电磁感应和麦克斯韦电磁理论

合集下载

麦克斯韦方程组与电磁波理论

麦克斯韦方程组与电磁波理论

麦克斯韦方程组与电磁波理论麦克斯韦方程组是电磁学中最为重要的方程组之一,它由麦克斯韦根据实验事实和数学推理总结而来。

这个方程组的重要性在于它描述了电场和磁场的相互作用,并且揭示了电磁波的存在和传播。

麦克斯韦方程组包含了四个方程,分别是:高斯定律、高斯磁场定律、法拉第电磁感应定律和安培环路定律。

这些方程描述了电场和磁场随时间和空间的变化规律,从而揭示了电磁现象的本质。

高斯定律是麦克斯韦方程组中的第一个方程,它描述了电场随电荷分布的变化规律。

简单来说,高斯定律告诉我们,电场线从正电荷发出,朝着负电荷收束。

这个定律的重要性在于它给出了电场的起源和分布规律,从而使我们能够更好地理解电场的本质和作用。

高斯磁场定律是麦克斯韦方程组中的第二个方程,它描述了磁场随电流分布的变化规律。

它告诉我们,磁场线既没有起点也没有终点,而是以闭合曲线的形式存在。

这个定律是磁场研究的基础,它揭示了磁场的起源和分布规律,为我们理解磁场的行为和相互作用提供了重要的线索。

法拉第电磁感应定律是麦克斯韦方程组中的第三个方程,它描述了磁场通过变化的磁通量引起的感应电场。

这个定律是电磁感应现象的基础,它告诉我们,磁场的变化可以产生电场,并且电场的方向与磁场变化的速率成正比。

通过这个定律,我们可以更好地理解电磁感应的本质和应用。

安培环路定律是麦克斯韦方程组中的第四个方程,它描述了磁场随电流的变化规律。

简单来说,安培环路定律告诉我们,磁场线围绕着电流的路径闭合。

这个定律是电磁场研究的基础,它揭示了电流和磁场相互作用的规律,为我们理解电磁感应和电磁波的产生提供了重要的线索。

通过麦克斯韦方程组,我们可以更加深入地理解电场和磁场的本质和相互作用。

利用这些方程,我们可以解释众多电磁现象,如静电、磁场、电磁感应等,从而推动了电磁学理论的发展和应用。

麦克斯韦方程组的另一个重要贡献是揭示了电磁波的存在和传播。

根据麦克斯韦方程组的推导和分析,我们可以得出电磁波存在的结论。

法拉第电磁感应定律麦克斯韦-定义说明解析

法拉第电磁感应定律麦克斯韦-定义说明解析

法拉第电磁感应定律麦克斯韦-概述说明以及解释1.引言1.1 概述概述:法拉第电磁感应定律和麦克斯韦方程是电磁学领域中最重要的理论基础之一。

它们描述了电磁场的产生、传播和相互作用规律,对于现代科学技术的发展具有极其重要的意义。

本文将从概念定义、推导原理、应用场景等多个角度对这两个重要理论进行全面解析,旨在让读者深入了解并掌握这些理论的实质和内涵。

同时,本文还将就法拉第电磁感应定律与麦克斯韦方程对于电磁学领域的重要性进行全面的分析和阐述,为读者呈现出一个完整、系统的学术视角。

1.2 文章结构文章结构部分的内容可以包括一些关于文章内容和结构的说明,例如:本文将主要分为引言、正文和结论三个部分。

在引言部分,将对法拉第电磁感应定律和麦克斯韦方程进行简要的介绍,以及文章的目的和重要性。

在正文部分,将详细讨论法拉第电磁感应定律和麦克斯韦方程组的原理和推导,以及它们在物理学和工程领域的应用与意义。

最后,在结论部分将对本文内容进行总结,并展望未来研究的方向。

整篇文章将以系统性和逻辑性的结构,来探讨法拉第电磁感应定律和麦克斯韦方程在物理学领域的重要性和影响。

1.3 目的目的部分的内容旨在阐明本文的写作目的,包括对法拉第电磁感应定律和麦克斯韦方程的深入探讨,以及对它们在物理学和工程学领域中的重要性和应用进行详细的介绍。

