带电粒子在电磁场中的运动(二轮专题)

合集下载

专题8 磁场及带电粒子在在磁场中的运动(解析版)高考物理二轮复习

专题8 磁场及带电粒子在在磁场中的运动(解析版)高考物理二轮复习

2021年高考物理二轮复习提分技巧专题8磁场及带电粒子在在磁场中的运动(1)方法技巧①对称思想;②等效思想;③极限思想;④放缩法;⑤平移法;⑥旋转法.(2)易错归纳①判断洛伦兹力方向时要注意粒子的电性,粒子电性不同,洛伦兹力的方向不同,运动轨迹也不同;②注意圆周运动的多解问题.考向1导体在磁场中受安培力问题1.安培力大小的计算公式:F=BIL sinθ(其中θ为B与I之间的夹角).(1)若磁场方向和电流方向垂直:F=BIL.(2)若磁场方向和电流方向平行:F=0.2.(1)左手定则判定安培力的方向.(2)特点:由左手定则知通电导线所受安培力的方向既跟磁场方向垂直,又跟电流方向垂直,所以安培力的方向总是垂直于磁感线和通电导线所确定的平面.分析通电导体棒受力时的基本思路[例1](2020·辉南县第一中学高三月考)在倾角为30的固定光滑绝缘斜面上垂直纸面放置一金属棒,现给金属棒通以恒定电流,欲使金属棒处于静止状态,可加一方向平行于纸面的与斜面成60角的匀强磁场,如图所示,已知金属棒重为G,则下列说法正确的是()A.金属棒中的电流方向垂直纸面向外,受到的安培力大小为3 2GB.金属棒中的电流方向垂直纸面向外,受到的安培力大小为3 3GC.金属棒中的电流方向垂直纸面向里,受到的安培力大小为3 2GD3【答案】D【解析】对导体棒受力分析,有重力、垂直于斜面向上支持力和斜向右上方的安培力。

根据导体棒的平衡状态,可得安培力方向与斜面成30角斜向右上方。

根据左手定则,可得导体棒中的电流方向垂直纸面向里。

根据几何关系可知,支持力和安培力与水平方向夹角相同,都是60。

则由共点力的平衡条件可得N2cos3033GF FG===安故选D 。

[例2](2020·大连市普兰店区第三十八中学高二月考)如图所示,边长为l ,质量为m 的等边三角形导线框用绝缘细线悬挂于天花板,导线框中通一逆时针方向的电流,图中虚线过ab 边中点和ac 边中点,在虚线的下方有一垂直于导线框向里的匀强磁场,其磁感应强度大小为B ,此时导线框处于静止状态,细线中的拉力为F 1,保持其他条件不变,现将虚线下方的磁场移至虚线上方,此时细线中拉力为F 2。

高考物理二轮复习第一部分专题三电场与磁场第二讲带电粒子在电磁场中的运动课件.pptx

高考物理二轮复习第一部分专题三电场与磁场第二讲带电粒子在电磁场中的运动课件.pptx

互作用和电荷量变化,则
()
2019-9-11
感谢你的聆听
10
A.电场线方向由集尘极指向放电极 B.图中A点场强小于B点场强 C.尘埃在迁移过程中电势能减小 D.沿水平方向进入的尘埃在迁移过程中可以做类平抛运动
解析:由题带负电的尘埃在电场力的作用下向集尘极迁移,
则知集尘极带正电荷,是正极,所以电场线方向由集尘极指
电表,外电路中R0为定值电阻,R为滑动变阻器,开始时开
关S断开,下列判断正确的是
()
2019-9-11
感谢你的聆听
33
A.M板是电源的正极 B.闭合开关S,电压表的示数为Bdv C.闭合开关S,电压表的示数减小 D.闭合开关S,将滑动变阻器的滑片向下移,电源的输出功
率一定增大 解析:由左手定则可知正离子向N板偏转,负离子向M板偏 转,即金属板M为电源负极,N为电源正极,故A错误;等离
2019-9-11
感谢你的聆听
18
(三)依据题型灵活应对
1.单边界磁场问题的对称性 带电粒子在单边界匀强磁场中的运 动一般都具有对称性,如诊断卷第 4 题, 粒子进入磁场和离开磁场时速度方向与 磁场边界的夹角不变,可总结为:单边进出(即从同一直线边界 进出),等角进出,如图所示。
2019-9-11
第 二讲
带电粒子在电磁场中的运动
2019-9-11
感谢你的聆听
1
课后“高仿”检测
01 课前·自测诊断
——把薄弱环节查出来
02 课堂·重点攻坚
——把高考短板补起来/释疑4大考点
03 课后·“高仿”检测
——把高考能力提起来
2019-9-11
感谢你的聆听
2
课前·自测诊断

