一线三等角典型例题
一线三等角例题加答案

一线三等角例题问题描述给定一个等边三角形ABC,已知点D、E、F分别是BC、CA和AB的中点。
连接AD、BE和CF,求证:AD、BE和CF 是等边三角形的边。
证明要证明AD、BE和CF是等边三角形的边,我们需要证明三个长度相等的线段,即AD=BE=CF。
证明AD=BE连接线段AC,并延长线段BE交线段AC于点G,如下图所示:graph TDA((A)) -- AD --> D((D))A((A)) -- AC --> C((C))A((A)) -- AB --> B((B))B((B)) -- BE --> E((E))G((G)) -- BE --> E((E))C((C)) -- CF --> F((F))G((G)) -- CG --> C((C))三角形ACG和BEG,它们共有一条边AC,并且根据各边的定义,两个三角形的另外两条边DG和GE分别平行于AC和BE。
因此,根据平行线间的性质,有:AD/BE = DG/GE而根据题意,DG=AC,GE=BE,因此:AD/BE = AC/BE = 1所以,AD=BE。
证明AD=CF连接线段AB,并延长线段CF交线段AB于点H,如下图所示:graph TDA((A)) -- AD --> D((D))H((H)) -- CF --> F((F))A((A)) -- AC --> C((C))A((A)) -- AB --> B((B))B((B)) -- BE --> E((E))H((H)) -- AH --> A((A))三角形AHC和DFC,它们共有一条边AC,并且根据各边的定义,两个三角形的另外两条边AH和DF分别平行于AB和CF。
因此,根据平行线间的性质,有:AD/CF = AH/DF而根据题意,AH=AB,DF=CF,因此:AD/CF = AB/CF = 1所以,AD=CF。
一线三等角典型例题

“ 一线三等角”模型在初中数学中的应用一、“一线三等角”模型的提炼例1、(2015 年山东·德州卷)(1)问题:如图1,在四边形ABCD 中,点P 为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD 中,点P 为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)、(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5.点P 以每秒1 个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A.设点P 的运动时间为t(秒),当以D 为圆心,以DC 为半径的圆与A B相切,求t 的值.变式1 ( 2012 年烟台) ( 1) 问题探究如图6,分别以△ABC 的边AC 与边BC 为边,向△ABC 外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH 交直线AB 于点H,使∠AHK = ∠ACD1.作D1M ⊥KH,D2N ⊥KH,垂足分别为点M、N.试探究线段D1M 与线段D2N 的数量关系,并加以证明.( 2) 拓展延伸1如图7,若将“问题探究”中的正方形改为正三角形,过点C 作直线K1H1,K2H2,分别交直线AB 于点H1、H2,使∠AH1K1 = ∠BH2K2 = ∠ACD1.作D1M ⊥K1H1,D2N⊥K2H2,垂足分别为点M、N. D1M = D2N 是否仍成立? 若成立,给出证明; 若不成立,说明理由.2如图8,若将① 中的“正三角形”改为“正五边形”,其他条件不变.D1M = D2N 是否仍成立? ( 要求:在图8 中补全图形,注明字母,直接写出结论,不需证明)二、添加辅助线后运用基本图形例1、在△ABC中,AB =2,∠B = 45°,以点A为直角顶点作等腰Rt△ADE,点D 在BC 上,点E 在AC 上,若CE=5,求CD的长。
专题3.一线三等角