此外,目的部分还会提出本文对于两个定律的解释和阐述的独特之处,以及希望通过本文的阐述,读者能够对法拉第电磁感应定律和麦克斯韦方程有更加全面和深入的理解,为相关领域的研究和应用提供更多的参考和指导。

2.正文2.1 法拉第电磁感应定律法拉第电磁感应定律是电磁学中的一个重要定律,它描述了磁场中的电流变化会产生感应电动势。

法拉第在1831年首次提出了这个定律,并且通过实验证实了这一理论。

法拉第电磁感应定律为电磁学的发展奠定了重要基础,也为后来麦克斯韦方程组的建立提供了关键性的实验支持。

根据法拉第电磁感应定律,当磁通量发生变化时,会导致感应电动势的产生。

电磁感应-麦克斯韦电磁场理论

电磁感应-麦克斯韦电磁场理论

dB dt
导体
• 涡电流的机械效应(磁阻尼摆) • 涡电流的热效应
电磁灶
第24页 共48页
§13.4 自感和互感
13.4.1 自感 • 自感现象
因回路中电流变化,引起穿 过回路包围面积的全磁通变 化,从而在回路自身中产生感 生电动势的现象叫自感现象. • 自感系数
B I, 又 Ψ B Ψ I
1 12
2 21
• 互感系数
I1 I2
21 N221 M21I1
M12 M21 M 单位: 亨利(H)
M 称为互感系数简称互感.
12 N112 M12I2
第29页 共48页
• 互感电动势
根据法拉第电磁感应定律:
21
dΨ 21 dt
(M
dI1 dt
I1
dM dt
)
若M 保持不变
12
B
E内
E感 半 径 Oa Oc 0
o
E外
Oac Oa ac Oc ac
Rh
通过 Oac 的磁通量:
a
E内 b
c
Φm
B dS
S
B(SOab
S扇)
B(3
3 π R2) 12
dΦm 3 3 π R2 dB a () , c ( )
dt
12
dt
第22页 共48页
例题9. 某空间区域存在垂直向里且随时间变化的非均匀磁
场B=kxcost. 其中有一弯成角的金属框COD,OD与x轴重
合, 一导体棒沿x方向以速度v匀速运动. 设t =0时x =0, 求框
内的感应电动势. 解: 设某时刻导体棒位于l 处
y B
C
任取 dS ydx x tan dx

第十二章 电磁感应和麦克斯韦电磁理论

第十二章 电磁感应和麦克斯韦电磁理论

第十二章 电磁感应和麦克斯韦电磁理论12-1将一条形磁铁插入一闭合线圈,线圈中将产生感应电动势。

问在磁铁与线圈相对位置相同的情况下,迅速插入和缓慢插入线圈中所产生的感应电动势是否相同感应电流是否相同因电磁感应所产生的总电量是否相同答:迅速插入在线圈中产生的感应电动势大,缓慢插入线圈中产生的感应电动势小。

感应电流也不相同(因为I=Rε),但电磁感应所产生的总电量是相同的。

(因为11d q Idt dt dt R R dt RεΦ===-=-∆Φ⎰⎰⎰,∆Φ相同,所以q 相同)12-2一闭合圆形线圈在匀强磁场中运动,在下列情况下是否会产生感应电流为什么(1)线圈沿磁场方向平移; (2)线圈沿垂直于磁场方向平移;(3)线圈以自身的直径为轴转动,轴与磁场方向平行;(4)线圈以自身的直径为轴转动,轴与磁场方向垂直。

解:由d dt εΦ=-1d I R R dt εΦ==- (1)因为0d dt Φ=,所以没有电流产生(2)0d dtΦ= 也没有电流产生(3) 0Φ= 0d dtΦ= 没有电流产生(4)0d dt Φ≠ 若转动的角速度为,则2sin d R dtπωθΦ=(θ为线圈平台与之间的夹角)12-3在一环状铁芯上绕有两组线圈1和2,如题图所示,这样就构成了一个变压器。

当在线圈1中所通电流I 增大或减小时,在线圈2中都要感应电动势。

判断在这两种情况下,线圈2中的感应电流的方向。

答:(1)当I 增大,∆Φ增大,由楞次定律,I 产生的磁场应阻碍变化, 所以I 感的方向如图所示(从B 端流出)(2)当I 减小时,∆Φ减小,由楞次定律产生的磁场应阻碍变化 所以I 感的方向从A 端流出。