高三物理二轮复习 专题八 磁场及带电体在磁场中的运动

高三物理二轮复习 专题八 磁场及带电体在磁场中的运动

外,现将B处的长直导线撤走,而将C处
知A处直导线的电流在O点产生的 磁场方向水平向右,D处直导线
的长直导线平移到圆心O处,则圆心O处 的电流在O点产生的磁场方向竖
的长直导线所受安培力的方向( C )
A.沿∠COB的角平分线向下
B.沿∠AOB的角平分线向上
直向上,且两处直导线的电流在 O点产生的磁场大小相等,由矢 量的叠加原理知O处的磁场方向 沿∠AOB的角平分线向上,由左
视角一 电流磁场及磁场的命叠题加视角
题组冲关
如[例下1图] 所如示图,所当示通,有M、电N流和的P长是直以导 MN线在思M路、探N究两处(1时)如,何根判据断安电培 流周定
则为可直知径,的二半者圆在弧圆上心的O三处点产,生O为的半磁圆感应围强的度磁的场大?小都为B1/2;当将M
处弧长的直圆导心线,移∠至MOP处P=时6,0°两,直在导M线、在N圆心O处产生的磁感应强度的大 小处也各为有B一1/条2,长作直平导行线四垂边直形 穿过,纸由面图,中的(几2)空何间关某系点,由可多得电c流os形3成0°的=磁
所轨受水安培 平力对向称右放,置大一小恒 根定均,匀故金金属属棒棒向 .右从做t=匀0加时速刻直起线,运动棒,上在有T2如~图T乙内金所属示棒 所的受持安续培力交与变前电半流个I周,期周大期小为相T等,,最方大向值相反 为,Im金,属图棒甲向中右I做所匀示减方速向直为线电运动流,正
一方个向周.期结则束金时属金棒属(棒A速B度C恰) 好为零,以后始终向右重复上述运动,选项A、B、
B导2 线中通有大小相等的恒定电流,方 场,如何求该点的磁感应强
B2向1=如BB21图=所23, 示故 ,这选时项OB点正的确磁,感选应项强A、 度C、度D?错误.
2大 小 为 B1. 若 将 M 处 长 直 导 线 移 至 P 处 , 则 O 点 的 磁 感 应 强 度 大 小 为 B2 ,

带电粒子在电磁场中的运动

带电粒子在电磁场中的运动

带电粒子在电磁场中的运动在物理学中,电磁场是一种具有电力和磁力效应的力场。

当带电粒子处于电磁场中时,它会受到电磁力的作用而发生运动。

本文将探讨带电粒子在电磁场中的运动规律及其相关特性。

一、洛伦兹力在电磁场中,带电粒子受到的力被称为洛伦兹力。

洛伦兹力由电场力和磁场力两部分组成,可以用如下公式表示:F = q(E + v × B)其中,F表示洛伦兹力,q为带电粒子的电荷量,E为电场强度,v 为带电粒子的速度,B为磁场强度。

