样本平均数的方差的推导

样本平均数的方差的推导
样本平均数的方差的推导

样本平均数的方差的推导:

假定从任意分布的总体中抽选出一个相互独立的样本

1,,n x x ,则有

22

(),i

i x X E x X σσ== 即每一个样本单位都是与总体同分布的。 在此基础上,

证明样本平均数以总体平均数为期望值。 []121212()()

1

()1

()()()1

()n

n n x x x E x E n

E x x x n

E x E x E x n X X X X n +++==+++=+++=+++=

接着,再以此为基础,推导样本平均数的方差。 在此,需要注意方差的计算公式为:

22

(())

X

E X E X σ=-

以下需要反复使用这一定义:

22

2

122

122

2122222

122222

122(())()1(())1

()()()1()()()()()1()()()()()1x n

n n n i j i j n i j i j E x E x x x x E X n

E x x x nX n E x X x X x X n E x X x X x X x X x X n E x X E x X E x X E x X x X n σ≠≠=-++

+=-=

+++-??=-+-++-?

???=-+-++-+--????

??=-+-++-+--????=∑∑∑∑222n n n

σσ?=

在证明中,一个关键的步骤是()()0i j i j

E x X x X ≠--=∑,其原

因在于这一项事实上是i x 与j x 的协方差。由于任意两个样本都是相互独立的,因此其协方差均为0。

如果采用的是无放回的抽样,则样本间具有相关性,协方差小于0。此时样本均值的方差为22

1

X x

N n

n

N σσ-=

?

-

样本方差的期望:

证明了样本平均数的方差公式后,我们可以来分析一下样本方差的情况。

先构造一个统计量为2

1

()

n

i

i x x S n

=-'=

∑,我们来求它的期望。

根据方差的简捷计算公式:()2

2

2X

X X n

σ

=

-∑,可得

()22211()()()i i E S E x nx E x nE x n n

'??=

-=-??∑∑

其中,同样运用简捷计算公式,可以得到:

22222

()(())i

i x i X E x E x X σσ=+=+; 2

2

22

2()(())X

x

E x E x X n

σσ=+=

+

原式化为

2

22

2222

221()()()()()

1X X X

X

X E S n X n X n n X X n

n n

σσσσσ??'=+-+??

??

=+-+-=

等式的两端同除以右侧的系数项,得到

2

()1X

n E S n σ'=- 令2

2

1

1

()

()

11

1

n

n

i

i

i i x x x x n n S S n n n

n ==--'=

=?=

---∑∑

则有2

()X E S σ=

样本方差的期望

方差: 方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。 方差是衡量源数据和期望值相差的度量值。 历史: “方差”(variance)这一词语率先由罗纳德·费雪(Ronald Fisher)在其论文《The Correlation Between Relatives on the Supposition of Mendelian Inheritance》中提出。 统计学意义: 当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。 样本中各数据与样本平均数的差的平方和的平均数叫做样本方差;样本方差的算术平方根叫做样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。 最近进展:

方差不仅仅表达了样本偏离均值的程度,更是揭示了样本内部彼此波动的程度,也可以理解为方差代表了样本彼此波动的期望。当然,这个结论是在二阶统计矩下成立。 样本方差: 先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数,就叫做样本方差。样本方差用来表示一列数的变异程度。样本均值又叫样本均数。即为样本的均值。 均值是指在一组数据中所有数据之和再除以数据的个数。 简介: 在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。

样本平均数的方差的推导

样本平均数的方差的推导: 假定从任意分布的总体中抽选出一个相互独立的样本 1,,n x x ,则有 22 (),i i x X E x X σσ== 即每一个样本单位都是与总体同分布的。 在此基础上, 证明样本平均数以总体平均数为期望值。 []121212()() 1 ()1 ()()()1 ()n n n x x x E x E n E x x x n E x E x E x n X X X X n +++==+++=+++=+++= 接着,再以此为基础,推导样本平均数的方差。 在此,需要注意方差的计算公式为: 22 (()) X E X E X σ=- 以下需要反复使用这一定义:

22 2 122 122 2122222 122222 122(())()1(())1 ()()()1()()()()()1()()()()()1x n n n n i j i j n i j i j E x E x x x x E X n E x x x nX n E x X x X x X n E x X x X x X x X x X n E x X E x X E x X E x X x X n σ≠≠=-++ +=-= +++-??=-+-++-? ???=-+-++-+--???? ??=-+-++-+--????=∑∑∑∑222n n n σσ?= 在证明中,一个关键的步骤是()()0i j i j E x X x X ≠--=∑,其原 因在于这一项事实上是i x 与j x 的协方差。由于任意两个样本都是相互独立的,因此其协方差均为0。 如果采用的是无放回的抽样,则样本间具有相关性,协方差小于0。此时样本均值的方差为22 1 X x N n n N σσ-= ? - 样本方差的期望: 证明了样本平均数的方差公式后,我们可以来分析一下样本方差的情况。 先构造一个统计量为2 1 () n i i x x S n =-'= ∑,我们来求它的期望。 根据方差的简捷计算公式:()2 2 2X X X n σ = -∑,可得 ()22211()()()i i E S E x nx E x nE x n n '??= -=-??∑∑

抽样分布习题()