专题三:一线三等角综合专项练习班级:姓名:例1.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD ⊥直线m,CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE =BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E 三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.练习:1.如图(1),AB⊥AD,ED⊥AD,AB=CD,AC=DE,试说明BC⊥CE的理由;如图(2),若△ABC向右平移,使得点C移到点D,AB⊥AD,ED⊥AD,AB=CD,AD =DE,探索BD⊥CE的结论是否成立,并说明理由.2.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于D,CE⊥DE于点E;(1)若B、C在DE的同侧(如图所示)且AD=CE.求证:AB⊥AC;(2)若B、C在DE的两侧(如图所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.3.如图,在△ABC中,∠ABC=∠ACB,E为BC边上一点,以E为顶点作∠AEF,∠AEF的一边交AC于点F,使∠AEF=∠B.(1)如果∠ABC=40°,则∠BAC=;(2)判断∠BAE与∠CEF的大小关系,并说明理由;(3)当△AEF为直角三角形时,求∠AEF与∠BAE的数量关系.4.如图,AB=12米,CA⊥AB于点A,DB⊥AB于点B,且AC=4米,点P从B向A运动,每分钟走1米,点Q从B点向D运动,每分钟走2米,P、Q两点同时出发,运动几分钟后,△CP A与△PQB全等?。
中考专题练习一线三等角

中考专题练习一线三等角The document was finally revised on 2021一线三等角理论:略范例点睛1.正方形ABCD边长为5,点P、Q分别在直线CB、DC上(点P不与点C、点B重合),且保持∠APQ=90°.当CQ=1时,写出线段BP的长2.如图,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=3,AB=6.在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°.(1)当点E是AB的中点时,线段DF的长度是;(2)若射线EF经过点C,则AE的长是.BC,AB=DC=AD=6,∠ABC=60°,点E、F分别在线段AD、DC上(点E与点A、D不重合),且∠BEF=120°,设AE=x,DF=y.(1)求y与x的函数表达式;(2)当x何值时,y有最大值,最大值是多少?4. 如图,Rt△ABC中,∠BAC=90°,AB=AC=2,点D为BC边上动点(D不与B、C重合),∠ADE=45°,DE交AC于点E.(1)∠BAD与∠CDE的大小关系为.请证明你的结论;(2)设BD=x,AE=y,求y关于x的函数关系式,并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长;(4)是否存在x,使△DCE的面积是△ABD面积的2倍?若存在,求出x的值,若不存在,请说明理由.本王闯关一.基础技能1.(2015?连云港)如图,在△ABC中,∠BAC=60°,∠ABC=90°,直线l1∥l2∥l3,l1与l2之间距离是1,l2与l3之间距离是2,且l1,l2,l3分别经过点A,B,C,则边AC= .2.如图,已知321////lll,相邻两条平行直线间的距离相等,若等腰直角△ABC的三个项点分别在这三条平行直线上,则sina 值是()A.31 B.176 C.55 D.10103.(2012·苏州)已知在平面直角坐标系中放置了5个如图所示的正方形(用阴影表示),点B1在y轴上,点C1、E1、E2、C2、E3、E4、C3在x 轴上.若正方形A1B1C1D1的边长为1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,则点A3到x轴的距离是()4.如图,在边长为9正三角形ABC中,BD=3,∠ADE=60°,则AE= .5.(2012·宁波)如图1是由边长相等小正方形和直角三角形构成的,可以用其面积关系验证勾股定理。
一线三等角大题练习-答案

一线三等角大题练习学校:___________姓名:___________班级:___________考号:___________ 评卷人 得分一、解答题1.感知:数学课上,老师给出了一个模型:如图1,点A 在直线DE 上,且90BDA BAC AEC ∠=∠=∠=︒,像这种一条直线上的三个顶点含有三个相等的角的模型我们把它称为“一线三等角”模型.(1)如图2,Rt ABC △中,90ACB ∠=︒,CB CA =,直线ED 经过点C ,过A 作AD ED ⊥于点D ,过B 作BE ED ⊥于点E .