两铰拱
福大结构力学课后习题详细答案..-副本

结构力学(祁皑)课后习题详细答案答案仅供参考第1章1-1分析图示体系的几何组成。
1-1(a)解原体系依次去掉二元体后,得到一个两铰拱(图(a-1))。
因此,原体系为几何不变体系,且有一个多余约束。
1-1 (b)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
1-1 (c)(c-2) (c-3)解 原体系依次去掉二元体后,得到一个三角形。
因此,原体系为几何不变体系,且无多余约束。
1-1 (d)(d-1)(d-2)(d-3)解原体系依次去掉二元体后,得到一个悬臂杆,如图(d-1)-(d-3)所示。
因此,原体系为几何不变体系,且无多余约束。
注意:这个题的二元体中有的是变了形的,分析要注意确认。
1-1 (e)解原体系去掉最右边一个二元体后,得到(e-1)所示体系。
在该体系中,阴影所示的刚片与支链杆C组成了一个以C为顶点的二元体,也可以去掉,得到(e-2)所示体系。
在图(e-2)中阴影所示的刚片与基础只用两个链杆连接,很明显,这是一个几何可变体系,缺少一个必要约束。
因此,原体系为几何可变体系,缺少一个必要约束。
1-1 (f)解原体系中阴影所示的刚片与体系的其它部分用一个链杆和一个定向支座相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉只分析其余部分。
很明显,余下的部分(图(f-1))是一个几何不变体系,且无多余约束。
因此,原体系为几何不变体系,且无多余约束。
1-1 (g)解原体系中阴影所示的刚片与体系的其它部分用三个链杆相连,符合几何不变体系的组成规律。
因此,可以将该刚片和相应的约束去掉,只分析其余部分。
余下的部分(图(g-1))在去掉一个二元体后,只剩下一个悬臂杆(图(g-2))。
因此,原体系为几何不变体系,且无多余约束。
1-1 (h)解原体系与基础用一个铰和一个支链杆相连,符合几何不变体系的组成规律。
因此,可以只分析余下部分的内部可变性。
这部分(图(h-1))可视为阴影所示的两个刚片用一个杆和一个铰相连,是一个无多余约束几何不变体系。
桥梁工程重点 (2)

1.箱型拱桥及肋拱桥主拱圈及拱上建筑的构造。
肋拱:肋拱桥的组成:肋拱的拱圈由两条或多条分离、平行的拱肋所组成,通常多为无铰拱,也可用两铰拱,材料通常是混凝土或钢筋混凝土。
拱肋形式:拱肋的截面形式主要与跨径有关。
为便于施工,小跨径的肋拱桥多采用矩形截面,这种截面拱肋的经济性相对较差;大、中跨径拱肋桥常做成工字形截面,以减轻结构自重并改善截面受力,但这种截面拱肋的横向刚度较小;跨径大、截面宽的肋拱桥,还可采用箱形截面拱肋,以提高拱肋横向受力和抗扭性能,节省更多的圬工量,但结构构造及施工较复杂;采用钢筋混凝土材料的拱肋,是一种抗压性能好、子中小、塑性及疲劳等性能优良的结构构造。
箱形拱:主拱圈:可以由一个单箱单室或多室箱组成,也可以由两个或几个分离单室箱组成。
特点:截面抗弯、抗扭刚度大,拱圈整体性好;单条箱肋稳定性好,能单箱肋成拱,便于无支架施工;箱形截面能适应主拱圈各截面抵抗正负弯矩的需要;自重相对较轻;制作要求较高,吊装设备较多,主要适用于大跨径拱桥。
拱上建筑:实腹式拱上建筑构造:组成:拱腹填料、侧墙、护拱、变形缝、防水层、泄水管及桥面系等。