根据洛伦兹力的方向,带电粒子会在电磁场中发生不同的运动。

如果电场力和磁场力方向相同或相反,带电粒子会受到一个向加速度的力,其运动轨迹将呈现弯曲的形状;如果电场力和磁场力方向垂直,带电粒子将受到一个向速度方向的力,其运动轨迹将变成圆形。

二、带电粒子在磁场中的运动当带电粒子以一定的速度进入磁场时,它会受到磁场力的作用,引起其运动轨迹的变化。

带电粒子在磁场中的运动可以通过以下几个特性进行描述:1. 弯曲半径带电粒子在磁场中做圆周运动,其弯曲半径由以下公式确定:r = mv / (qB)其中,r表示圆周运动的弯曲半径,m为带电粒子的质量,v为速度,q为电荷量,B为磁感应强度。

2. 周期带电粒子在磁场中做圆周运动的周期为:T = 2πm / (qB)其中,T表示周期,m为质量,q为电荷量,B为磁感应强度。

3. 轨道速度带电粒子在磁场中的轨道速度由以下公式确定:v = (qBr / m)其中,v表示轨道速度,q为电荷量,B为磁感应强度,r为弯曲半径,m为质量。

三、带电粒子在电场和磁场共存时的运动当带电粒子同时处于电场和磁场中时,其运动将会更为复杂。

在稳恒磁场的作用下,带电粒子将绕磁力线做螺旋线运动。

同时,在电场力的作用下,带电粒子的轨迹将受到偏转。

此时,带电粒子的运动方程可以通过以下公式描述:m(dv/dt) = q(E + v × B)其中,m为质量,v为速度,q为电荷量,E为电场强度,B为磁感应强度。

2020届高考物理课标版二轮习题:专题三第7讲 带电粒子在电磁场中的运动 含解析

2020届高考物理课标版二轮习题:专题三第7讲 带电粒子在电磁场中的运动 含解析

第7讲带电粒子在电磁场中的运动冲刺提分作业A一、单项选择题1.(2019辽宁大连模拟)如图所示为研究某种带电粒子的装置示意图,粒子源射出的粒子束以一定的初速度沿直线射到荧光屏上的O点,出现一个光斑。

在垂直于纸面向里的方向上加一磁感应强度为B的匀强磁场后,粒子束发生偏转,沿半径为r 的圆弧运动,打在荧光屏上的P点,然后在磁场区域再加一竖直向下、电场强度大小为E的匀强电场,光斑从P点又回到O点,关于该粒子束(不计重力),下列说法正确的是( )A.粒子带负电B.初速度v=BEC.比荷qm =B2rED.比荷qm=EB2r答案 D 只存在磁场时,粒子束打在P点,由左手定则知粒子带正电,选项A错误;因为qvB=mv 2r ,所以qm=vBr,加匀强电场后满足Eq=qvB,即v=EB,代入上式得qm=EB2r,选项D正确,B、C错误。

2.如图所示,竖直线MN∥PQ,MN与PQ间距离为a,其间存在垂直纸面向里的匀强磁场,磁感应强度为B,O是MN上一点,O处有一粒子源,某时刻放出大量速率均为v(方向均垂直磁场方向)、比荷一定的带负电粒子(粒子重力及粒子间的相互作用力不计),已知沿图中与MN成θ=60°射入的粒子恰好垂直PQ射出磁场,则粒子在磁场中运动的最长时间为( )A.πa3v B.2√3πa3vC.4πa3vD.2πav答案 C 当θ=60°时,粒子的运动轨迹如图甲所示,则a=R sin 30°,即R=2a 。

设带电粒子在磁场中运动轨迹所对的圆心角为α,则其在磁场中运行的时间t=α2πT,即α越大,粒子在磁场中运行时间越长,α最大时粒子的运行轨迹恰好与磁场的右边界相切,如图乙所示,因R=2a,此时圆心角αm 为120°,即最长运行时间为T3,而T=2πr v =4πa v ,所以粒子在磁场中运动的最长时间为4πa3v,C 正确。