抽样分布习题 1.抽样分布是指( C ) A 一个样本各观测值的分布 B 总体中各观测值的分布 C 样本统计量的分布 D 样本数量的分布 2.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的均值为( A )。 A μ B x C 2σ D n 2 σ 3.根据中心极限定理可知,当样本容量充分大时,样本均值的抽样分布服从正态分布,其分布的方差为( D )。 A μ B x C 2σ D n 2 σ 4.从一个均值μ=10,标准差σ=0.6的总体中随机选取容量为n=36的样本。假定该总体并不是很偏的,则样本均值x 小于 9.9的近似概率为( A )。 A 0.1587 B 0.1268 C 0.2735 D 0.6324 5.假设总体服从均匀分布,从此总体中抽取容量为36的样本,则样本均值的抽样分布( B ) A 服从非正态分布 B 近似正态分布 C 服从均匀分布 D 服从2χ分布 6.从服从正态分布的无限总体中分别抽取容量为4,16,36的样

本,当样本容量增大时,样本均值的标准差( C )A 保持不变 B 增加 C 减小D 无法确定 7. 总体均值为50,标准差为8,从此总体中随机抽取容量为64的样本,则样本均值的抽样分布的均值和标准误差分布为( B )。 A 50,8 B 50,1 C 50,4 D 8,8 8.某大学的一家快餐店记录了过去5年每天的营业额,每天营业额的均值为2500元,标准差为400元。由于在某些节日的营业额偏高,所以每日营业额的分布是右偏的,假设从这5年中随机抽取100天,并计算这100天的平均营业额,则样本均值的抽样分布是( B )。 A 正态分布,均值为250元,标准差为40元 B 正态分布,均值为2500元,标准差为40元 C 右偏分布,均值为2500元,标准差为400元 D 正态分布,均值为2500元,标准差为400元 9. 某班学生的年龄分布是右偏的,均值为22,标准差为4.45,如果采取重复抽样的方法从该班抽取容量为100的样本,则样本均值的抽样分布是( A ) A 正态分布,均值为22,标准差为0.445 B 分布形状未知,均值为22,标准差为4.45

(完整word版)常见分布的期望和方差

常见分布的期望和方差 x n (0,1) N()

概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。 6、随机变量的独立性:若(,)()()X Y F x y F x F y =则称随机变量X ,Y 相互独立。简称X 与Y 独立。

样本平均数的方差的推导

样本平均数的方差的推导: 假定从任意分布的总体中抽选出一个相互独立的样本 1,,n x x ,则有 22 (),i i x X E x X σσ== 即每一个样本单位都是与总体同分布的。 在此基础上, 证明样本平均数以总体平均数为期望值。 []121212()() 1 ()1 ()()()1 ()n n n x x x E x E n E x x x n E x E x E x n X X X X n +++==+++=+++=+++= 接着,再以此为基础,推导样本平均数的方差。 在此,需要注意方差的计算公式为: 22(())X E X E X σ=- 以下需要反复使用这一定义:

22 2 122 122 2122222 122222 122(())()1(())1 ()()()1()()()()()1()()()()()1x n n n n i j i j n i j i j E x E x x x x E X n E x x x nX n E x X x X x X n E x X x X x X x X x X n E x X E x X E x X E x X x X n σ≠≠=-++ +=-= +++-??=-+-++-? ???=-+-++-+--???? ??=-+-++-+--????=∑∑∑∑222n n n σσ?= 在证明中,一个关键的步骤是()()0i j i j E x X x X ≠--=∑,其原 因在于这一项事实上是i x 与j x 的协方差。由于任意两个样本都是相互独立的,因此其协方差均为0。 如果采用的是无放回的抽样,则样本间具有相关性,协方差小于0。此时样本均值的方差为221 X x N n n N σσ-= ? - 样本方差的期望: 证明了样本平均数的方差公式后,我们可以来分析一下样本方差的情况。 先构造一个统计量为2 1 () n i i x x S n =-'= ∑,我们来求它的期望。 根据方差的简捷计算公式:()2 2 2X X X n σ = -∑,可得

用样本估计总体(频率分布直方图、平均数、方差等)

考点 2 用样本估计总体(频率分布直方图、平均数、方差等)1. (15泰州一模)若数据2,x,2,2的方差为0,则x=. 【考点】极差、方差与标准差. 【答案】 2 【分析】因为数据2, x, 2, 2 的方差为0,由其平均数为6 x ,得到 4 12 6 x2 6 x 0,解得 x=2. 32x 444 2. 江苏高考压轴)样本容量为10 的一组数据,它们的平均数是5,频率如图所示,则( 15 这组数据的方差等于. 第 2 题图 cqn17 【答案】 7.2 【分析】 2 出现10 0.44次,5出现 100.2 2 次,8出现10 0.4 4 次,所以 s214(25)22(55)24(85)27.2 10 3.(2015江苏苏州市高三上调考)如图是小王所做的六套数学附加题得分(满分40)的茎叶图,则其平均得分为. JSY33 第 3题图 【考点】茎叶图. 【答案】 31. 【分析】根据茎叶图的数据,得; 数据的平均分为 182830323840 x ==31 . 6