(3) (4) AB12-4将一条形磁铁插入电介质环中,环内会不会产生感应电动势会不会产生感应电流环内还会发生什么现象 答:不会产生感应电流,但会产生感应电动势(很小)。

环内还会产生极化现象,因为变化的磁场能产生电场,因此会使电解质极化。

麦克斯韦方程组的基本概念

麦克斯韦方程组的基本概念

麦克斯韦方程组的基本概念麦克斯韦方程组是电磁学的基本方程组,由詹姆斯·克拉克麦克斯韦在19世纪提出,并成为电磁理论的基石。

通过麦克斯韦方程组,我们可以描述电磁场的行为以及电磁波的传播规律。

下面将介绍麦克斯韦方程组的四个基本方程和其含义。

一、麦克斯韦方程组的四个基本方程1. 电场高斯定律∮E•dA = ε0∫ρdV这个方程描述了电场通过一个闭合曲面的总电场通量与闭合曲面内的电荷量之间的关系。

其中,E表示电场强度,A为曲面面积,ε0为真空介电常数,ρ为闭合曲面内的电荷密度。

2. 磁场高斯定律∮B•dA = 0这个方程表明磁感应强度通过任何一个闭合曲面的总通量为零。

B表示磁感应强度,A为曲面面积。

根据此定律,我们得知磁单极不存在。

3. 法拉第电磁感应定律∮E•dl = - d(∫B•dA/dt)这个方程描述了磁场变化时所产生的感应电场与沿闭合回路的电场线积分之间的关系。

其中,E表示电场强度,dl表示回路长度元素,B表示磁感应强度,dA/dt表示面积变化率。

4. 安培环路定律∮B•dl = μ0∫J•dA + μ0ε0 d(∫E•dA/dt)这个方程描述了磁感应强度通过闭合回路的总积分与回路内电流和电场变化率的关系。

其中,B表示磁感应强度,dl表示回路长度元素,J表示电流密度,A表示曲面,E表示电场强度,μ0为真空磁导率。

二、麦克斯韦方程组的物理意义1. 电场高斯定律和磁场高斯定律表明了电场和磁场分别与其周围的电荷和磁荷分布有关。

它们是电场和磁场的基本描述方程,可用于计算电场和磁场的分布情况。

2. 法拉第电磁感应定律描述了磁场变化时所产生的感应电场。

它解释了电磁感应现象,如发电机的原理和电磁感应传感器的工作原理。

3. 安培环路定律描述了磁场随电流和电场变化的规律。

它是计算磁场分布和磁场与电流之间相互作用的重要工具。

三、麦克斯韦方程组的应用麦克斯韦方程组在电磁学和无线通信等领域有着广泛的应用。

1. 电磁波的传播麦克斯韦方程组预言了电磁波的存在以及其传播方式。

电磁感应及其基本规律

电磁感应及其基本规律
B

S
L L
S

减小
>0
增大
<0
两 类 实 验 现 象 感 应 电 动 势
导线或线圈在磁场中运动
线圈内磁场变化 动生电动势 产生原因、规律不相同 感生电动势 都遵从电磁感应定律
四、感应电动势
● 动生电动势的成因
导线内每个自由电子
a
+++ + +
受到的洛仑兹力为
Fm e( B )
非静电力
Fm

B
它驱使电子沿导线由a向b移动。
b
由于洛仑兹力的作用使 b 端出现过剩负电荷, a 端出现过剩正电荷 。
电子受的静电力
在导线内部产生静电场 E 方向 a b 。
a
+++ + +
Fe
Fe eE
平衡时:
Fe Fm
此时电荷积累停止,
i v B dl 其方向由 v B 决定
B i E涡 dl dS S t 其方向由 E 涡 沿 dl
的积分方向决定
静电场(库仑场) 由静止电荷产生
感生电场(涡旋电场)
E 库是位场(无旋场)
可以引入电位概念
L
动生电动势 特 点 原 因 非的 静来 电源 力 结 论 磁场不变,闭合电路的整 体或局部在磁场中运动导 致回路中磁通量的变化 由于S 的变化引起 回路中 变化
感生电动势 闭合回路的任何部分都不 动,空间磁场发生变化导 致回路中磁通量变化 由于B 的变化引起 回路中 变化
非静电力就是洛仑兹力, 变化磁场在它周围空间激发 涡旋电场,非静电力就是感 由洛仑兹力对运动电荷 生电场力,由感生电场力对 作用而产生电动势 电荷作功而产生电动势