3.美国物理学家劳伦斯于1932年发明的回旋加速器,应用带电粒子在磁场中做圆周运动的特点,能使粒子在较小的空间范围内经过电场的多次加速获得较大的能量,使人类在获得较高能量的带电粒子领域前进了一大步。

2023年高三物理二轮高频考点冲刺突破14 带电粒子在交变电场和磁场中的运动

2023年高三物理二轮高频考点冲刺突破14 带电粒子在交变电场和磁场中的运动

2023年高三物理二轮高频考点冲刺突破专题14带电粒子在交变电场和磁场中的运动专练目标专练内容目标1高考真题(1T—4T )目标2带电粒子在交变电场中的直线运动(5T—8T )目标3带电粒子在交变电场中的曲线运动(9T—12T )目标4带电粒子在交变电磁场中的运动(13T—16T )【典例专练】一、高考真题1.某装置用电场控制带电粒子运动,工作原理如图所示,矩形ABCD 区域内存在多层紧邻的匀强电场,每层的高度均为d ,电场强度大小均为E ,方向沿竖直方向交替变化,AB 边长为12d ,BC 边长为8d ,质量为m 、电荷量为q +的粒子流从装置左端中点射入电场,粒子初动能为k E ,入射角为θ,在纸面内运动,不计重力及粒子间的相互作用力。

(1)当0θθ=时,若粒子能从CD 边射出,求该粒子通过电场的时间t ;(2)当k 4E qEd =时,若粒子从CD 边射出电场时与轴线OO '的距离小于d ,求入射角θ的范围;(3)当k 83E qEd =,粒子在θ为22ππ-~范围内均匀射入电场,求从CD 边出射的粒子与入射粒子的数量之比0:N N 。

2.两块面积和间距均足够大的金属板水平放置,如图1所示,金属板与可调电源相连形成电场,方向沿y 轴正方向。

在两板之间施加磁场,方向垂直xOy 平面向外。

电场强度和磁感应强度随时间的变化规律如图2所示。

板间O 点放置一粒子源,可连续释放质量为m 、电荷量为(0)q q >、初速度为零的粒子,不计重力及粒子间的相互作用,图中物理量均为已知量。

求:(1)0=t 时刻释放的粒子,在02πm t qB =时刻的位置坐标;(2)在06π0~m qB 时间内,静电力对0=t 时刻释放的粒子所做的功;(3)在20022004ππ4E m E m M qB qB ⎛⎫ ⎪⎝⎭,点放置一粒接收器,在06π0~m qB 时间内什么时刻释放的粒子在电场存在期间被捕获。

带电粒子在电磁场中的运动-高中物理专题(含解析)

带电粒子在电磁场中的运动-高中物理专题(含解析)

带电粒子在电磁场中的运动-高中物理专题(含解析)引言本文将讨论带电粒子在电磁场中的运动,涉及到相关的物理概念和解析。

我们将从基本的概念开始,逐步深入探讨。

电磁场的基本概念电磁场是由电荷和电流所产生的。

对于静电场而言,电磁场的作用是通过电荷之间的相互作用传递力;而对于电流产生的磁场来说,电磁场的作用是通过磁力线的变化传递力。

在电磁场中,带电粒子受到电磁力的作用而运动。

带电粒子在电磁场中的运动方程带电粒子在电磁场中的运动方程可以由洛伦兹力得出。

洛伦兹力是指带电粒子在电磁场中所受的力,其方向垂直于粒子速度和磁场方向的平面。

洛伦兹力的大小与带电粒子的电荷量、速度以及磁场的强度有关。

带电粒子在电磁场中的运动方程可以表示为:F = q(E + v × B)其中,F是带电粒子所受的力,q是带电粒子的电荷量,E是电场强度,v是带电粒子的速度,B是磁场强度。