故答案为: 31. 4. 2015 届高三 10 月调研 )某校为了解2015 届高三同学寒假期间学习情况,( 淮安都梁中学 抽查了 100 名同学,统计他们每天平均学习时间,绘成频率分布直方图(如图).则这 100名同学中学习时间在6~ 8 小时内的同学为人. zl085 第 4题图 【考点】频率分布直方图;用样本的频率分布估计总体分布. 【答案】 30 【分析】∵这100 名同学中学习时间在6~ 8 小时外的频率为 (0.04+0.12+0.14+0.05 )×2=0.7 ∴这 100 名同学中学习时间在6~ 8 小时内为10.7=0.3 ∴这 100 名同学中学习时间在6~ 8 小时内的同学为100×0.3=30. 5.(徐州市2014 届高考信息卷)甲、乙两个学习小组各有10 名学生,他们在一次数学测验中成绩的茎叶图如图所示,则在这次测验中成绩较好的是 【考点】茎叶图. 组. 第5题图 zl060 【答案】甲 【分析】甲的平均分为 63747981838486868890,x甲1081.4 58646774757676798082; x乙1073.1 x甲x乙,且甲的成绩多集中在80 分上,乙的成绩多集中在70 分上, ∴甲组的成绩较好些; 故答案为:甲. 6.(南通市2015届高三第三次调研)为了解学生课外阅读的情况,随机统计了n 名学生 的课外阅读时间,所得数据都在50,150中,其频率分布直方图如图所示.已知在

样本方差的抽样分布

样本方差的抽样分布 样本方差 先求出总体各单位变量值与其算术平均数的离差的平方,然后再对此变量取平均数,就叫做样本方差。 在许多实际情况下,人口的真实差异事先是不知道的,必须以某种方式计算。当处理非常大的人口时,不可能对人口中的每个物体进行计数,因此必须对人口样本进行计算。样本方差也可以应用于从该分布的样本的连续分布的方差的估计。[ 从一个样本取n个值y1,...,y n,其中n

估计值可以简单地称为样本方差。同样的证明也适用于从连续概率分布中抽取的样本。 样本方差分布 作为随机变量的函数,样本方差本身就是一个随机变量,研究其分布是很自然的。在yi是来自正态分布的独立观察的情况下,s2服从卡方分布: 所以可求;和 如果y i独立同分布,但不一定是正态分布,那么 如果大数定律的条件对于平方观测值同样适用,则s2是σ2的一致估计量。 抽样分布 抽样分布也称统计量分布、随机变量函数分布,是指样本估计量的分布。样本估计量是样本的一个函数,在统计学中称作统计量,因此抽样分布也是指统计量的分布。以样本平均数为例,它是总体平均数的一个估计量,如果按照相同的样本容量,相同的抽样方式,反复地抽取样本,每次可以计算一个平均数,所有可能

样本的平均数所形成的分布,就是样本平均数的抽样分布。 抽样分布定理 (1)从总体中随机抽取容量为n的一切可能个样本的平均数之平均数,等于总体的平均数,即(E为平均的符号,为样本的平均数,μ为总体的平均数)。 (2)从正态总体中,随机抽取的容量为n的一切可能样本平均数的分布也呈正态分布。 (3)虽然总体不是正态分布,如果样本容量较大,反映总体μ和σ的样本平均数的抽样分布,也接近于正态分布。 样本方差的抽样分布 样本方差的抽样分布是指在重复选取容量为n的样本时,样本方差的所有可能取值形成的概率分布。 χ2分布具有如下性质和特点: (1)χ2分布的变量值始终为正。 (2)χ2(n)分布的形状取决与其自由度n的大小,通常为不对称的正偏分布,但随着自由度的增大逐渐趋于对称,如图7-2所示。 (3)χ2分布的期望为E(χ2)=n,方差为D(χ2)=2n(n为自由度)。 (4)χ2分布具有可加性。若U和V为两个独立的χ2分布随机变量,U~χ2(n1),V~χ2(n2),则随机变量U+V服从自由度为n1+n2的χ2分布。

t检验计算公式

t 检验计算公式: 当总体呈正态分布,如果总体标准差未知,而且样本容量n <30,那么这时一切可能的样本平均数与总体平均数的离差统计量呈t 分布。 t 检验是用t 分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。t 检验分为单总体t 检验和双总体t 检验。 1.单总体t 检验 单总体t 检验是检验一个样本平均数与一已知的总体平均数的差异是否显 著。当总体分布是正态分布,如总体标准差σ未知且样本容量n <30,那么样本平均数与总体平均数的离差统计量呈t 分布。检验统计量为: X t μ σ-=。 如果样本是属于大样本(n >30)也可写成: X t μ σ-=。 在这里,t 为样本平均数与总体平均数的离差统计量; X 为样本平均数; μ为总体平均数; X σ为样本标准差; n 为样本容量。 例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。问二年级学生的英语成绩是否有显著性进步? 检验步骤如下: 第一步 建立原假设0H ∶μ=73 第二步 计算t 值 79.273 1.63X t μ σ--=== 第三步 判断 因为,以0.05为显著性水平,119df n =-=,查t 值表,临界值0.05(19) 2.093t =,而样本离差的t =1.63小与临界值2.093。所以,接受原假设,即进步不显著。

