任何谓词公式。
18
离散数学形考任务3集合论部分概念及性质

离散数学形考任务3集合论部分概念及性质本文档将介绍离散数学形考任务3中集合论部分的概念及性质。
以下是相关内容:集合的定义集合是由一些确定的、互不相同的元素组成的整体。
集合中的元素可以是任何事物,如数字、字母、符号等。
一般使用大写字母表示集合,元素用小写字母表示,并用大括号{}将元素括起来。
集合的性质1. 互异性:集合中的元素是互不相同的,即集合中的每个元素只出现一次。
2. 无序性:集合中的元素没有先后之分,元素的排列顺序不影响集合本身。
3. 确定性:一个元素要么属于集合,要么不属于集合,不存在中间状态。
4. 外延性:两个集合中的元素完全相同,则这两个集合相等。
5. 空集:不包含任何元素的集合称为空集,用符号{}或∅表示。
集合的运算1. 并集:将两个集合中的所有元素合并在一起,形成一个新的集合。
用符号∪表示。
例如,A∪B表示集合A和集合B的并集。
2. 交集:两个集合中共同拥有的元素组成的集合。
用符号∩表示。
例如,A∩B表示集合A和集合B的交集。
3. 差集:从一个集合中排除掉与另一个集合中相同的元素,得到的新集合。
用符号-表示。
例如,A-B表示集合A和集合B的差集。
4. 补集:相对于全集U,集合A在全集U中未包含的元素组成的集合。
用符号A'表示。
例如,A'表示集合A的补集。
应用举例1. 假设有两个集合A = {1, 2, 3}和B = {2, 3, 4},则A∪B = {1, 2, 3, 4},A∩B = {2, 3},A-B = {1}。
2. 如果全集U是整数集,A = {x | x > 0}表示大于0的整数集合,补集A' = {x | x ≤ 0}。
以上是离散数学形考任务3集合论部分的概念及性质。
希望本文档能对您有所帮助!。
离散数学第3章 集合

任取x, xX … xY (2) 证X=Y
方法一 分别证明 XY 和 YX 方法二 任取x,xX … xY
注意:在使用方法二的格式时,必须保证每步推理都是充分 必要的
27
第三章 集合
命题演算法
例3-3.2 证明A(AB) = A (吸收律)
元素a属于A,记作aA; 或者a不属于A,记作aA,也可以记作┓(aA)。
(4)任意性:集合的元素也可以是集合。 例:A={1,{2},2,{3,4},{6}} A=5,2A,{2}A,6A,{6}A
6
第三章 集合 例如:A={{a,b},d,{{b}}}。可以用一种树形图来表示这种
隶属关系,该图分层构成,每一层上的结点都表示一个集 合,它的儿子就是它的元素。 集合的树型层次结构
32
第三章 集合
§3-3-3 笛卡儿积
定义3-3.2 两个元素a,b组成二元组,若它们有次序 之别,称为二元有序组,或称为有序对或序偶,记为<a, b>,称a为第一分量,b为第二分量;若它们无次序区分, 称为二元无序组,或称为无序对,记为(a,b)。
有序对具有如下性质。 (1)有序性:当x≠y时<x,y>≠<y,x>。 (2)<x,y>与<u,v>相等的充分必要条件是
A
B
11
第三章 集合
§3-2 集合之间的关系
§3-2-1 集合之间的关系 (1)相等关系: • 两集合A和B相等,当且仅当它们有相同的元素。 • 若A与B相等,记为A=B;否则,记为A≠B。 • 可形式化为:A=B(x)(xAxB)。
12
第三章 集合
离散数学的基础知识点总结

离散数学的基础知识点总结离散数学是研究离散结构和离散对象的数学分支。
它以集合论、图论和逻辑等为基础,涉及了许多重要的基础知识点。
下面是对离散数学的基础知识点进行的总结。
1. 集合论(Set theory):集合论是离散数学的基础,涉及了集合的概念、运算和恒等关系,以及集合的分类、子集、幂集和笛卡尔积等基本概念和性质。