求证:BEC CDA ≌;(2)如图3,在ABC 中,D 是BC 上一点,90CAD ∠=︒,AC AD =,DBA DAB ∠=∠,23AB =,求点C 到AB 边的距离;(3)如图4,在ABCD 中,E 为边BC 上的一点,F 为边AB 上的一点.若DEF B ∠=∠,10AB =,6BE =,求EFDE的值. 2.【问题背景】(1)过等腰直角△ABC 的两个锐角顶点,分别向直角顶点C 所在的一条直线作垂线,垂足分别为点D ,E .如图1,这种图形可归纳为“一线三等角”.其中已知∠ADC =∠CEB =90°,AC =CB ,又由∠ACD +∠BCE =90°,∠CBE +∠BCE =90°,得到∠ACD =∠CBE ,所以△ACD ≌△CBE ,这种判定三角形全等的依据是________(填写SSS ,SAS ,ASA ,AAS 或HL ).图1【问题解决】(2)如图2,已知平面直角坐标系中的两点A (-2,4),B (3,1),在直线AB 的上方,以AB 为边作等腰直角△ABM ,写出所有符合条件的点M 坐标:________.图23.感知:(1)数学课上,老师给出了一个模型:如图1,90BAD ACB AED ∠=∠=∠=︒,由12180BAD ∠+∠+∠=︒,2180D AED ∠+∠+∠=︒,可得1D ∠=∠ ;又因为90ACB AED =∠=︒,可得ABC DAE △△∽,进而得到BCAC=______.我们把这个模型称为“一线三等角”模型. 应用:(2)实战组受此模型的启发,将三等角变为非直角,如图2,在ABC 中,10AB AC ==,12BC =,点P 是BC 边上的一个动点(不与B 、C 重合),点D 是AC边上的一个动点,且APD B ∠=∠. ①求证:ABP PCD △△∽;②当点P 为BC 中点时,求CD 的长;拓展:(3)在(2)的条件下如图2,当APD △为等腰三角形时,请直接写出BP 的长.4.通过对下面数学模型的研究学习,解决下列问题: (1)【模型呈现】如图1,∠BAD =90°,AB =AD ,过点B 作BC ⊥AC 于点C ,过点D 作DE ⊥AC 于点E .由∠1+∠2=∠2+∠D =90°,得∠1=∠D .又∠ACB =∠AED =90°,可以推理得到△ABC ≌△DAE .进而得到AC = ,BC = .我们把这个数学模型称为“K 字”模型或“一线三等角”模型; (2)【模型应用】①如图2,∠BAD =∠CAE =90°,AB =AD ,AC =AE ,连接BC ,DE ,且BC ⊥AH 于点H ,DE 与直线AH 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 为平面内任一点,点B 的坐标为(4,1).若△AOB 是以OB 为斜边的等腰直角三角形,请直接写出点A 的坐标为 .5.通过对下面数学模型的研究学习,解决下列问题:【模型呈现】(1)如图1,90BAD ∠=︒,AB AD =,过点B 作BC AC ⊥于点C ,过点D 作DE AC ⊥于点E .由12290D ∠+∠=∠+∠=︒,得1D ∠=∠.又90ACB AED ∠=∠=︒,可以推理得到ABC DAE ∆∆≌.进而得到AC = ,BC = .我们把这个数学模型称为“K 字”模型或“一线三等角”模型;【模型应用】(2)①如图2,90BAD CAE ∠=∠=︒,AB AD =,AC AE =,连接BC ,DE ,且BC AF ⊥于点F ,DE 与直线AF 交于点G .求证:点G 是DE 的中点;②如图3,在平面直角坐标系xOy 中,点A 的坐标为()2,4,点B 为平面内任一点.若AOB ∆是以OA 为斜边的等腰直角三角形,请直接写出点B 的坐标.参考答案:1.(1)见解析 (2)3(3)35 【解析】 【分析】(1)根据“AAS ”证明BEC CDA ≌即可;(2)过D 作DF AB ⊥于点F ,过C 作CE AB ⊥交BA 延长线于点E ,可根据“AAS”证≌CAE ADF 即可求解;(3)过D 作DM CD =交BC 的延长线于点M ,可得DCM M ∠=∠,由平行四边形ABCD 易证DEC BFE ∠=∠,故BFE MED ∽,由相似三角形的性质可求. (1)证明:∵90ACB ∠=︒,180BCE ACB ACD ∠+∠+∠=︒, ∴90BCE ACD ∠+∠=︒. ∵AD ED ⊥,BE ED ⊥,∴90BEC CDA ∠=∠=︒,90EBC BCE ∠+∠=︒, ∴ACD EBC ∠=∠. 又∵CB CA =,∴()BEC CDA AAS ≌. (2)解:如图,过D 作DF AB ⊥于点F ,过C 作CE AB ⊥交BA 延长线于点E .