2.双总体t 检验 双总体t 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。双总体t 检验又分为两种情况,一是相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。二是独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检验用于检验两组非相关样本被试所获得的数据的差异性。 现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似,只不过0r =。 相关样本的t 检验公式为: t = 在这里,1X ,2X 分别为两样本平均数; 12X σ,2 2X σ分别为两样本方差; γ为相关样本的相关系数。 例:在小学三年级学生中随机抽取10名学生,在学期初和学期末分别进行了两次推理能力测验,成绩分别为79.5和72分,标准差分别为9.124,9.940。问两次测验成绩是否有显著地差异? 检验步骤为: 第一步 建立原假设0H ∶1μ=2μ 第二步 计算t 值 t = =3.459。 第三步 判断 根据自由度19df n =-=,查t 值表0.05(9) 2.262t =,0.01(9) 3.250t =。由于实际计算出来的t =3.495>3.250=0.01(9)t ,则0.01P <,故拒绝原假设。 结论为:两次测验成绩有及其显著地差异。 检验。

统计学抽样与抽样分布练习题

第6章 抽样与抽样分布 练习题 6.1 从均值为200、标准差为50的总体中,抽取100=n 的简单随机样本,用样本均值x 估计总体均值。 (1) x 的数学期望是多少? (2) x 的标准差是多少? (3) x 的抽样分布是什么? (4) 样本方差2 s 的抽样分布是什么? 6.2 假定总体共有1000个单位,均值32=μ,标准差5=σ。从中抽取一个样本量为30的简单随机样本用于获得总体信息。 (1)x 的数学期望是多少? (2)x 的标准差是多少? 6.3 从一个标准差为5的总体中抽出一个样本量为40的样本,样本均值为25。样本均值的抽样标准差x σ等于多少? 6.4 设总体均值17=μ,标准差10=σ。从该总体中抽取一个样本量为25的随机样本,其均值为25x ;同样,抽取一个样本量为100的随机样本,样本均值为100x 。 (1)描述25x 的抽样分布。 (2)描述100x 的抽样分布。 6.5 从10=σ的总体中抽取样本量为50的随机样本,求样本均值的抽样标准差: (1)重复抽样。 (2)不重复抽样,总体单位数分别为50000、5000、500。 6.6 从4.0=π的总体中,抽取一个样本量为100的简单随机样本。 (1)p 的数学期望是多少? (2)p 的标准差是多少? (3)p 的分布是什么? 6.7 假定总体比例为55.0=π,从该总体中分别抽取样本量为100、200、500和1000的样本。

(1) 分别计算样本比例的标准差p σ。 (2) 当样本量增大时,样本比例的标准差有何变化? 6.8 假定顾客在超市一次性购物的平均消费是85元,标准差是9元。从中随机抽取40个顾 客,每个顾客消费金额大于87元的概率是多少? 6.9 在校大学生每月的平均支出是448元,标准差是21元。随机抽取49名学生,样本均值 在441~446之间的概率是多少? 6.10 假设一个总体共有8个数值:54,55,59,63,64,68,69,70。从该总体中按重复 抽样方式抽取2=n 的随机样本。 (1) 计算出总体的均值和标准差。 (2) 一共有多少个可能的样本? (3) 抽出所有可能的样本,并计算出每个样本的均值。 (4) 画出样本均值的抽样分布的直方图,说明样本均值分布的特征。 (5) 计算所有样本均值的平均数和标准差,并与总体的均值和标准差进行比较,得 到的结论是什么? 6.11 从均值为5.4=μ,方差为25.82=σ的总体中,抽取50个由5=n 个观测值组成的 随机样本,结果见Book6.11。 (1) 计算每一个样本的均值。 (2) 构造50个样本均值的相对频数分布,以此代表样本均值x 的抽样分布。 (3) 计算50个样本均值的平均值和标准差x σ。 6.12 来自一个样本的50个观察值见Book6.12。 (1) 用组距为10构建频数分布表,并画出直方图。 (2) 这组数据大概是什么分布?

样本及抽样分布

第六章样本及抽样分布 【基本要求】1、理解总体、个体和样本的概念; 2、理解样本均值、样本方差和样本矩的概念并会计算; 3、理解统计量的概念,掌握几种常用统计量的分布及其结论; 4、理解分位数的概念,会计算几种重要分布的分位数。 【本章重点】样本均值、样本方差和样本矩的计算;抽样分布——2 分布,t分布, F分布;分位数的理解和计算。 【本章难点】对样本、统计量及分位数概念的理解;样本矩的计算。 【学时分配】4学时 【授课内容】 §6.0 前言 前面五章我们研究了概率论的基本内容,从中得知:概率论是研究随机现象统计规律性的一门数学分支。它是从一个数学模型出发(比如随机变量的分布)去研究它的性质和统计规律性;而我们下面将要研究的数理统计,也是研究大量随机现象的统计规律性,并且是应用十分广泛的一门数学分支。所不同的是数理统计是以概率论为理论基础,利用观测随机现象所得到的数据来选择、构造数学模型(即研究随机现象)。其研究方法是归纳法(部分到整体)。对研究对象的客观规律性做出种种合理性的估计、判断和预测,为决策者和决策行动提供理论依据和建议。数理统计的内容很丰富,这里我们主要介绍数理统计的基本概念,重点研究参数估计和假设检验。 §6.1 随机样本 1

