376-超静定结构特性

合集下载

材料力学_超静定结构

材料力学_超静定结构

B1
1
B
C1 No
C
a
IAm1 ag2e
A
a
l
e
C1
C'
3
B1
1
C1
A1
2
l1 = l2
B C
A
l C1
3
l3 e
C''
(1)变形几何方程为 Δl1 Δl3 Δe
(2)物理方程
Δl1
FN1l1 EA
Δl3
FN3l E3 A3
FN1
B'
(3)补充方程
FN3l Δe FN1l
E3 A3
EA
FN3 C' FN2 A'
判断下列结构属于哪类超静定
(a)
外力超静定
(b)
内力超静定
(c)
混合超静定
(d)
外力超静定
(e)
内力超静定
(f)
混合超静定
三、工程中的超静定结构( Statically indeterminate structure in engineering)
在机械和工程结构中常采用超静定结构增加系统的刚度,提 高构件的承载能力 .
A
(3)补充方程
l ΔT
l
FRB l EA
(4)温度内力
FRA A
FRB EA l ΔT
由此得温度应力
T
FRB A
l E ΔT
B
lT B'
lF
B
B'FRB
§2-3 简单超静定梁的解法—变形比较法
求解超静定梁的步骤
q
(procedure for solving a statically

超静定结构的受力分析及特性

超静定结构的受力分析及特性

超静定结构的受力分析及特性一、超静定结构的特征及超静定次数超静定结构的静力特征是仅由静力平衡条件不能唯一地确定全部未知反力和内力。

结构的多余约束数或用静力平衡条件计算全部未知反力和内力时所缺少的方程数称为结构的超静定次数。

通常采用去除多余约束的方法来确定结构的超静定次数。

即去除结构的全部多余约束,使之成为无多余约束的几何不变体系,这时所去除的约束数就是结构的超静定次数。

去除约束的方法有以下几种:(一)切断一根两端铰接的直杆(或支座链杆),相当于去除一个约束。

(二)切断一根两端刚接的杆件,相当于去除三个约束。

(三)切断——个单铰(或支座固定铰),相当于去除二个约束;切断一个复铰(连接n根杆件的铰),相当于去除2(n—1)个约束。

(四)将单刚结点改为单铰节点,相当于去除一个约束;将连接n个杆件的复刚节点改为复铰节点,相当于去除n—1个约束。

去除一个超静定结构多余约束的方法可能有几种,但不管采用哪种方法,所得超静定次数一定相同。

去除图4—1a所示超静定结构的多余约束的方法之一如图4—1b所示,去除六个多余约束后,就成为静定结构,故为超静定六次。

再用其他去除多余约束的方案确定其超静定次数,结果是相同的。

二、力法的基本原理(一)力法基本结构和基本体系去除超静定结构的多余约束,代以相应的未知力Xi (i=1、2、…、n),Xi 称为多余未知力或基本未知力,其方向可以任意假定。

去除多余约束后的结构称为力法基本结构。

力法基本结构在各多余未知力、外荷载(有时还有温度变化、支座位移等)共同作用下的体系称为力法基本体系,它是用力法计算超静定结构的基础。

选取力法基本结构应注意下面两点:1.基本结构一般为静定结构,即无多余约束的几何不变体系。

有时当简单超静定结构的解为已知时,也可以将它作为复杂超静定结构的基本结构,以简化计算。

2.选取的基本结构应使力法典型方程中的系数和自由项的计算尽可能简便,并尽量使较多的副系数和自由项等于零。

超静定结构(精)

超静定结构(精)