∵DBA DAB ∠=∠,∴AD BD =,∴132AF BF AB === ∵90CAD ∠=︒,∴90DAF CAE ∠+∠=︒. ∵90DAF ADF ∠∠=+︒,∴CAE ADF ∠=∠. 在CAE 和ADF 中,==90==CEA AFD CAE ADF AC AD ∠∠︒⎧⎪∠∠⎨⎪⎩, ∴()CAE ADF AAS ≌,∴3CE AF ==,即点C 到AB 边的距离为3. (3)解:如图,过D 作DM CD =交BC 的延长线于点M ,∴DCM M ∠=∠.∵四边形ABCD 是平行四边形,∴10DM CD AB ===,AB CD ∥,∴B DCM M ∠=∠=∠. ∵FEC DEF DEC B BFE ∠=∠+∠=∠+∠,B DEF ∠=∠, ∴DEC BFE ∠=∠,∴BFE MED ∽, ∴63105EF BE DE DM ===. 【点睛】本题考查了全等三角形的判定与性质,平行四边形的性质,相似三角形的判定与性质,熟练运用全等三角形的判定与性质、相似三角形的判定与性质是解题的关键. 2. AAS (1,9),(6,6),(2,5) 【解析】 【分析】(1)根据垂直的定义得到∠ADC =∠CEB =90°,根据余角的性质得到∠ACD =∠BCE ,根据全等三角形的判定定理即可得到结论;(2)当∠M 1AB =90°,△ABM 1是等腰直角三角形,当∠M 3BA =90°,△ABM 3是等腰直角三角形,当∠AM 2B =90°,△ABM 2是等腰直角三角形,根据全等三角形的性质和等腰三角形的性质即可得到结论. 【详解】(1)证明:∵AD⊥DE,BE⊥DE,∴∠ADC=∠CEB=90°,∵∠ACB=90°,∴∠ACD+∠BCE=90°,∠CBE+∠BCE=90°,∴∠ACD=∠EBC,在△ACD和△CBE中,ADC CEBACD EBCAC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD≌△CBE(AAS),故答案为:AAS;(2)解:当∠M1AB=90°,△ABM1是等腰直角三角形,过A作直线l∥y轴,过B作BF⊥直线l于F,过M1作M1E⊥直线l于E,∴∠AEM1=∠AFB=90°,∵∠BAM1=90°,∴∠EAM1+∠F AB=∠F AB+∠ABF=90°,∴∠EAM1=∠ABF,∵AM1=AB,∴△AEM1≌△BF A(AAS),∴AE=BF,AF=EM1,∵点A(-2,4),B(3,1),∴AE=BF=5,AF=EM1=3,∴M1(1,9),当∠M3BA=90°,△ABM3是等腰直角三角形,过B作直线m∥x轴,分别过A,M3作AF⊥m于F,M3G⊥m于G,同理,M3(6,6);当∠AM2B=90°,△ABM2是等腰直角三角形,∴∠M2AB=∠ABM2=∠M1AM2=∠AM1M2=45°,∴M11M2=BM2,∴M2是线段BM1的中点,∴M2(2,5),综上所述,符合条件的点M坐标为:(1,9),(6,6),(2,5),故答案为:(1,9),(6,6),(2,5)【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.3.感知:(1)AEDE ;应用:(2)①见解析;②3.6;拓展:(3)2或113【解析】【分析】(1)根据相似三角形的性质,即可求解;(2)①根据等腰三角形的性质得到∠B=∠C,根据三角形的外角性质得到∠BAP=∠CPD,即可求证;②根据相似三角形的性质计算,即可求解;(3)分P A=PD、AP=AD、DA=DP三种情况,根据等腰三角形的性质、相似三角形的性质,即可求解.【详解】感知:(1)∵△ABC∽△DAE,∴BC AC AE DE=,∴BC AE AC DE=,故答案为:AE DE;应用:(2)①∵∠APC=∠B+∠BAP,∠APC=∠APD+∠CPD,∠APD=∠B,∴∠BAP =∠CPD , ∵AB =AC , ∴∠B =∠C , ∴△ABP ∽△PCD ; ②BC =12,点P 为BC 中点, ∴BP =PC =6, ·∵△ABP ∽△PCD , ∴AB BPPC CD =,即1066CD=, 解得:CD =3.6;拓展:(3)当P A =PD 时,△ABP ≌△PCD , ∴PC =AB =10, ∴BP =BC -PC =12-10=2; 当AP =AD 时,∠ADP =∠APD , ∵∠APD =∠B =∠C , ∴∠ADP =∠C ,不合题意, ∴AP ≠AD ;当DA =DP 时,∠DAP =∠APD =∠B , ∵∠C =∠C , ∴△BCA ∽△ACP , ∴BC AC AC CP =,即121010CP=, 解得:253CP =, ∴25111233BP BC CP =-=-=, 综上所述,当APD △为等腰三角形时, BP 的长为2或113. 