2. 逻辑(Logic):逻辑是离散数学的重要组成部分,涉及了命题逻辑和谓词逻辑的基本概念和推理规则,包括命题的真值表、谓词的量化、逻辑等价和逻辑蕴含等概念。
3. 函数(Functions):函数是离散数学中的核心概念之一,涉及了函数的定义、域和值域、函数的性质、特殊的函数(如恒等函数、常值函数、单射函数和满射函数等)以及函数的复合和逆函数等。
4. 关系(Relations):关系是离散数学中的另一个核心概念,涉及了关系的定义、关系的特性(如自反性、对称性、传递性和等价关系等)、关系的闭包和自反闭包、关系的图示表示和矩阵表示、等价关系和偏序关系等。
5. 图论(Graph theory):图论是离散数学的重要分支,涉及了图的基本概念(如顶点、边、路径和圈等)、图的表示方法(如邻接矩阵和邻接表等)、图的遍历算法(如深度优先和广度优先等)、图的连通性和可达性、最小生成树和最短路径等基础知识。
7. 代数结构(Algebraic structures):代数结构是离散数学的一个重要方向,涉及了群、环、域和格等基本代数结构的定义、性质和分类,以及同态映射和同构等概念。
8. 数论(Number theory):数论是离散数学的一个重要分支,涉及了自然数的性质和结构,包括质数和素数、最大公因数和最小公倍数、同余和模运算、欧几里得算法和扩展欧几里得算法、费马小定理和欧拉函数等。
9. 排序和选择(Sorting and selection):排序和选择是离散数学中的一类重要问题,涉及了各种排序算法(如冒泡排序、插入排序、快速排序和归并排序等)和选择算法(如选择排序和堆排序等),以及它们的复杂度分析和应用。
离散数学集合论知识点

离散数学集合论知识点
离散数学集合论知识点
集合是离散数学中最基本的概念之一,集合论是研究集合性质、集合运算等问题的学科。
以下是关于集合论的几个重要知识点:
1. 集合的定义和符号表示
集合是由一些确定的对象组成的整体,这些对象称为该集合的元素,用大括号括起来表示。
例如,{1, 2, 3}表示一个由1、2、3三个元素组成的集合。
通常用小写字母表示集合,例如A、B、C等,用大写字母表示元素。
2. 子集和真子集
集合A是集合B的子集,当且仅当A中的每个元素都是B中的元素。
用符号A⊆B表示。
若A⊆B且A≠B,则称A是B的真子集。
用符号A⊂B表示。
3. 并集和交集
设A和B为两个集合,则它们的并集是由A和B中的元素组成的集合,用符号A∪B表示;它们的交集是A和B中共有的元素组成的集合,用符号A∩B表示。
4. 补集和差集
设U是全集,A是U的一个子集,那么A的补集是U中不属于A的所有元素组成的集合,用符号A'表示。
如果A、B是U的子集,则它们的差集是由属于A 但不属于B的元素组成的集合,用符号A-B表示。
5. 笛卡尔积
设A和B为两个集合,则A和B的笛卡尔积是由所有有序对(a,b)组成的集合,其中a∈A,b∈B。
用符号A×B表示。
例如,若A={1,2},B={a,b},则A×B={(1,a),(1,b),(2,a),(2,b)}。
以上是离散数学集合论的一些基本知识点,它们是其他数学领域的基础,在实际应用中也有广泛的应用。
《离散数学》课件-第3章集合的基本概念

例题
计算以下幂集:
,{};{,{}}
解:
P()={} P({})={,{}} P({,{}})= {, {},{{}},{,{}}}
18
3.3 集合的运算
集合的运算 并,交,补(绝对补),差(相对补-),和对称差等。
19
集合的并运算
• 定义3.3.1 设A,B为集合,由A和B的所有元素组成的集 合称为A与B的并集, 可表示为: AB={x|xAxB} 其文氏图:
其文氏图如下:
~E = , ~ = E, ~(~A)= A A ~A = , A ~A = E
27
德.摩根定律
• 定理3.3.5 设A,B为任意二个集合,则有: • (1) (AB)= A B • (2) (A B)= A B • 证明 设E为全集,显然有AE=A,AE=E成立。 • (1) (AB)= {x | xEx(AB)}= {x |
据的增加、删除、修改、排序,以及数据间关系的描述。
集合论在计算机语言、数据结构、编译原理、数据库与
知识库、形式语言及人工智能等许多领域得到广泛的应
用。
2
3.1 集合及其表示
• 集合是由一些对象聚集在一起构成的。 例如,全体整数 全体中国人 26个英文字母
• 构成集合的对象可以是各种类型的事物。 • 定义3.1.1 集合中的对象叫集合的元素,或成员。
• 集合中的元素可以具有共同性质,也可以表面上看起来不相干。
• 如{2,Tom,计算机,广州}
• 在集合论中,规定元素之间是彼此相异的,并且是没有次序关 系的。
例如,{3,4,5},{3,4,4,5,5},{5,3,4}都是同一个集合。
• 例如,A={3,4,5},
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
谓词定义: A=BABBA x(x∈Ax∈B)x(x∈Bx∈A) x((x∈Ax∈B)(x∈Bx∈A)) x(x∈Ax∈B) 2. 性质 ⑴有自反性,对任何集合A,有A=A。 ⑵有传递性,对任何集合A、B、C,如果 有A=B且 B=C ,则A=C。 ⑶有对称性,对任何集合A、B,如果有 A=B,则B=A。
二.空集 Φ 定义:没有元素的集合,称之为空集,记作Φ。 因为论域内如何客体x∈Φ是矛盾式,所以要用 一个矛盾式定义Φ。 Φ={x| P(x)∧P(x)} 性质: 1.对于任何集合A,都有ΦA。 因为x(x∈Φx∈A)为永真式,所以ΦA。
2.空集是唯一的。 证明 假设有两个空集Φ1 、Φ2 ,则 因为Φ1是空集,则由性质1得 Φ1 Φ2 。 因为Φ2是空集,则由性质1得 Φ2 Φ1 。 所以Φ1=Φ2 。 三.集合的幂集(Power Set) 定义: A是集合,由A的所有子集构成的集合,称 之为A的幂集。记作P(A)或2A。 P(A)={B| BA} 例如, A P(A) Φ {Φ} {a} {Φ,{a}} {a,b} {Φ,{a},{b},{a,b}}
三. 差运算- (相对补集) 1.定义:A、B是集合,由属于A,而不属于B的 元素构成的集合 ,称之为A与B的差集,或B对A的 相对补集,记作A-B。 例如A={1,2,3} B={2,3,4} A-B={1} A B 谓词定义: A-B ={x|x∈A∧x B} A-B x∈A-B x∈A∧xB 2.性质 设A、B、C是任意集合,则 ⑴A-Φ=A ⑵ Φ-A=Φ ⑶A-A=Φ ⑷ A-BA
⑸AB A-B=Φ ⑹(A-B)-C=(A-C)-(B-C) 证明:任取x∈(A-C)-(B-C) x∈(A-C)∧x(B-C) (x∈A∧xC)∧(x∈B∧xC) (x∈A∧xC)∧ (xB∨x∈C) (x∈A∧xC∧xB)∨ (x∈A∧xC∧ x∈C) x∈A∧xC∧xB x∈A∧xB∧xC (x∈A∧xB)∧xC x∈A-B∧xCx∈(A-B)-C 所以 (A-B)-C=(A-C)-(B-C)
证明:A∩B=A x(x∈A∩B x∈A) x((x∈A∩B x∈A)∧(x∈A x∈A∩B)) x((xA∩B∨x∈A)∧(xA∨x∈A∩B)) x(((x∈A∧x∈B)∨x∈A)∧ (xA∨(x∈A∧x∈B)) x(((xA∨xB)∨x∈A)∧ (xA∨(x∈A∧x∈B))) x(T∧(T∧ ( xA∨ x∈B))) x( xA∨ x∈B) x(x∈Ax∈B) AB