空腹式拱除了具有实腹式拱上建筑相同的构造外,还具有腹孔和腹孔敦。
4.拱桥伸缩缝、变形缝有何区别,怎样设置。
通常是在相对变形(位移或转角)较大的未知处设置伸缩缝,而在相对变形较小处设置变形缝。
实腹式拱桥的绳索风通常设在两拱脚的上方,并应在横桥方向贯通、向上延伸侧墙全高直至人行道及栏杆,伸缩缝一般做成直线形,以使构造简单、施工方便。
对于空腹、拱式拱上结构,一般将紧靠桥墩(台)的第一个腹拱圈做成三铰拱,并在靠墩台的拱铰上方的侧墙、人行道及栏杆上设置伸缩缝,在其余两铰上方的侧墙、人行道及栏杆设变形缝。
空腹、梁式拱上结构可采用连续桥面构造,但在拱脚上方应通过腹孔墩等措施,使其能相对桥墩(台)伸缩变形,在近拱顶出的连续桥面也应设置伸缩装置。
5.不等跨连续拱桥的处理方法。
(1)采用不同的矢跨比;(2)采用不同的拱脚标高;(3)调整拱上建筑的恒载重量;(4)采用不同类型的拱跨结构。
8,9第八章拱结构第九章薄壳结构

(3)利用拉杆来承受水平推力 利用拉杆来承受水平推力 在拱脚处设置钢杆, 在拱脚处设置钢杆,利用钢杆受拉从而抵抗拱 的推力(图 的推力 图8—5a、b)。这种解决办法传力路线最 、 。 简短, 简短,在拱结构的范围内直接解决推力问题面不致 将推力传给支承拱的结构构件上。钢杆因为受拉、 将推力传给支承拱的结构构件上。钢杆因为受拉、 这样处理的拱故也称“拉杆拱” 这样处理的拱故也称“拉杆拱”。拉杆拱因为推力 问题可在拱本身独立解决, 问题可在拱本身独立解决,故拉杆拱普遍用于屋盖 结构上。 结构上。 为了避免拉杆在自重作用下严重下垂,通常设 为了避免拉杆在自重作用下严重下垂, 置吊杆以维持拉杆的水平依置(图 置吊杆以维持拉杆的水平依置 图8—5a、b)。 、 。
返回
三、钢筋混凝土大拱的施工方案
出于拱的外表面 出于拱的外表面是空间曲面,所以大拱施工时的模板 间曲面, 放样、 位和控制的难度大;拱的总重达 总重达3000t以上。 以上。 放样、定位和控制的难度大;拱的总重达 以上 如果用常规搭架的方法浇筑混凝土, 如果用常规搭架的方法浇筑混凝土,搭架材料的消耗和 其他费用很大;施工要求很高. 其他费用很大;施工要求很高.质量与安全问题也难于 保证。 保证。 因此,在结构设计阶段,就对施工方法、 因此,在结构设计阶段,就对施工方法、施工阶段 应力变形的控制与监测、安全等方面作了系统的研究, 应力变形的控制与监测、安全等方面作了系统的研究, 构思了一个“钢管混凝土半刚性骨架 钢管混凝土半刚性骨架”的无支架施工空间 构思了一个 钢管混凝土半刚性骨架 的无支架施工空间 大拱的方法。 大拱的方法。 这一方法的要点是:先制作一个钢管混凝土 这一方法的要点是:先制作一个钢管混凝土拱形骨 作为施工期间的承重支架. 架.作为施工期间的承重支架.大拱的模板就直接悬挂 在这个骨架上 大拱的混凝土浇筑完毕后, 在这个骨架上;大拱的混凝土浇筑完毕后,这个骨架就 久留在混凝土内,作为大拱的劲性配筋,如图8—20 永久留在混凝土内,作为大拱的劲性配筋,如图 图8—21所示。 所
桥梁工程复习

1. 在竖向荷载作用下,梁在支承处将仅受到竖向反力作用,而拱在竖向荷载作用下,支承处不仅产生竖向反力,还产生水平推力,使拱主要受压,减小拱圈截面弯矩。