第4章超静定结构§4.1 超静定结构特性●由于多余约束的存在产生的影响1. 内力状态单由平衡条件不能惟一确定,必须同时考虑变形条件。

2. 具有较强的防护能力,抵抗突然破坏。

3. 内力分布范围广,分布较静定结构均匀,内力峰值也小。

4. 结构刚度和稳定性都有所提高。

●各杆刚度改变对内力的影响1. 荷载作用下内力分布与各杆刚度比值有关,与其绝对值无关。

2. 计算内力时,允许采用相对刚度。

3. 设计结构断面时,需要经过一个试算过程。

4. 可通过改变杆件刚度达到调整内力状态目的。

●温度和沉陷等变形因素的影响1. 在超静定结构中,支座移动、温度改变、材料收缩、制造误差等因素都可以引起内力,即在无荷载下产生自内力。

2. 由上述因素引起的自内力,一般与各杆刚度的绝对值成正比。

不应盲目增大结构截面尺寸,以期提高结构抵抗能力。

3. 预应力结构是主动利用自内力调节超静定结构内力的典型范例。

§4.2 力法原理●计算超静定结构的最基本方法超静定结构是具有多余联系(约束)的静定结构,其反力和内力(归根结底是内力)不能或不能全部根据静力平衡条件确定。

力法计算超静定结构的过程一般是在去掉多余联系的静定基本结构上进行,并选取多余力(也称赘余力)为基本未知量(其个数等于原结构的超静定次数)。

根据基本体系应与原结构变形相同的位移条件建立方程,求解多余力后,原结构就转化为在荷载和多余力共同作用下的静定基本结构的计算问题。

这里,基本体系起了从超静定到静定、从静定再到超静定的过渡作用,即把未知的超静定问题转换成已知的静定问题来解决。

●基本结构的选择(解题技巧)1. 通常选取静定结构;也可根据需要采用比原结构超静定次数低的、内力已知的超静定结构;甚至可取几何可变(但能维持平衡)的特殊基本结构。

2. 根据结构特点灵活选取,使力法方程中尽可能多的副系数δij = 0。

3. 应选易于绘制弯矩图或使弯矩图限于局部、并且便于图乘计算的基本结构。

超静定

超静定

l A
1)解除B端约束,建立相当系统 解除B端约束, 2)由正则方程 d11 X 1 + D 1P = 0 3)求系数和常数项
4l 4l 3 d11 = 3EI D 1F - Fl 3 = 2 EI
F X1
F
l 1
4)带入正则方程求解 3 X1 = F 8 4)做弯矩图
M = M 1 ?X 1 MF
例1, 试求图示梁的约束反力,设EI为常数. 试求图示梁的约束反力, EI为常数 为常数.
q A l B
1)解除B端约束,建立相当系统 解除B端约束, 2)由正则方程 d11 X 1 + D 1P = 0 3)求系数和常数项
骣 1 骣 鼢2 1 l3 珑l l = d11 = 珑 l鼢 桫 桫 EI 珑 鼢3 2 3EI D 1F
二,正则方程的建立
1,一次超静定问题的正则方程 力法求解静不定问题的关键——建立正则方程. 力法求解静不定问题的关键——建立正则方程.下 建立正则方程 面通过一例说明建立正则方程的步骤. 面通过一例说明建立正则方程的步骤. 图为车削工件安有尾顶针的简化模型. 图为车削工件安有尾顶针的简化模型.
力法求解过程如下: 力法求解过程如下:
第二节
用力法解超静定结构
一,力法
力法——以多余约束力为基本未知量 力法——以多余约束力为基本未知量,将变形或位移表 为基本未知量, 示为未知力的函数,通过变形协调条件作为补充方程求 示为未知力的函数, 来解未知约束力,这种方法称为力法 又叫柔度法 力法, 柔度法. 来解未知约束力,这种方法称为力法,又叫柔度法. 力法的基本思路: 力法的基本思路: 1,结构静定化 2,在未知力处 3,变形条件 4,正则方程 解除多余约束 建立 借助莫尔积分 解线性方程 静定基与相当系统 变形协调条件 补充方程(正则方程) 补充方程(正则方程) 未知力

超静定结构总论课件

超静定结构总论课件

实例分析
赵州桥
中国著名的古代石拱桥,采用弹性连接 超静定结构,具有较好的抗震性能。
VS
金门大桥
美国著名的钢斜拉桥,采用平衡超静定结 构,具有较高的承载能力。
超静定结构的优缺点及应用
优点
稳定性强
超静定结构由于有多余约束,可以提 供额外的稳定性,使得结构在受到外 力作用时不易发生过大变形。
承载能力高
和计算能力,设计过程相对复杂。
维护困难 超静定结构的维护和检修需要专业的 技术和设备支持,维护成本和维护难
度相对较大。
成本高 由于超静定结构的构造复杂,需要更 多的材料和施工成本,因此其成本相 对较高。
延性较差 超静定结构的延性相对较差,在地震 等突然作用下容易发生脆性破坏。
应用领域
桥梁工程
超静定结构在桥梁工程中应用广泛,如连续梁桥、 拱桥等。
THANKS
感谢观看
各杆件间通过弹性连接传递力和变形, 具有较好的抗震性能。
按受力特性分 类
平衡超静定结构
结构在受力状态下能保持平衡状态,如斜拉桥。
稳定超静定结构
结构在受力状态下需要依靠自身稳定性保持平衡,如拱桥。
按材料特性分 类
钢超静定结构
采用钢材制作,具有较高的承载能力和塑性变形能力。
混凝土超静定结构
采用混凝土制作,具有较好的抗压能力和耐久性。
工程应用进展
大型工程应用
超静定结构在大型工程中得到了广泛应用,如大型桥梁、高层建筑 等,其优良的性能和稳定性得到了充分验证。
新型超静定结构体系
随着研究的深入,出现了多种新型超静定结构体系,如预应力超静 定结构、杂交超静定结构等,满足了多样化的工程需求。
跨学科应用
超静定结构在跨学科领域也得到了应用,如生物医学、航天航空等, 展现了广泛的应用前景和发展潜力。