一、总体与样本 1.总体、个体 在数理统计学中,我们把所研究的全部元素组成的集合称为总体;而把组成总体的每个元素称为个体。 例如:在研究某批灯泡的平均寿命时,该批灯泡的全体就组成了总体,而其中每个灯泡就是个体;在研究我校男大学生的身高和体重的分布情况时,该校的全体男大学生组成了总体,而每个男大学生就是个体。 但对于具体问题,由于我们关心的不是每个个体的种种具体特性,而仅仅是它的某一项或几项数量指标X(可以是向量)和该数量指标X在总体的分布情况。在上述例子中X是表示灯泡的寿命或男大学生的身高和体重。在试验中,抽取了若干个个体就观察到了X的这样或那样的数值,因而这个数量指标X是一个随机变量(或向量),而X的分布就完全描写了总体中我们所关心的那个数量指标的分布状况。由于我们关心的正是这个数量指标,因此我们以后就把总体和数量指标X可能取值的全体组成的集合等同起来。 定义1:把研究对象的全体(通常为数量指标X可能取值的全体组成的集合)称为总体;总体中的每个元素称为个体。 我们对总体的研究,就是对相应的随机变量X的分布的研究,所谓总体的分布也就是数量指标X的分布,因此,X的分布函数和数字特征分别称为总体的分布函数和数字特征。今后将不区分总体与相应的随机变量,笼统称为总体X。根据总体中所包括个体的总数,将总体分为:有限总体和无限总体。 例1:考察一块试验田中小麦穗的重量: X=所有小麦穗重量的全体(无限总体);个体——每个麦穗重x 2

常见分布的期望和方差

5

5 概率与数理统计重点摘要 1、正态分布的计算:()()( )X F x P X x μ σ -=≤=Φ。 2、随机变量函数的概率密度:X 是服从某种分布的随机变量,求()Y f X =的概率密度:()()[()]'()Y X f y f x h y h y =。(参见P66~72) 3、分布函数(,)(,)x y F x y f u v dudv -∞-∞ = ?? 具有以下基本性质: ⑴、是变量x ,y 的非降函数; ⑵、0(,)1F x y ≤≤,对于任意固定的x ,y 有:(,)(,)0F y F x -∞=-∞=; ⑶、(,)F x y 关于x 右连续,关于y 右连续; ⑷、对于任意的11221212(,),(,),,x y x y x x y y <<   ,有下述不等式成立: 22122111(,)(,)(,)(,)0F x y F x y F x y F x y --+≥ 4、一个重要的分布函数:1(,)(arctan )(arctan )23 x y F x y πππ2=++22的概率密度为:2222 6(,)(,)(4)(9)f x y F x y x y x y π?==??++ 5、二维随机变量的边缘分布: 边缘概率密度: ()(,)()(,)X Y f x f x y dy f y f x y dx +∞ -∞+∞ -∞ ==?? 边缘分布函数: ()(,)[(,)]()(,)[(,)]x X y Y F x F x f u y dy du F y F y f x v dx dv +∞ -∞-∞+∞ -∞ -∞ =+∞==+∞=?? ?? 二维正态分布的边缘分布为一维正态分布。

概率分布以及期望和方差

概率分布以及期望和方差 上课时间: 上课教师: 上课重点:掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差 上课规划:解题技巧和方法 一 两点分布 ⑴两点分布 如果随机变量X 的分布列为 X 1 0 P p q 其中01p <<,1q p =-,则称离散型随机变量X 服从参数为p 的二点分布. 二点分布举例:某次抽查活动中,一件产品合格记为1,不合格记为0,已知产品的合格率为80%,随机变量X 为任意抽取一件产品得到的结果,则X 的分布列满足二点分布. X 1 0 P 0.8 0.2 两点分布又称01-分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布. (2)典型分布的期望与方差: 二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在n 次二点分布试验中,离散型随机变量X 的期望取值为np . 1、在抛掷一枚图钉的随机试验中,令10X ?=? ? ,针尖向上; ,针尖向下.,如果针尖向上的 概率为p ,试写出随机变量X 的概率分布. 2、从装有6只白球和4只红球的口袋中任取一只球,用X 表示“取到的 知识内容 典例分析

白球个数”,即???=,当取到红球时, ,当取到白球时, 01X ,求随机变量X 的概率分布. 3、若随机变量X 的概率分布如下: X 1 P 29C C - 38C - 试求出C ,并写出X 的分布列. 3、抛掷一颗骰子两次,定义随机变量 ?? ?=)(,1)(,0的点数数等于第二次向上一面当第一次向上一面的点 面的点数数不等于第二次向上一当第一次向上一面的点 ξ 试写出随机变量ξ的分布列. 4、篮球运动员比赛投篮,命中得1分,不中得0分,已知运动员甲投篮命中率的概率为P . ⑴ 记投篮1次得分X ,求方差()D X 的最大值; ⑵ 当⑴中()D X 取最大值时,甲投3次篮,求所得总分Y 的分布列及Y 的期望与方差. 二 超几何分布

样本方差与总体方差的区别

样本方差与总体方差的区别 之前一直对于样本方差与总体方差的概念区分不清,对于前者不仅多了样本”两个字,而且公式中除数是N-1 ,而不是N。现在写下这么写东西,以能彻底把他们的区别搞清楚。 总体方差: 也叫做有偏估计,其实就是我们从初高中就学到的那个标准定义的方差,除数是N。女0果实现已知期望值,比如测水的沸点,那么测量 立的(期望值不依测量值而改变,随你怎么折腾,温度计坏了也好,看反了也好,总之,期望值应该是100度),那么E『(X-期望)人2』,就有10个自由度。事实上,它等于(X- 期望)的方差,减去(X-期望)的平方。”所以叫做有偏估计,测量结果偏于那个”已知的期望值“。样本方差: 无偏估计、无偏方差(unbiased varianee )。对于一组随机变量,从中随机抽取N个样本, 这组样本的方差就是Xi^2平方和除以N-1。这可以推导出来的。如果现在往水里撒把盐, 水的沸点未知了,那我该怎么办?我只能以样本的平均值,来代替原先那个期望100度。同 样的过程,但原先的(X-期望),被(X-均值)所代替。设想一下(Xi-均值)的方差,它 不在等于Xi的方差,而是有一个协方差,因为均值中,有一项Xi/n是和Xi相关的,这就 是那个”偏"的由来 刊屮)二 Ei a.—-£(A;-W) f=l 9 =rr 一 证明: 10次,测量值和期望值之间是独