带电粒子在电磁场中的运动类型带电粒子在电磁场中的运动类型有很多种。

根据粒子速度和磁场方向的关系,可以将其分为以下几种情况:1. 带电粒子在电磁场中做匀速直线运动。

2. 带电粒子在电磁场中做匀速圆周运动。

3. 带电粒子在电磁场中做螺旋运动。

实例解析下面我们通过一个实例来解析带电粒子在电磁场中的运动。

假设我们有一个带正电荷的粒子,处于一个均匀磁场和一个均匀电场中。

该粒子以速度v在电场和磁场的交叉方向上运动。

根据洛伦兹力公式,该粒子在电磁场中所受的合力为:F = q(E + v × B)其中q为粒子的电荷量,E为电场强度,B为磁场强度。

根据合力的方向,我们可以确定粒子在电磁场中的运动类型。

具体的运动轨迹可通过求解运动方程得到。

结论带电粒子在电磁场中的运动是由洛伦兹力所驱动的。

根据粒子速度和磁场方向的关系,带电粒子可以做匀速直线运动、匀速圆周运动或螺旋运动。

通过解析带电粒子在电磁场中的运动,我们可以更好地理解电磁场对粒子的影响,为相关领域的研究和应用提供基础知识。

高三物理第二轮复习 带电粒子在磁场中的运动 新人教版

高三物理第二轮复习 带电粒子在磁场中的运动 新人教版

高三物理第二轮复习带电粒子在磁场中的运动新人教版专题五带电粒子在磁场、复合场中的运动【备考策略】根据近三年高考命题特点和命题规律,复习专题时,要注意以下几个方面:1.通过复习,整合磁场基本知识,弄清楚带电粒子在磁场中运动的基本规律,掌握带电粒子在有界磁场中运动问题的基本方法;区分有边界磁场中圆心、半径、临界条件、周期和时间等问题的解决方法,并注意几何关系的灵活应用2.归纳总结复合场的基本知识,加强电场、磁场与力学知识的整合,分清带电粒子在不同复合场中的运动形式和遵循的运动规律,特别弄清楚粒子在分区域场中的分阶段运动,总结出复合场问题的解题思路、解题方法、解题步骤.3.充分注意带电粒子在复合场中运动规律的实际应用问题.如质谱仪、回旋加速器、速度加速器、电磁流量计等.【考纲点击】重要考纲要求洛伦兹力公式Ⅱ带电粒子在匀强磁场中的运动Ⅱ带电粒子在匀强电场中的运动Ⅱ【网络互联】第1讲带电粒子在磁场中的运动【核心要点突破】知识链接一、洛仑兹力1、公式:F=qvB sinα(α为v与B的夹角)2、特点:洛伦兹力F的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即F总是垂直于B和v所在的平面.故永远不对运动电荷做功。

3、方向的判断:左手定则二、带电粒子在匀强磁场中的运动公式深化整合一、电场力和洛伦兹力的比较电场力洛仑兹力力存在条件作用于电场中所有电荷仅对运动着的且速度不跟磁场平行的电荷有洛仑兹力作用力力大小F=qE与电荷运动速度无关F=Bqv与电荷的运动速度有关力方向力的方向与电场方向相同或相反,但总在同一直线上力的方向始终和磁场方向垂直力的效果可改变电荷运动速度大小和方向只改变电荷速度的方向,不改变速度的大小做功可以对电荷做功,改变电荷的动能不对电荷做功、不改变电荷的动能运动轨迹偏转在匀强电场中偏转,轨迹为抛物线在匀强磁场中偏转、轨迹为圆弧【典例训练1】不计重力的带电粒子在电场或者磁场中只受电场力或磁场力作用,带电粒子所处的运动状态可能是()A.在电场中做匀速直线运动B.在磁场中做匀速直线运动C.在电场中做匀速圆周运动D.在匀强磁场中做类平抛运动【解析】选B、C.带电粒子在电场中必定受电场力作用,因而不能做匀速直线运动,A错.带电粒子在电场中可做匀速圆周运动,如电子绕原子核运动,库仑力提供向心力,C对;带电粒子在磁场中不一定受磁场力作用,如当运动方向与磁场方向平行时,洛伦兹力为零.粒子做匀速直线运动,B对.带电粒子在匀强磁场中不可能做匀变速运动.因速度变化时,洛伦兹力变化,加速度变化,D错,故选B、C.【典例训练2】(2010·江苏物理卷·T9)如图所示,在匀强磁场中附加另一匀强磁场,附加磁场位于图中阴影区域,附加磁场区域的对称轴OO′与SS′垂直。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图所示,在纸面内建立直角坐标系xOy,第一、二象限存在着垂直纸面向里的匀强磁场,磁感应强度大小为B。