超静定结构的超静定次数

超静定结构的超静定次数

超静定结构的超静定次数超静定结构是指在受力平衡条件下,由于约束条件数量大于自由度数量,使得结构不具有唯一的平衡位置。

超静定结构的超静定次数是指约束条件数量与自由度数量之差。

一、超静定结构的特点超静定结构具有以下特点:1. 约束条件数量大于自由度数量:超静定结构的约束条件数量大于自由度数量,使得结构不具有唯一的平衡位置。

这导致了结构的设计和分析变得更加困难。

2. 结构具有较高的刚度:由于超静定结构的约束条件数量较多,结构具有较高的刚度。

这使得超静定结构在承受荷载时能够更好地保持形状稳定性。

3. 结构能够承受更大的荷载:超静定结构由于具有较高的刚度,能够承受更大的荷载。

这使得超静定结构在工程实践中得到广泛应用。

二、超静定结构的应用超静定结构在工程实践中有着广泛的应用,主要包括以下几个方面:1. 桥梁工程:超静定结构在桥梁工程中得到了广泛应用。

由于桥梁需要承受大量的荷载,超静定结构能够提供更高的刚度和稳定性,保证桥梁在使用过程中不发生塌陷或变形。

2. 建筑结构:超静定结构在建筑结构中也有重要的应用。

例如,高层建筑的框架结构通常采用超静定结构设计,以提高结构的稳定性和抗震性能。

3. 机械设备:超静定结构在机械设备中也有广泛的应用。

例如,汽车的悬挂系统和起重机的支撑结构都是超静定结构,能够提供更高的稳定性和承载能力。

三、超静定结构的分析方法超静定结构的分析方法主要包括以下几个步骤:1. 定义自由度和约束条件:首先确定结构的自由度和约束条件。

自由度是指结构中可以独立变形的数量,约束条件是指结构中限制自由度的条件。

2. 建立平衡方程:根据结构的受力平衡条件,建立结构的平衡方程。

平衡方程是超静定结构分析的基础,通过平衡方程可以求解结构的受力状态。

3. 引入支座反力:由于超静定结构的约束条件数量大于自由度数量,结构中存在未知的支座反力。

通过引入支座反力,可以将超静定结构转化为静定结构进行分析。

4. 求解支座反力:利用平衡方程和约束条件,求解支座反力。

超静定结构的概述

超静定结构的概述
量,梁会产生向上弯曲变形,故梁会因温度改变而产生内力。
(a)
(b)
图 11-3
除上述主要特征外,超静定结构还具有整体性强、变形小、受力较为 均匀等特点,因而这种结构在实际工程中被广泛采用。例如,图11-4a 所 示的两跨连续梁较图11-4b 所示的两跨简支梁,在力 F 作用点处的弯矩和 挠度均为小。
(a) 静定结构
(b) 超静定结构
(c) 静定结构受力图
算上来说,静定结构的静力特征是用静力平衡条件就能求得全 部反力和内力;而超静定结构的静力特征是仅用静力平衡条件不能求得 全部反力和内力。例如,对图11-1a 所示的静定梁,其受力图如图11-1c 所示,梁的反力(FAx、FAy、FB)和内力(FN、FQ、M)分别由三个静 力平衡方程求得。 而对图 11-lb 所示的连续梁,其受力图如图 11-ld 所示, 梁的反力共有四个(FAx、FAy、Fx1、FB),其中Fx1称为多余约束所对应 的多余未知力,用三个静力平衡方程不可能将此四个反力全部求得,只 要有一个反力尚未确定,梁的内力就不能确定。因此,还须补充其他条 件,才能求解。
【例11-3】确定图11-13a 所示结构的超静定次数。
解:图11-13a 所示刚架,具有一个多余约束。若将横梁某处改为铰接, 即相当于去掉一个约束,得到如图11-13b 所示的静定结构,故原结构 n = l。
若去掉支座 B 处的水平支杆,则得图11-13c 所示的静定结构。 但是,若去掉支座 B 或支座 A 的竖向支杆,即成可变体系如图11-13d 所 示,显然这是不允许的,所以此刚架支座处的竖向支杆不能作为多余约束。
图 11-6
② 去掉一个单铰,相当于去掉两个约束 。 如图11-7a 所示的结构,去掉一个单铰而变成静定结构,如图11-7b 所示。 因 n = 2,故该结构为两次超静定 。