DGH 兀) 担工加D (X ;)) g ? u 曰右力m-工P) 占E (m :-寸) __________ ■!■ A^(E :=iCV —2A ;T + X-)) 闵肯) ) + £:D) n(<7- + //-) E(X 力二丫) nE(X~) MD(X) + E2(X)) M 吟+ “?) 尙e + //-) - 角F + "') t7- 证毕?? D(X)二 --- ◎ E(f)= D(X) + Eh 工) E{S-)= £(E ; =1 A ;y )=

样本方差的期望

样本方差的期望 假设某百货超市现有一批快到期的日用产品急需处理,超市老板设计了免费抽奖活动来处理掉了这些商品。纸箱中装有大小相同的20个球,10个10分,10个5分,从中摸出10个球,摸出的10个球的分数之和即为中奖分数,获奖如下: 一等奖100分,冰柜一个,价值2500元; 二等奖50分,电视机一个,价值1000元; 三等奖95分,洗发液8瓶,价值178元; 四等奖55分,洗发液4瓶,价值88元; 五等奖60分,洗发液2瓶,价值44元; 六等奖65分,牙膏一盒,价值8元; 七等奖70分,洗衣粉一袋,价值5元; 八等奖85分,香皂一块,价值3元; 九等奖90分,牙刷一把,价值2元; 十等奖75分与80分为优惠奖,只収成本价22元,将获得洗发液一瓶; 分析:表面上看整个活动对顾客都是有利的,一等奖到九等奖都是白得的,只有十等奖才收取一点成本价。但经过分析可以知道商家真的就亏损了吗?顾客就真能从中获得抽取大奖的机会吗?求得其期望值便可真相大白。 摸出10个球的分值只有11种情况,用X表示摸奖者获得的奖励金

额数,计算得到E(X)=-10.098,表明商家在平均每一次的抽奖中将获得10.098元,而平均每个抽奖者将花10.098元来享受这种免费的抽奖。 从而可以看出顾客真的就站到大便宜了吗?相反,商家采用这种方法不仅把快要到期的商品处理出去了,而且还为超市大量集聚了人气,一举多得。 此百货超市老板运用数学期望估计出了他不会亏损而做了这个免费抽奖活动,最后一举多得,从中可看出了数学期望这一科学的方法在经济决策中的重要性。 体育比赛问题: 乒乓球是我们的国球,上世纪兵兵球也为中国带了一些外交。中国队在这项运动中具有绝对的优势。现就乒乓球比赛的安排提出一个问题:假设德国队(德国队名将波尔在中国也有很多球迷)和中国队比赛。赛制有两种,一种是双方各出3人,三场两胜制,一种是双方各出5人,五场三胜制,哪一种赛制对中国队更有利? 分析:由于中国队在这项比赛中的优势,不妨设中国队中每一位队员德国队员的胜率都为60%,接着只需要比较两个队对应的数学期望即可。 参考资料来源:百度百科-数学期望 期望值:

样本均值的抽样分布

抽样分布 根据样本统计量去估计总体参数,必须知道样本统计量分布。 定义6.2 某个样本统计量的抽样分布,从理论上说就是在重复选取容量为n 的样本时,由每一个样本算出的该统计量数值的相对数频数分布或概率分布。 由于现实中我们不可能将所有的样本都抽出来,因此,统计的抽样分布实际上是一种理论分布。 (一)样本均值的抽样分布 从单位数为N 的总体中抽取样本容量为n 的随机样本,在重复抽样的条件下 共有n N 个可能的样本,在不重复抽样条件下,共有!!()! n N N C n N n =-个可能样本。对于每一个样本,我们都可以计算出样本的均值2()x s 或或p ,因此,样本均值是一个随机变量。所有的样本均值形成的分布就是样本均值的抽样分布。 [例6.4]设一个总体含有4个个体(元素),即N=4,取值分别为: 12341234x x x x ==== 总体分布为均匀分布,如图6.1所示。 图6.1 总体均值:10 2.54X μ== = 总体方差:22() 1.25x x n σ-==∑ x