2. 拱桥优点:①跨越能力大;②能充分做到就地取材,降低造价;③耐久性好,养护、维修费用小;④外形美观;⑤构造较简单,特别是污工拱桥,技术容易被掌握,有利于广泛采用。
3. 拱桥缺点:①有推力的结构;自重较大时,水平推力也较大,增加了下部结构的工程量,对地基要求也高;②污工拱桥一般都采用有支架施工,施工较复杂,工期长,费用高;③由于水平推力较大,在连续多孔的大、中桥中,为防止一孔破坏而影响全桥的安全,需要采取较复杂的措施,或设置单向推力墩,增加了造价;④上承式拱桥的建筑高度较高。
4. 按主拱圈的建筑材料分为:污工拱桥、钢筋混凝土拱桥、刚拱桥、钢管混凝土拱桥。
5. 按拱上建筑的形式分为:实腹式拱桥、空腹式拱桥。
小跨径拱桥多采用实腹式:构造简单,施工方便,但填料数量较多,恒载较重。
大、中跨径拱桥多采用空腹式:利于减小恒载,使桥梁显得轻巧美观。
6. 按主拱圈采用的拱轴线形式分为:圆弧拱桥、抛物线拱桥、悬链线拱桥。
7. 按桥面所处的位置分为:上承式拱桥、中承式拱桥、下承式拱桥。
8. 按结构受力体系分为:①简单体系拱桥:主要承重结构是裸拱,行车系结构不参与主拱一起受力。
②组合体系拱桥:主要承重结构是裸拱与行车系结构按不同方式构成的整体。
9. 三铰拱:静定结构,在地基差的地区可采用。
构造复杂,施工困难,整体刚度小,主拱圈一般不采用,常用于空腹式拱桥拱上建筑的边腹拱。
10. 两铰拱:一次超静定结构,介于三铰拱和无铰拱之间,刚拱采用较多。
11. 无铰拱:三次超静定结构,拱的内力分布较均匀,材料用量较三铰拱省;构造简单,施工方便,整体刚度大,实际中使用最广泛。
超静定次数高,会产生附加内力,一般希望修剪在地基良好处。
12. 无推力拱式组合体系拱桥(也称系杆拱桥)是外部静定结构,兼有拱桥的较大跨越能力和简支梁桥对地基适应能力强的两大特点。
拱桥上部结构-拱桥受力特点、组成与分类、各类常见拱桥的构造特点

➢ 拱上建筑与主拱圈共同受力,成片预制。
a
74
特点:
✓ 兼具桁架和拱的特点,结构受力合理,材料省;
✓ 总重力,推力小,对地基要求低;
✓
整体性好——比双曲拱;
✓
施工方便;
✓
吊装困难,节点易开裂
一、双曲拱
➢ 主拱圈:拱肋、拱波、拱板、横向联系 ➢ 施工时化整为零,集零为整受力。 ➢ 于1964年在江苏无锡诞生,东拱桥,跨径
9m,为三肋二波砖结构。 ➢ 文革期间发展迅速,约定44余座,最大跨径
150米
a
71
➢ 河南前河大桥:1-150m,f0/L0=1/10,
7+2×0.6m,汽-15,拖-60,拱宽7.8m,变截面 悬链线,高2.2~2.7,1969年建成。
➢ 湖南汀江大桥:主桥长1250米,宽20米,最 大跨径76米,引桥282米,规模最大。
➢ 目前已基本不修建,但加固与加宽问题突出 。
a
72
特点:
拱肋、拱坡、拱板、横向联系组成
➢
截面合理,省材料
➢
施工无支架,吊装重量轻
➢
人工用量大
➢
整体性差
a
73
➢ 桁架拱又称拱形桁架桥,具有水平推力的桁 架结构,
a
66
a
69
φ402×16
40
20
300 160 40
80
40
25
540
60
320 30 730/2 φ300 215 30 100 150 100 30
700
620
建筑结构设计 第6章 中跨与大跨建筑结构

图5 首都人民大会堂
图6 鸟巢
6.2 桁架及屋架