电动力学中的法拉第电磁感应定律与麦克斯韦方程组

电动力学中的法拉第电磁感应定律与麦克斯韦方程组

电动力学中的法拉第电磁感应定律与麦克斯韦方程组在电动力学领域中,法拉第电磁感应定律与麦克斯韦方程组是两个重要的理论基石。

它们解释了电磁感应现象和电磁波的传播规律,为我们理解电磁现象和应用电磁技术提供了深刻的物理基础。

法拉第电磁感应定律是由英国科学家迈克尔·法拉第于1831年提出的。

该定律指出,当一个导体内的磁通量发生变化时,会在导体两端产生感应电动势。

这种感应电动势的大小与磁通量变化的速率成正比。

这个定律可以用一个简单的公式来表示:ε = -dΦ/dt其中,ε代表感应电动势,Φ代表磁通量,t代表时间。

负号表示感应电动势的方向与磁通量变化的方向相反,符合洛伦兹力的方向规律。

法拉第电磁感应定律揭示了磁场与电场的相互转换关系,即磁场的变化会产生电场,而电场的变化也会产生磁场。

这一原理为电磁波的产生和传播提供了基础。

麦克斯韦方程组是电磁学的基本方程,由苏格兰物理学家詹姆斯·克拉克·麦克斯韦于19世纪提出。

麦克斯韦方程组将电磁学的各种现象统一在一起,形成了一套完整而简洁的理论框架。

麦克斯韦方程组共有四个方程,分别是高斯定律、法拉第电磁感应定律、安培环路定律和麦克斯韦-安培定律。

这些方程描述了电荷、电场、磁场和电流之间的关系,揭示了它们的相互作用规律。

麦克斯韦方程组不仅总结了电磁学的基本规律,还预言了电磁波的存在。

其中的法拉第电磁感应定律说明了电磁波的产生机制,而其他三个方程则给出了电磁波的传播速度和行为规律。

通过麦克斯韦方程组,我们可以推导出光的电磁理论,进一步理解光的本质。

光是一种电磁波,它的传播与电场和磁场的变化密切相关。

麦克斯韦方程组将光学与电磁学联系在了一起,为我们研究光的性质和应用光学技术提供了重要的数学工具。

在实际应用中,法拉第电磁感应定律和麦克斯韦方程组在电磁感应、电磁波传播、电磁场计算等方面发挥着重要的作用。

例如,在变压器工作过程中,法拉第电磁感应定律可以用来解释变压器的工作原理和效率;在无线通信中,麦克斯韦方程组可以用来描述电磁波的传播和天线的辐射特性。

maxwell电磁力 麦克斯韦张力法

maxwell电磁力 麦克斯韦张力法

Maxwell电磁力是由19世纪苏格兰物理学家詹姆斯·克拉克·麦克斯韦首次提出的,并且被称为麦克斯韦张力法。

他的研究工作在电磁学领域产生了深远的影响,也为今后的科学家们提供了重要的启示。

本文将着重介绍Maxwell电磁力的原理、应用和意义,并对麦克斯韦张力法进行深入的探讨。

一、Maxwell电磁力的原理1. Maxwell方程组的提出在19世纪,麦克斯韦利用高斯电磁理论和安培定律,整合出了四个方程,即电场和磁场的麦克斯韦方程组。

这一方程组揭示了电场和磁场之间的相互作用关系,为电磁学奠定了坚实的理论基础。

2. 电磁波的预言借助Maxwell方程组,麦克斯韦首次预言了电磁波的存在,并且计算出了电磁波的传播速度与光速相同。

这一发现彻底改变了人们对于光的本质的认识,同时也为后来的电磁波在通讯、雷达、医学等领域的应用奠定了理论基础。

二、Maxwell电磁力的应用1. 电磁感应通过Maxwell方程组的研究,人们对电磁感应现象有了更深入的理解。

电磁感应是指当一个电路的磁通量发生变化时,电路中会产生感应电动势。

这一原理被广泛应用于变压器、发电机、感应加热等领域。

2. 电磁辐射Maxwell方程组揭示了电场和磁场的相互转换关系,从而推导出了电磁辐射的存在。

电磁辐射在通讯、无线电、微波炉等领域得到了广泛的应用,为人类提供了便利的生活和工作条件。

三、麦克斯韦张力法的意义1. 统一电磁学麦克斯韦通过整合电磁学的各个现象和定律,提出了统一的理论框架,即Maxwell方程组。

这一统一框架为后来的物理学家提供了方向,也为电磁学的发展奠定了基础。

2. 启示现代物理学的发展Maxwell电磁力的提出和应用,为后来的相对论、量子力学等现代物理学理论的发展提供了重要的启示。

麦克斯韦张力法对于现代物理学的产生和发展起到了至关重要的作用。

总结起来,Maxwell电磁力是麦克斯韦在19世纪提出的一项重要的物理学理论,它揭示了电磁学的统一规律,为后来的物理学家提供了重要的启示,同时也为电磁学在通讯、医学、能源等领域的应用奠定了坚实的理论基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