质量均为m、电荷量分别为+q和一q的两个粒子(不计重力),从坐标原点O以相同的速度v先后射人磁场,v方向与x轴成θ=30°角,带正、负电的粒子在磁场中仅受洛仑兹力作用,则
A.带负电的粒子回到x轴时与O点的距离为
B.带正电的粒子在磁场中运动的时间为
C.两粒子回到x轴时的速度相同
D.从射入到射出磁场的过程中,两粒子所受洛仑兹力的总冲量相同
2、如图所示,S处有一电子源,可向纸面内任意方向发射电子,平板MN垂直于纸面,在纸面内的长度L =9.1cm,中点O与S间的距离d=4.55cm,MN与SO直线的夹角为θ,板所在平面有电子源的一侧区域有方向垂直于纸面向外的匀强磁场,磁感应强度B=2.0×10-4T,电子质量m=9.1×10-31kg,电量e=-1.6×10-19C,不计电子重力。

电子源发射速度v=1.6×106m/s的一个电子,该电子打在板上可能位置的区域的长度为l,则
A.θ=90°时,l=9.1cm B.θ=60°时,l=9.1cm
C.θ=45°时,l=4.55cm D.θ=30°时,l=4.55cm
3、如图所示,竖直平行线MN、PQ间距离为a,其间存在垂直纸面向里的匀强磁场(含边界PQ),磁感应强度为B,MN上O处的粒子源能沿不同方向释放比荷为q/m的带负电粒子,速度大小相等、方向均垂直磁场.粒子间的相互作用及重力不计.设粒子速度方向与射线OM夹角为θ ,当粒子沿θ=60°射入时,恰好垂直PQ射出.则
A.从PQ边界射出的粒子在磁场中运动的最短时间为
B.沿θ=120°射入的粒子,在磁场中运动的时间最长
C.粒子的速率为
D.PQ边界上有粒子射出的长度为
4、
5、如下图所示,在直角三角形
abc 区域内存在垂直于纸面向外的匀强磁
场,磁感应强度大小为B ,∠a=60°,∠b=90°,边长ab=L 。

粒子源在b 点将带负电的粒子以大小、方向不同的速度射入磁场,已知粒子质量为m ,电荷量为q 。

则在磁场中运动时间最长的粒子中,速度最大值是
A 、 qBL/2m
B 、qBL/3m
C 、 B 3qL/2m
D 、B 3qL/3m
6、(12分)如图,直角坐标系第Ⅰ、Ⅱ象限存在方向垂直纸面向里的匀强磁场,一质量为m ,电量为+q 的粒子在纸面内以速度v 从-y 轴上的A 点(0,-L )射入,其方向+x 成30°角,粒子离开磁场后能回到A 点,(不计重力)。