2. 有限集合与无限集合 这里对有限集合与无限集合只给出朴素 的定义,以后再给出严格的形式定义。 有限集合:元素是有限个的集合。 如果A是有限集合,用|A|表示A中元素个 数。例如,A={1,2,3}, 则|A|=3。 无限集合:元素是无限个的集合。 对无限集合的所谓‘大小’的讨论,以后 再 进行。
⑵交换律 对任何集合A、B,有A∪B=B∪A。 ⑶结合律 对任何集合A、B、C,有 (A∪B)∪C=A∪(B∪C)。
⑷同一律 对任何集合A,有A∪Φ=A。 ⑸零律 对任何集合A,有A∪E =E 。 ⑹分配律 对任何集合A、B、C,有 A∩(B∪C) =(A∩B)∪(A∩C)。 A∪(B∩C) =(A∪B)∩(A∪C)。 ⑺吸收律 对任何集合A、B,有 A∪(A∩B)=A A∩(A∪B) =A。 证明 A∪(A∩B)= (A∩E)∪(A∩B) (同一) = A∩(E∪B) (分配) = A∩E=A (零律) (同一) ⑻AB A∪B=B。
3.集合的表示方法 列举法:将集合中的元素一一列出,写在大括 号内。 例如,N={1,2,3,4,……} A={a,b,c,d} 描述法:用句子(或谓词公式)描述元素 的属性。 例如,B={x| x是偶数} C={x|x是实数且2≤x≤5} 一般地,A={x|P(x)}, 其中P(x)是描述元素x的特性的谓词公式,如果论 域内客体a使得P(a)为真,则a∈A,否则aA。
3-2 集合间的关系
一.被包含关系(子集) 1.定义:A、B是集合,如果A中元素都是 B中元素,则称B包含A,A包含于B,也称 A是B的子集。记作AB。 文氏图表示如右下图。 例如,N是自然数集合, A B R是实数集合,则NR 谓词定义: ABx(x∈Ax∈B)
2. 性质: ⑴有自反性,对任何集合A有AA。 ⑵有传递性,对任何集合A、B、C,有 AB且 BC ,则AC。 ⑶有反对称性,对任何集合A、B,有 AB且 BA ,则A=B。
二.并运算∪ 1.定义:A、B是集合,由或属于A,或属于B的 元素构成的集合 ,称之为A与B的并集,记作A∪B。 例如A={1,2,3} B={2,3,4} A∪B={1,2,3,4} 谓词定义: A∪B ={x|x∈A∨x∈B} A B x∈A∪B x∈A∨x∈B
2.性质
A∪B
⑴幂等律 对任何集合A,有A∪A=A。
第二篇 集合论
主要包括如下内容: 集合论基础 二元关系 函数
第三章 集合论基础
本章主要介绍如下内容: 基本概念及集合的表示方法 集合间的关系 特殊集合 集合的运算 包含排斥原理
3-1 基本概念
1.集合与元素 集合是个最基本的概念。 集合:是由确定的对象(客体)构成的集体。用 大写的英文字母表示。 这里所谓“确定”是指:论域内任何客体,要 么 属于这个集合,要么不属于这个集合,是唯一确 定的。 元素:集合中的对象,称之为元素。 ∈:表示元素与集合的属于关系。 例如,N表示自然数集合,2∈N,而1.5不属于N 写成(1.5∈N), 或写成 1.5N。
4. 说明 ⑴集合中的元素间次序是无关紧要的,但是必须是可以区 分的,即是不同的。例如A={a,b,c,a},B={c,b,a,},则A 与B是一样的。 ⑵对集合中的元素无任何限制,例如令 A={人,石头,1,B}, B={Φ,{Φ}} ⑶本书中常用的几个集合符号的约定: 自然数集合N= {1,2,3,……} 整数集合I,实数集合R,有理数集合Q ⑷集合中的元素也可以是集合,下面的集合的含义不同: 如 a: 张书记 {a}: 党支部(只有一个书记) {{a}}: 分党委(只有一个支部) {{{a}}}: 党委 (只有一个分党委) {{{{a}}}}: 市党委(只有一个党委)
C0 + C1 n n