解 在任意位置处 ,穿过回路的磁通量
Φm
0 Ia 2
ln
x
b x
Φmx(t )
根据法拉第电磁感应定律
dΦ 0 Ia d (ln x b ) dt 2 dt x
Ix
0Ia dΦ dx 0Iabv 2 dx dt 2 x( x b)
B
av
b
方向如图所示。
例题4 若长直电流是交变电流 i I0 si,n w而t 矩形线 圈也以速度向右运动,求矩形线圈内产生的感应
X变化引起
解题小结 1 首先写出在某一时刻穿过闭合回路的磁通量 Φ ,
2 根据法拉第电磁感应定律求感应电动势
三、动生电动势和感生电动势
电磁感应的两种基本类型: (1)动生电磁感应 ; (2)场变电磁感应 。 1. 动生电动势 磁场不随时间变,导体在磁场中运动(平动、转动等 ), 由此产生的感应电动势称 动生电动势 。 2. 感生电动势 导体不动,磁场随时间变化,由此产生的感应电动势 称 感生电动势 。
r R
L E涡 dl
E涡 2
r
B
dS
S t
dB dS dB R2
dt S
dt
回路包围的时变磁场的面积
E涡
O
R
r L2
E涡
1 2
R2 r
dB dt
★ 结论:
1 r dB (r R) E涡
大小: E涡
2 dt 1 R2 dB (r R)
2 r dt
OR
r
方向:
1 x
1 x
b
2
0 Iab
x(x
b)
v
与例题3的结果相同
例 题8.如图, 已知 I , d , v , , ac l ,
求: ab , bc , ca ,
解: 和整ab个导ab体(v回路B中)的 dli 。
b v B sin cos dl v B
a
2
0 I v l cos b a
B2 dt E涡 dl
A
(r R)
B
E涡 cos
A
dx
A
hO
r E涡
dl
B
x
L 2 1 r dB L 2 2 dt
h dx r
1 hdB 2 dt
L2 L 2
dx
1 2
hL dB dt
1 L R2 L2 4 dB
2
dt
方向: dB 0 , A B ,
dt
B 点电势高。
2 电动势ε
A非
L qEk
dl
qEk 内
dl
qEk 外
dl
内 qEk
dl
★ 结论:当电荷在闭合电路中运动一周时,只有非静电力做功
且只在电源内部做功。
定义: A非
q
内 Ek
dl
L Ek dl
(11-22) (11-22) (11-23)
A
E
B
L
b
a
v B sin cos 0 dl 2
vLB
大小: ab v L B
b B v a
方向: a b , b 点电势高。
Uab Ua Ub ab v L B
例题 6
讲义 P. 6 例 12 - 1
解: 选 d距l O为 ,l
A
v lw
OA
dx
d l sin 2
x
O
0 I v cot ln d l sin c a
2
d
a
vB dl
v
x
x
dl
d
b
dl
c
i ab bc ca
a
0 I v (cot ln d l sin l cos )
2
d
d
方向: a c b a , 顺时针。
bc
例 题9.如图, 四分之三圆弧导线在垂直均匀磁场的平面内运动,
dt
NBS sin d NBSw sin w t w
0 sin w t dt
O
其中 0 NBSw 为感应电动势最大值。
Ii R
(2)
Ii
i
R
0
R
sinw t I0 sinw t
其中 I0 NBSw R 为交流电流最大值。
例题2 若长直导线通有交变电流 i I0 sinw t,在旁同一
电动势
?
解 任意t时刻AB边距长直电流距离为x,
B
穿过矩形线圈的磁通量为
Φm
0 I0a sinw 2
t