求: (1)磁感应强度B 的大小;
(2)粒子从A 点出发到再回到A 点的时间。

f
4题图
7、如图所示,三角形AQC是边长为2L的等边三角形,P、D分别为AQ、AC的中点,在水平线QC下方是水平向左的匀强电场;区域I(梯形PQCD)内有垂直纸面向里的匀强磁场,磁感应强度为B,区域II(三角形APD)内有垂直纸面向里的匀强磁场,区域III(虚线PD之上,三角形APD以外)有垂直纸面向外的匀强磁场,区域II、III内磁感应强度大小均为5B,一带正电的粒子从Q点正下方、距离Q点为L的O点以某一
初速度射出,在电场力作用下从QC边中点N以速度
v垂直QC射入区域I,接着从P 点垂直AQ射入区域III,此后带电粒子经历一系列运动后又以原速率返回O点。

粒子重力忽略不计,求:
(1)该粒子的比荷q
m

(2)电场强度E及粒子从O点射出时初速度v的大小;
(3)粒子从O点出发到再次回到O点的整个运动过程中所经历的时间t。

6、题答案:
解:(1) OA =L ,∠OCA=30
则AC =2L ,半径r =C O '=23 L (2分)
∴根据Bqv =r m v 2
(2分) 则qL
mv qr mv B 63=
= (2分) (2)粒子在弧CD 中弧长为35r π, 则t 1=v
L
3310π(2分)
又t AC =t DA =
v
L
2(2分) ∴t 总=2t AC +t 1=
v
L )(33104π+(2分)
如图所示,在00x y a ≤≤≤、范围内有垂直于xOy 平面向外的匀强磁场,磁感应强
度大小为B ,坐标原点O 处有一个粒子源,在某时刻发射大量质量为m 、电荷量为+q
的带电粒子,他们的速度方向均在xOy 平面的第一象限内。

已知粒子在磁场中做圆周运动的周期为T ,半径介于2a 到3a 之间,则下列说法正确的是
A .最后从磁场中飞出的粒子经历的时间为
6T B .最后从磁场中飞出的粒子经历的时间大于6T
C .最先从磁场上边界飞出的粒子经历的时间为12T
D .最先从磁场上边界飞出的粒子经历的时间小于12
T
4、如图所示,半径为R 的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B 。

M 为磁场边界上一点,有无数个带电荷量为+q 、质量为m 的相同粒子(不计重力)在纸面内向各个方向以相同的速率通过M 点进入磁场,这些粒子射出边界的位置均处于边界的某一段圆弧上,这段圆弧的弧长是圆周长的3
1。

下列说法中正确的是
A.粒子从M 点进入磁场时的速率为m qBR
v
23=
B.粒子从M 点进入磁场时的速率为m
qBR v =
C. 若将磁感应强度的大小增加到
B 3,则粒子射出边界的圆弧长度变为原来的
2
1
D. 若将磁感应强度的大小增加到B 2
6
,则粒子射出边界的圆孤长度变为原来的31
7、(18分)如图所示,圆心为O 、半径为R 的圆形磁场区域中存在垂直纸面向外的匀强磁
场,以圆心O 为坐标原点建立坐标系,在y=-3R 处有一垂直y 轴的
固定绝缘挡板,一质量为m 、带电量为+q 的粒子,与x 轴成60°角从M 点(-R ,0)以初速度v0斜向上射入磁场区域,经磁场偏转后由N 点离开磁场(N 点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场。

不计粒子的重
力,求:
(1)磁感应强度B 的大小; (2)N 点的坐标;
(3)粒子从M 点进入磁场到最终离开磁场区域运动的总时间。

24.在水平面上,平放一半径为R 的光滑半圆管道,管道处在方向竖直、磁感应强度为B
的匀强磁场中,另有一个质量为m 、带电量为+q 的小球。

(1)当小球从管口沿切线方向以某速度射入,运动过程中恰不受管道侧壁的作用力,求此速度v 0;
(2)现把管道固定在竖直面内,且两管口等高,磁场仍保持和
管道平面垂直,如图所示,空间再加一个水平向右、场强mg
E q
的匀强电场(未画出),若小球仍以v 0的初速度沿切线方向从左 边管口射入,求小球:①运动到最低点的过程中动能的增量; ②在管道运动全程中获得的最大速度.。

相关文档
最新文档