若重复抽样,n=2 则共有2416=个可能样本。具体列示如表5.1.1。 表6.1 可能的样本及其均值 每个样本被抽中的概率相同,均值为116 样本均值的抽样分布如表5.1.2和图5.1.2所示。 样本均值x 抽样分布的形状与原有总体的分布有关,如果原有总体是正态分布,样本均值也服从正态分布。 如果总体分布是非正态分布,当x 为大样本(30n ≥)时,样本均值的分布趋于服从正态分布;当x 为小样本时,其分布不是正态分布。 下面再让我们来看看样本均值x 抽样分布的特征:数学期望和方差。 设总体共有N 个元素,其均值为μ,方差为2σ,从中抽取容量为n 的样本。 E()x x X μ=== (6.1) 22 x n σσ=(重复抽样) (6.2) 22 ()1x N n n N σσ-=-(不重复抽样) (6.3) 对于无限总体,样本均值的方差,不重复抽样也可按重复抽样来处理;对于有限总体,当N 很大,而/n N 又很小,修正系数 1 N n N --会趋于1,不重复抽样也可按重复抽样来处理。 样本均值x 抽样分布的特征—数学期望和方差的计算公式,可以通过[例6.4]加以验证。 样本均值的均值 1.0 1.5 3.5 4.040 2.51616x μ++++====

第三章附录:相关系数r 的计算公式的推导

相关系数r AB 的计算公式的推导 设A i 、B i 分别表示证券A 、证券B 历史上各年获得的收益率;A 、B 分别表示证券A 、证券B 各年获得的收益率的平均数;P i 表示证券A 和证券B 构成的投资组合各年获得的收益率,其他符号的含义同上。 2 A σ=11-n 2 )(∑-A A i 2B σ=11-n )(B B i -∑2 2P σ= 11-n 2 )1 (∑∑ - i i P n P =2 )](1 )[(11i B i A i B i A B A A A n B A A A n +- +-∑∑ =2 )]()[(11 B A A A B A A A n B A i B i A +-+-∑ =2 )]()([1 1 B B A A A A n i B i A -+--∑ = )])((2)()([1 1 2 222B B A A A A B B A A A A n i i B A i B i A --+-+--∑ =A 2A × 22 1 ) (B i A n A A +--∑× 1 )] )([(21 ) (2 ---+ --∑∑n B B A A A A n B B i i B A i =A 1 )])([(22222---? ++∑n B B A A A A A i i B A B B A A σ σ 对照公式(1)得: = 1 )(2 --∑ n A A i × 1 )(2 --∑ n B B i × r AB ∴ r AB = ∑∑∑-? ---2 2 ) ()()] )([(B B A A B B A A i i i i 这就是相关系数r AB 的计算公式。 投资组合风险分散化效应的内在特征 1.两种证券构成的投资组合为最小方差组合(即风险最小)时各证券投资比例的测定 公式(1)左右两端对A A 求一阶导数,并注意到A B =1—A A : (2 P σ)′=2 A A 2 A σ-2 (1-A A )2 B σ+2 (1-A A )B A σσ r AB -2A A B A σσ r AB 令 (2 P σ)′= 0 并简化,得到使2 P σ取极小值的A A : AB B A i i r n B B A A σσ=---∑1 )])([(

样本方差的期望

样本方差的期望和方差沉义义(上海工程技术大学基础教学学院,上海201620)摘要在实际应用中,样本均值珔X和样本方差s 2,x I珔X和计算XJ珔X有必要计算协方差和相关系数。本文给出了相应的计算公式,并提供了一些简单的计算方法。关键词:样本均值样本方差期望;方差;协方差研究生入学数学考试中的相关系数,样本均值X的期望和方差和样本方差s 2是非常重要的测试点。但是,在概率论和数理统计的教学过程中,很少涉及如何计算样本方差S2的方差。其次,对于简单的随机样本x 1,x 2如何计算协方差cov(x I,珔x),相关系数ρx I珔x,yi = x I-X和YJ = x J-xx,协方差cov(y I,y J)以及x I和XX的相关系数ρy I y J使学生感到困惑。本文对以上知识进行了系统分析,并给出了一些简单的计算方法。1,课本中样本均值和样本方差的期望值和方差,样本均值珔X和样本方差s 2的性质由以下定理给出:定理:让总体x?n(μ,σ2),x 1,x 2如果xn(n> 1)是一个简单的随机样本,X是一个样本均值,s 2是一个样本方差,则(1)x?nμ,σ2()n; (2)x和S 2是独立的;(3)(n-1)S2σ2?χ2(n-1)。推论1 e (x)=μ,D(x)=σ2n; E(S2)=σ2,D(S2)= 2σ4N-1。上述推论的前三个结论的证明

见教科书[1]。D(s 2)= 2σ4N-1的证明如下。从定理(3)的结论中,我们可以得出D (n-1)s 2σ()2 = 2(n-1),即(n-1)2σ4D(s 2)= 2(n-1),所以D(s 2)= 2σ4N-1。2,2 cov(x I,x)=σ2n,ρx I珔x = 1 = n(I = 1,2,n)。证明x I?n(μ,σ2)独立于彼此(I = 1,2然后cov(x I,XJ)=σ2,I = J0,I≠{J(I = 1,2,...))因此,cov(x I,珔x)= 1ncov(x I,x 1 + ...)+ X i +…+ X n)= 1ncov(X i,X 1)+…+ 1ncov(X i,X i)+…+ —8 1 —1ncov(X i,X n)= 0 +…+σ2n +…+0 =σ2n(i = 1,2,…,n),ρx I珔x = cov(x I,珔x)d(xi)d (xx槡)=σ2nσ2·σ2槡n = 1槡n(I = 1,2,n)。3,yi = x I-X的性质是推论3 E(yi)= 0,D (yi)= 1-1()nσ2; cov(y I,y J)=-σ2n(I≠J),ρy I y J =-1n-1(I≠J)(I = 1,2,n)。证明了e(yi )= e(x ixx)= e(x ixx)= e(x ixx)= e(x IX)=u-μ= 0,D(yi)= D(x ixx)= D(xi)+ D(x(x)珔(x I,x,x)=σ2 +σ2 +σ2n-2,σ2n = 1-1(nσ2),cov (y I,y J)= cov(x I ,y J)= cov(x IX,x,J)x,jx jx,jxx,xxxxxxxxxxxxxxxxxxxxxxxx-x-= cov(x I,XJ)-CoV(x I,XJ)-CoV(xx,XJ)+ cov (x,x,x)= 0-σ2n-σ2n +σ2n =-σ2n,ρy I,y J = cov(yi)YJ)d(yi)d(y J槡)=-σ2n1 -1()nσ2 =-1n-1。这里我们必须指出