【点睛】本题考查的是三角形相似的判定定理和性质定理、全等三角形的判定定理和性质定理以及三角形的外角性质,掌握相似三角形的判定定理和性质定理是解题的关键. 4.(1)DE ,AE ;(2)①见解析;②3(2,5)2或5(2,3)2【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)①如图2,作DM AH ⊥于M ,EN AH ⊥于N ,根据余角的性质得到1B ∠=∠,根据全等三角形的性质得到AH DM =,同理AH EN =,由此可得EN DM =,再由此证明DMG ENG △≌△,由全等三角形的性质得到DG EG =,于是得到点G 是DE 的中点;②分两种情况讨论,如图3,过A 作AD y ⊥轴于D ,过B 作BE x ⊥轴于E ,DA 与EB 相交于C ,根据余角的性质得到BAC AOD ∠=∠,根据全等三角形的性质得到AD BC =,OD AC =,设AD x =,则BC AD x ==,于是得到结论,如图4,同理可得答案.【详解】解:(1)∵ABC DAE △≌△. ∴AC DE =,BC AE =; 故答案为:DE ,AE ;(2)①如图2,作DM AH ⊥于M ,EN AH ⊥于N ,BC AH ⊥,90BHA AMD ∴∠=∠=︒,90BAD ∠=︒,12290B ∴∠+∠=∠+∠=︒,1B ∴∠=∠,在ABH 与DAM △中, 1BHA AMD B AB DA ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABH DAM AAS ∴△≌△,AH DM ∴=, BC AH ⊥,90CHA ANE ∴∠=∠=︒,90CAE ∠=︒,90CAH EAN CAH C ∴∠+∠=∠+∠=︒,EAN C ∴∠=∠,在ACH 与EAN 中,CHA ANE C EAN AC EA ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ACH EAN AAS ∴△≌△,AH EN ∴=,又∵AH DM =,EN DM ∴=,DM AH ⊥,EN AH ⊥,90GMD GNE ∴∠=∠=︒,在DMG △与ENG △中,DMG ENG MGD NGE DM EN ∠=∠⎧⎪∠=∠⎨⎪=⎩,()DMG ENG AAS ∴△≌△,DG EG ∴=,∴点G 是DE 的中点;②如图3,过A 作AD y ⊥轴于D ,过B 作BE x ⊥轴于E ,DA 与EB 相交于C ,90C ∴∠=︒,90OAB ∠=︒,90OAD BAC ∴∠+∠=︒,90OAD AOD ∠+∠=︒,BAC AOD ∴∠=∠,在AOD △与BAC 中,C ADO BAC AOD OA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOD BAC AAS ∴△≌△,AD BC ∴=,OD AC =,设AD x =,则BC AD x ==,1AC OD CE x ∴===+,14AD AC x x OE ∴+=++==, 32x ∴=,512x +=, ∴点A 的坐标3(2,5)2; 如图4,过A 作AD y ⊥轴于D ,过B 作BE x ⊥轴于E ,DA 与BE 相交于C ,90C ∴∠=︒,90OAB ∠=︒,90OAD BAC ∴∠+∠=︒,90OAD AOD ∠+∠=︒,BAC AOD ∴∠=∠,在AOD △与BAC 中,C ADO BAC AOD OA AB ∠=∠⎧⎪∠=∠⎨⎪=⎩,()AOD BAC AAS ∴△≌△,AD BC ∴=,OD AC =,设AD x =,则BC AD x ==,1AC OD CE x ∴===-,14AD AC x x OE ∴+=+-==,52x ∴=,312x -=, 又∵此时点A 在第四象限,∴点A 的坐标5(2,3)2, 综上所述,点A 的坐标为3(2,5)2或5(2,3)2, 故答案为:3(2,5)2或5(2,3)2. 【点睛】 本题考查了全等三角形的判定和性质,正确的作出辅助线是解题的关键.5.