ln
x
x
b
根据法拉第电磁感应定律
i x r
dr C
a v
dΦm dt
Φ t
Φ x
x t
A
D
b
0I0aw ln x b cosw t 0I0abv sinw t
2
x
2x( x b)
I 变化起
已知 R , v , B ,求: ab
解: 连接 ab形成闭合回路 abca,
a
v
B
绕行方向为顺时针,则
abca
dm
dt
0
abca ab bca 0
bca ab ba
a b
c
(v
B)
dl
R
O
dl
B
b
v
bavB
sin
2
cos
4
dl
2 vB
a
dl
vBR
2b
平面内有一不动的矩形平面线圈ABCD,边长为a和b,距离
导线距离为d,求回路中产生的感应电动势
解 t 时刻 r 处 i 产生的磁场 B 0i 0I0 sinw t 2r 2 r
t时刻穿过dS adr面的磁通量
db
B
C
iHale Waihona Puke adΦmBdS
0 I0a 2
sinw
t
dr r
A
D
r dr
t 时刻穿过回路的磁通量
解法二:用法拉第定律解:
i
dm
dt
连接 OB、AO 形成闭合回路 OBAO ,
OBAO
dm dB dS
dt
dt S
dB dt
S△
dB dt
1L 2
R2 L2 4
o
h
E涡
A B
涡旋电场力:
Fk q E涡
3). 涡旋电场及其性质
(1) E 涡 的环流 = 回路包围的磁通量随时间变化率的负值。
LE涡
dl
dm
dt
d dt
B dS
S
( 环路定理 )
(2) 在涡旋电场中,通过任意闭合曲面的电通量 = 0 。
L E涡 dS 0
( 高斯定理 )
★ 结论:
涡旋电场由时变磁场激发,是涡旋场和非保守场。
bc
2 d
c(v
b
B)
dl
c
v B sin
b
Ia
v B
O ab
x
dl
d
b
cos dl
22
vB
dl
v
B
v
dl
c
dl
0
dx
B x
ca
a
(v
B)
dl
c
a
v
0I
sin
cos
(
dx
)
c 2 x 2
sin
ca
a
v
0I
sin
cos
(
dx
)
c 2 x 2
sin
I
d
0 I v cot
在回路中产生的感应电动势与磁通量的变化率成正比。
2. 法拉第电磁感应定律的数学形式
i
dm
dt
(12-4)
N 匝时:
i
N
dm
dt
3. 楞次定律 —闭合回路中产生的感应电流的方向,总是使
感应电流产生的通过闭合回路包围的磁通量,阻碍或反抗
闭合回路包围的原有磁通量的变化。
4. 说明
i
dm
dt
n B
负号确定感应电动势的方向:
A
( v
B)
dl
O
A v Bsin cos 0 dl
O
2
l
O
dl
w
v
B
L
0
l
w
B
d
l
w
L
B0
l
dl
1w
2
B
L2
方向: O A , A 点电势高(积累正电荷)。
UOA UO U A OA
例题7

D用动 (生v电 B动)势 d的l公式计算 B例C 题 3
AD
0
AB
K 瞬间,电流计
指针偏转。
a
2.
b
ab 左右滑动 时,电流计指 针偏转。
3.
磁铁插入或抽出时,电流计指针偏转。
在导体回路中产生感应电流的现象称为电磁感应现象。 ★ 结论: 产生电磁感应的条件:
通过一个闭合导体回路所包围的面积的磁通量 m
随时间发生变化。
二、法拉第电磁感应定律
1. 法拉第电磁感应定律 —通过回路中的磁通量发生变化时,
(v
B)
dl
B
vBdl
A
B
A
v
0I dl 2x
0Iv a 2x
方向
同理
DC
C
D
(v B) dl vBdl v
0I dl
相关文档
最新文档