超静定结构的概念及超静定次数的确定(PPT)

超静定结构的概念及超静定次数的确定(PPT)

04 超静定结构的实际应用
桥梁工程
桥梁工程中,超静定结构的应用可以增加结构的稳定性和安全性,提高桥梁的承 载能力。例如,连续梁桥采用超静定结构形式,可以减小梁体的振动和变形,提 高行车舒适性和安全性。
此外,超静定结构在桥梁工程中还可以用于抵抗风、地震等自然灾害的影响,提 高桥梁的抗震性能和抗风能力。
ቤተ መጻሕፍቲ ባይዱ
渐进法
总结词
通过逐步逼近的方法求解超静定结构的位移和内力的方法。
详细描述
渐进法是一种基于迭代思想的求解方法,通过逐步逼近的方法求解超静定结构的位移和内力。该方法首先假设一 组初始解,然后逐步修正解的近似值,直到满足精度要求或达到预设的迭代次数为止。渐进法可以处理复杂的超 静定结构问题,具有较高的计算效率和精度。
建筑工程
在建筑工程中,超静定结构的应用可以提高结构的稳定性和 刚度,增强建筑物的承载能力和抗震性能。例如,高层建筑 采用超静定结构形式,可以减小风力、地震等外部荷载对建 筑物的影响,保证建筑物的安全性和稳定性。
此外,超静定结构在建筑工程中还可以用于优化建筑物的空 间布局和结构形式,提高建筑物的美观性和实用性。
超静定结构
在任何一组确定的平衡力系作用 下,需要用多余的约束条件才能 确定结构的平衡状态的体系。
超静定结构的特性
具有多余的约束
超静定结构有多余的约束,这些 多余的约束可以提供额外的稳定 性,使结构在受到外力作用时具
有更好的抵抗变形的能力。
存在内力
由于超静定结构的约束多余,当 受到外力作用时,会在结构内部 产生内力,这些内力有助于抵抗
判别准则二
如果一个结构的支座反力数目小于其约束数目, 则该结构为超静定结构。
判别准则三
如果一个结构的受力状态不能由静力平衡方程完 全确定,则该结构为超静定结构。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(a) 在超静定结构中,支座移动、温度改 变、材料收缩、制造误差等因素都可以 引起内力,即在无荷载下产生自内力。
(b) 由上述因素引起的自内力,一般与各 杆刚度的绝对值成正比。不应盲目增大 结构截面尺寸,以期提高结构抵抗能力。
(c) 预应力结构是主动利用自内力调节超 静定结构内力的典型范例。
比较静定结构特性
① 静力特性(解答惟一性):
全部反力和内力均可由静力平衡条件 惟一确定,且数值有限。
② 几何特性:
体系几何不变,且无多余联系(约 束)。
③ 其它特性:
(a) 仅荷载引起内力。支座移动、温度改 变、制造误差等因素只使结构产生位移, 不产生内力、反力。
(b) 局部平衡原理。结构局部能平衡荷载 时,仅此部分受力,其它部没有内力。
(c) 荷载等效变换特性。结构任一几何不 变部分上荷载作静力等效变换时,仅使 变换部分范围内的内力发生变化。
婴幼儿体格生长
376-超静定结构特性
(续)
② 各杆刚度改变对内力的影响
(a) 荷载作用下内力分布与各杆刚度比值 有关,与其绝对值无关。 (b) 计算内力时,允许采用相对刚度。 (c) 设计结构断面时,需要经过一个试算 过程。 (d) 可通过改变杆件刚度达到调整内力状 态目的。
(续)
③ 温度和沉陷等变形因素的影响
相关文档
最新文档