(1)DE ,AE ;(2)①见解析;②()3,1,()1,3-【解析】【分析】(1)根据全等三角形的性质即可得到结论;(2)①作DM ⊥AH 于M ,EN ⊥AH 于N ,根据余角的性质得到∠B=∠1,根据全等三角形的性质得到AH=DM ,同理AH=EN ,求得EN=DM ,由全等三角形的性质得到DG=EG ,于是得到点G 是DE 的中点;②过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,根据余角的性质得到∠OBN=∠BAM ,根据全等三角形的性质得到AM=BN ,ON=BM ,设AM=x ,则BN=AM=x ,从而得到结论.【详解】解:(1)AC=DE ,BC=AE ;故答案为:DE ,AE(2)①如图,作DM AF ⊥于M ,EN AF ⊥于N ,∵BC AF ⊥,∴90BFA AMD ∠=∠=︒,∵90BAD ∠=︒,∴12190B ∠+∠=∠+∠=︒,∴1B ∠=∠,在ABF ∆与DAM ∆中,BFA AMD ∠=∠,2B ∠=∠,AB DA =,∴ABF DAM ∆∆≌(AAS ),∴AF DM =,同理AF EN =,∴EN DM =,∵DM AF ⊥,EN AF ⊥,∴90GMD GNE ∠=∠=︒,在DMG ∆与ENG ∆中,DMG ENG ∠=∠,MGD NGE ∠=∠,DM EN =,∴DMG ENG ∆=(AAS ),∴DG EG =,∴点G 是DE 的中点;②如图,过A 作AM ⊥y 轴,过B 作BN ⊥x 轴于N ,AM 与BN 相交于M ,∴∠M=90°,∵∠OBA=90°,∴∠ABM+∠OBN=90°,∵∠ABM+∠BAM=90°,∴∠OBN=∠BAM ,在△OBN 与△BAM 中,M ONB OBN BAM OB AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△OBN ≌△BAM (AAS ),∴AM=BN ,ON=BM ,设AM=x ,则BN=AM=x ,∴ON= x+2,∴MB+NB=x+x+2=MN=4,∴x=1,x+2=3,∴点B 的坐标(3,1);如图同理可得,点B 的坐标(-1,3),综上所述,点B 的坐标为()3,1,()1,3-【点睛】本题考查了全等三角形的判定和性质,垂直的定义,余角的性质,正确的作出辅助线是解题的关键.。
一线三等角典型例题

“ 一线三等角”模型在初中数学中的应用一、“一线三等角”模型的提炼例1、(2015 年山东·德州卷)(1)问题:如图1,在四边形ABCD 中,点P 为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD 中,点P 为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)、(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5.点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A.设点P 的运动时间为t(秒),当以D 为圆心,以DC 为半径的圆与A B相切,求t 的值.变式1 ( 2012 年烟台) ( 1) 问题探究如图6,分别以△ABC 的边AC 与边BC 为边,向△ABC 外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH 交直线AB 于点H,使∠AHK =∠ACD1.作D1M ⊥ KH,D2N ⊥ KH,垂足分别为点M、N.试探究线段D1M 与线段D2N 的数量关系,并加以证明.( 2) 拓展延伸1 如图7,若将“问题探究”中的正方形改为正三角形,过点C 作直线K1H1,K2H2,分别交直线AB 于点H1、H2,使∠AH1K1= ∠BH2K2=∠ACD1.作D1M ⊥K1H1,D2N⊥K2H2,垂足分别为点M、N. D1M = D2N 是否仍成立? 若成立,给出证明; 若不成立,说明理由.2 如图8,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M = D2N 是否仍成立? ( 要求:在图8 中补全图形,注明字母,直接写出结论,不需证明)二、添加辅助线后运用基本图形例1、在△ABC中,AB =2,∠B = 45°,以点A为直角顶点作等腰Rt△ADE,点D 在BC上,点E 在AC上,若CE=5,求CD的长。
一线三等角问题

ABCDE相似三角形模型之“一线三等角型”一线三等角型:三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景引例:如图,等边△ABC 中,D是BC 上一点,F 为AC 边上一点,且∠A DF =60°,BD=3,CF=2.求△ABC 边长。