样本平均数分布的方差

σ2与总体方差σ2、样本容量n的关系是xσ2=(σ2 1.样本平均数分布的方差x /)。 2.样本中各观察值与其平均数的差数的平方的总和为(P42 )。 3.样本中各观察值与其平均数的差数的总和为(0 );样本中各观察值与平 均数的差数的平方的总和为(P42 )。 4.一般而言,假设测验可能犯( 2 )类错误。 5.一般正态分布的正态离差U=();样本平均数分布的正态离差U= ()。 6.一个4因素3水平试验的所有可能处理组合数为(81 )。 7.由回归方程估计x为某一定值时条件总体平均数的95%置信区间为 ();估计x为某一定值时条件总体预测值的95%置信区间为()。 8.有12个处理,要进行随机区组设计,可查得随机数字表中任一页的任一行,去掉 (00 )、(97 )、(98 )和(99 )四个数字后,凡大于12的数均被12除后得余数,将重复数字划去,即得12个处理的排列次序。 9.有6个处理,每处理3次重复,用对比法设计,至少要安排(9 )个对照。 10.有8个处理,每处理3次重复,用对比法设计,至少要安排(12 )个对照。 11.有一个总体共有4个个体,分别为2,4,6,8,从总体中进行复置随机抽样,每次抽2 个观察值,抽出所有样本,则共有()个可能样本;所有样本平均数分布的平均数为(),标准差为()。 12.有一样本,其6个观察值分别为6,3,8,4,1,3;则其中数为( 3.5 ),均 方为(22.5 )。 13.有一样本,其6个观察值分别为7,3,8,4,2,3;则其中数为( 3.5 )。 14.有一样本,其6个观察值分别为7,4,8,5,2,3;则其中数为( 4.5 )。 15.有一样本的5个观察值为2,7,7,5,4;则其样本均方为(28.6 )。 16.有一正态分布N(16,4),已知U0.05=1.96,则其分布中间有95%观察值的全距为 (7.84 )。 17.有一正态分布N(30,9),则落于24与36之间的观察值的百分数为()。 18.有一正态分布N(36,9),已知U0.01=2.58,则其分布中间有99%观察值的全距为 (10.32 )。

为什么样本方差里面要除以(n-1)而不是n

为什么样本方差里面要除以(n-1)而不是n?(---by小马哥整理) 首先,我们来看一下样本方差的计算公式: (1) 刚开始接触这个公式的话可能会有一个疑问就是:为什么样本方差要除以(n-1)而不是除以n?为了解决这个疑惑,我们需要具备一点统计学的知识基础,关于总体、样本、期望(均值)、方差的定义以及统计估计量的评选标准。有了这些知识基础之后,我们会知道样本方差之所以要除以(n-1)是因为这样的方差估计量才是关于总体方差的无偏估计量。这个公式是通过修正下面的方差计算公式而来的。 公式(2)是我们按照正常的思维, 思考的应该有的方差的计算公式,也就是除以n的情况: (2) 公式(3)是我们经过修正得到的式子, 修正过程为: (3) 我们在课本上看到的其实是修正后的结果: (4) 下面详细(推导)讲, 为啥会要乘以前面那个(1/n-1), 来对公式(2)进行修正. 为了方便叙述,在这里说明好数学符号: (5) 前面说过样本方差之所以要除以(n-1)是因为这样的方差估计量才是关于总体方差的无偏估计量。在公式上来讲的话就是样本方差的估计量的期望要等于总体方差。如下: (6) 但是没有修正的方差公式,它的期望是不等于总体方差的(下面会讲解详细原因, 就是下面那个公式推导!) (7) 也就是说,样本方差估计量如果是用没有修正的方差公式来估计总计方差的话是有偏差的 下面给出比较好理解的公式推导过程:

(8) 也就是说,除非否则一定会有 (9) 需要注意的是不等式右边的才是的对方差的“正确”估计,但是我们是不知道真正的总体均值是多少的,只能通过样本的均值来代替总体的均值。所以样本方差估计量如果是用没有修正的方差公式来估计总计方差的话是会有偏差,是会低估了总体的样本方差的。为了能无偏差的估计总体方差,所以要对方差计算公式进行修正,修正公式如下: (10) 这种修正后的估计量将是总体方差的无偏估计量,下面将会给出这种修正的一个来源; 为了能搞懂这种修正是怎么来的,首先我们得有下面几个等式: 1.方差计算公式: (11) 2. 均值的均值、方差计算公式: (12) 对于没有修正的方差计算公式我们有: (13)

相关文档
最新文档