+ C 2 +…… + n
n Cn
所以|P(A)|= 2n
|2A|= 2|A|= 2n
幂集元素的编码: A={a,b,c} 则 P(A)= {Φ,{c},{b},{b,c},{a},{a,c},{a,b},{a,b,c}} A的八个子集分别表示成:B0,B1,B2,B3,B4,B5,B6,B7 再将它们的下标写成二进制形式得:B000 ,B001,B010, B011, B100,B101,B110,B111, Φ { c} { b } {b,c} {a} {a,c} {a,b} {a,b,c} B000 B001 B010 B011 B100 B101 B110 B111 B0 B1 B2 B3 B4 B5 B6 B7 子集Bijk编码的写法: A={a,b,c} i、j、k的确定: Bi j k A,
二. 相等关系 1. 定义:A、B是集合,如果它们的元素完 全相同,则称A与B相等。记作A=B。 定理:A=B,当且仅当AB且 BA。 证明:充分性,已知AB且 BA,假设 A≠B,则至少有一个元素a,使得a∈A而 aB;或者a∈B而aA。如果a∈A而 aB, 则与AB矛盾。如果a∈B而aA,则与 BA矛盾。所以A=B。 必要性显然成立,因为如果A=B,则必有 AB且 BA。
2. 性质 有传递性,对任何集合A、B、C,如果 有 AB且 BC ,则AC。 练习题:设A={a,{a},{a,b},{{a,b},c}}判断下 面命题的真值。 ⑴ {a}∈A ⑵ ({a} A) ⑶ c∈A ⑷ {a}{{a,b},c} ⑸ {{a}}A ⑹ {a,b}∈{{a,b},c} ⑺ {{a,b}}A ⑻ {a,b}{{a,b},c} ⑼ {c}{{a,b},c} ⑽ ({c}A)(a∈Φ)
A={a,b,c} 则 P(A)= {Φ,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}}
|P(A)|= C 0 + C 1 3 3
+
C2 3
+
C3 3
性质: 1.给定有限集合A,如果|A|=n, 则|P(A)|=2n。 证明:因为A有n个元素,故P(A)中元素个数为 而 (x+y)n= C 0 xn+C 1 xn-1y + C 2 xn-2y2 +… +C n yn n n n n 令x=y=1时得 2n= C 0 + C 1 + C 2 +…… + C n n n n n
3-3 特殊集合
一.全集 E 定义:包含所讨论的所有集合的集合, 称之为全集,记作E。 E 实际上,就是论域。 它的文氏图如右图。 由于讨论的问题不同, 全集也不同。所以全集不唯一。例如, 若讨论数,可以把实数集看成全集。 若讨论人,可以把人类看成全集。
由于论域内任何客体x都属于E,所以x∈E为永 真式。所以需要用永真式定义E。 E={x| P(x)∨P(x)} 性质:对于任何集合A,都有AE。
三. 真被包含关系(真子集) 1. 定义:A、B是集合,如果AB且A≠B, 则称B真包含A,A真包含于B,也称A是B 的真子集。记作AB。 谓词定义:ABA BA≠B x(x∈Ax∈B)x(x∈Ax∈B) x(x∈Ax∈B) (x(x∈Ax∈B)x(x∈Bx∈A)) (x(x∈Ax∈B)x(x∈Ax∈B)) (x(x∈Ax∈B) x(x∈Bx∈A)) x(x∈Ax∈B) x(x∈BxA)
3-4 集合的运算
介绍五种运算:∩∪- ~ 一.交运算∩ 1.定义:A、B是集合,由既属于A,也属于B的 元素构成的集合 ,称之为A与B的交集,记作A∩B。 例如A={1,2,3} B={2,3,4} A∩B={2,3} A B 谓词定义: A∩B={x|x∈A∧x∈B} A∩B x∈A∩B x∈A∧x∈B 如果A∩B=Φ,则称A与B不相交。