例1、如图,在△ABC 中,8==AC AB ,10=BC ,D 是BC 边上的一个动点,点E 在AC 边上,且C ADE ∠=∠.(1) 求证:△ABD ∽△DCE ;(2) 如果x BD =,y AE =,求y 与x 的函数解析式例2、如图,已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AP =1,AB =DC =2.P 为AD 上的一点,满足∠BPC =∠A .求AD 的长.C DB FACCBECDCADBEF例3、正方形ABCD 的边长为4(如下图),点P 、Q 分别在线段CB 、DC 上(点P 不与点C 、点B 重合),且保持︒=∠90APQ .当1=CQ 时,求出线段BP 的长。
相关练习:1、如图,等边△ABC 中,边长为6,D 是BC 上动点,∠EDF=60° (1)求证:△BDE ∽△CFD (2)当BD=1,FC=3时,求BE2、如图,已知在△ABC 中, AB =AC =6,BC =5,D 是AB 上一点,BD =2,E是BC 上一动点,联结DE ,并作DEF B ∠=∠,射线EF 交线段AC 于F . (1)求证:△DBE ∽△ECF ; (2)当F 是线段AC 中点时,求线段BE 的长3、在ABC ∆中,5==AC AB ,8=BC ,点P 、Q 分别在线段CB 、AC 上(点P 不与点C 、点B 重合),且保持ABC APQ ∠=∠.若点P 在线段CB 上(如图),且6=BP ,求线段CQ 的长BCABCDABCQ4、已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且BC =6,AB =DC =4,点E 是AB 的中点. (1)如图,P 为BC 上的一点,且BP =2.求证:△BEP ∽△CPD ; (2)如果点P 在BC 边上移动(点P 与点B 、C 不重合),且满足∠EPF =∠C ,PF 交CD 于点F ,那么当点F 在线段CD 的延长线上时,设BP =x ,DF =y ,求y 关于x 的函数解析式。
一线三等角典型例题解析

“ 一线三等角”模型在初中数学中的应用一、“一线三等角”模型的提炼例1、(2015 年山东·德州卷)(1)问题:如图1,在四边形ABCD 中,点P 为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.(2)探究:如图2,在四边形ABCD 中,点P 为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.(3)应用:请利用(1)、(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5.点P 以每秒1个单位长度的速度,由点A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A.设点P 的运动时间为t(秒),当以D 为圆心,以DC 为半径的圆与A B相切,求t 的值.变式1 ( 2012 年烟台) ( 1) 问题探究如图6,分别以△ABC 的边AC 与边BC 为边,向△ABC 外作正方形ACD1E1和正方形BCD2E2,过点C作直线KH 交直线AB 于点H,使∠AHK =∠ACD1.作D1M ⊥ KH,D2N ⊥ KH,垂足分别为点M、N.试探究线段D1M 与线段D2N 的数量关系,并加以证明.( 2) 拓展延伸1 如图7,若将“问题探究”中的正方形改为正三角形,过点C 作直线K1H1,K2H2,分别交直线AB 于点H1、H2,使∠AH1K1= ∠BH2K2=∠ACD1.作D1M ⊥K1H1,D2N⊥K2H2,垂足分别为点M、N. D1M = D2N 是否仍成立? 若成立,给出证明; 若不成立,说明理由.2 如图8,若将①中的“正三角形”改为“正五边形”,其他条件不变.D1M = D2N 是否仍成立? ( 要求:在图8 中补全图形,注明字母,直接写出结论,不需证明)二、添加辅助线后运用基本图形例1、在△ABC中,AB =2,∠B = 45°,以点A为直角顶点作等腰Rt△ADE,点D 在BC上,点E 在AC上,若CE=5,求CD的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“
一线三等角”模型在初中数学中的应用
一、“一线三等角”模型的提炼
例1、(2015 年山东·德州卷)
(1)问题:如图1,在四边形ABCD 中,点P 为AB上一点,∠DPC=∠A=∠B=90°.求证:AD·BC=AP·BP.
(2)探究:如图2,在四边形ABCD 中,点P 为AB上一点,当∠DPC=∠A=∠B=θ时,上述结论是否依然成立?说明理由.
(3)应用:请利用(1)、(2)获得的经验解决问题:如图3,在△ABD 中,AB=6,AD=BD=5.点P 以每秒1 个单位长度的速度,由点 A 出发,沿边AB 向点B 运动,且满足∠DPC=∠A.设点P 的运动时间为t(秒),当以D 为圆心,以DC 为半径的圆与A B相切,求t 的值.
变式1 ( 2012 年烟台) ( 1) 问题探究
如图6,分别以△ABC 的边AC 与边BC 为边,向△ABC 外作正方形ACD1E1
和正方形BCD2E2,过点C作直线KH 交直线AB 于点H,使∠AHK = ∠ACD1.作
D1M ⊥KH,D2N ⊥KH,垂足分别为点M、N.试探究线段D1M 与线段D2N 的数量关系,并加以证明.
( 2) 拓展延伸
1如图7,若将“问题探究”中的正方形改为正三角形,过点 C 作直线K1H1
,K2H2,分别交直线AB 于点H1、H2,使∠AH1K1 = ∠BH2K2 = ∠ACD1.作D1M ⊥K1H1,D2N⊥K2H2,垂足分别为点M、N. D1M = D2N 是否仍成立? 若成立,给出证明; 若不成立,说明理由.
2如图8,若将① 中的“正三角形”改为“正五边形”,其他条件不变.D1M = D2N 是否仍成立? ( 要求:在图8 中补全图形,注明字母,直接写出结论,不需证明)
二、添加辅助线后运用基本图形
,以点A为直角顶点作等腰Rt△ADE,点D 在BC 上,点E 在AC 例1、在△ABC中,AB =2,∠B = 45°
上,若CE=5,求CD的长。
例2、( 2013 年海淀区一模22 题最后一问) 如图,l1、l2、l3是同一平面内的三条平行线,l1、l2之间的距离是21/5,l2、l3之间的距离是21/10,等边△ABC 的三个顶点分别在l1、l2、l3上,求△ABC 的边长.
例3、如图,在矩形纸片ABCD中,AB=5,BC=4,在AB边上取点G,现将纸片沿EG
翻折,使点A落在CD边上的点F处,当AE=3时,求BG的长。
三、应用举例
1、等腰三角形底边上的一线三等角
例1、如图5,在三角形ABC中,AB=AC,D为BC的中点,以D为顶点作∠MDN=∠B.
(1)如图5,当射线DN经过A时,DM交AC边于点E,不添加辅助线,写出图中所有与三角形ADE相似
的三角形。
(2)如图6,将∠MDN绕点D逆时针方向旋转,DM,DN分别交线段AC,AB于E,F点,(E和A点不重
合),不添加辅助线,写出图中所有相似的三角形,并证明。
(3)在图6中,若AB=AC=10,BC=12,当三角形DEF的面积等于
三角形面积的1/4时,求线段EF的长。