桁架是由杆件组成的几何不变体,即是指由直杆在杆 桁架 端相互连接而组成的以抗弯为主的格构式结构。桁架 中的杆件大多只承受轴向力,杆件截面上应力分布均 匀,材料性能发挥较好,从而能节省钢材和减轻结构 自重,特别适用于跨度和高度较大的结构。 桁架在钢结构中应用很广 应用很广,分为空间桁架和平面桁架 应用很广 两类。网架结构和各种塔架结构为空间桁架,常用的 平面桁架如屋架、吊车桁架、支撑、桥梁等。平面简 支桁架的杆件内力不受支座沉降和温度变化的影响, 且构造简单、安装方便最为常用。
h = (1 / 10 ~ 1 / 6)l 0
6.3 单层钢架结构
单层钢架:一般由直线形杆件(梁和柱)组成 单层钢架 的具有刚性节点的结构。当横梁为折现形时称 为门式钢架 门式钢架;当横梁为弧形时,称为拱式钢架 拱式钢架。 门式钢架 拱式钢架 刚架结构由横梁、柱和基础组成。刚架的柱与 横梁刚接,与基础铰接。 排架结构由屋架、柱和基础组成,柱与屋架铰 接,而与基础刚接。
门式刚架从结构上分类有:
(1)无铰刚架;(2)两铰刚架;(3)三铰刚架
无铰刚架
两铰刚架
三铰刚架
三种刚架的经济指标 刚架用料 刚架形式 钢 (kg) 无铰 两铰 三铰 364 365 380 混凝土 钢 (m 3 ) (kg) 3.00 2.98 2.42 68.0 35.0 35.0 混凝土 钢 (m 3 ) (kg) 4.28 0.87 0.87 432 400 415 混凝土 (m 3 ) 7.28 3.76 3.29 基础用料 总材料用量
大跨建筑的发展概况
(1)罗马万神庙,见图1。穹顶直径达43.3m,顶端高度也是 43.3m,中央开一个直径8.9m的圆洞。 (2)威斯敏斯特教堂,见图2。总长156米,宽22米;大穹窿顶 高31米,跨度大19.3m,钟楼高68.5米,拱脚厚度达910mm。
各种桥梁构造图解说课讲解
各种桥梁构造图解箱型梁桥:(xiang xing liang qiao) box-girder bridge箱梁结构的基本概念在于全部上部结构变为整体的空心梁,而当主要荷载通过桥上的任何位置时,空心梁的所有各部分(梁肋,顶板和底板)作为整体同时参加受力。
其结果可节省材料,成为薄壁结构,提高了抗扭强度。
箱梁桥可分为单室,双室,多室几种。
组合梁桥:(zhu he liang qiao) composite beam bridge 指以梁式桥跨作为基本结构的组合结构桥,既两种以上体系重叠后,整体结构的反力性质仍与以受弯作用负载的梁的特点相同。
这类桥的特点主要表现在设计计算工作繁重,构造细节及内力复杂。
空腹拱桥:(kong fu gong qiao) open spandrel arch bridge 在拱桥拱圈上设置小拱,横墙或支柱来支撑桥面系,从而减轻桥梁恒载并增大桥梁泻水面积者称为空腹拱桥。
实腹拱桥:(shi fu gong qiao) filled spandrel arch bridge 在拱桥拱圈上腹部两侧填实土壤或粒料后铺装路面,这种拱桥称为实腹拱桥。
小跨径的砖,石,混凝土拱常采用这种构造形式。
无铰拱桥:(wu jiao gong qiao) hingless arch bridge 如图,在整个拱上不设铰,属外部三次超静定结构。
由于无铰,结构整体钢度大,构造简单,施工方便,维护费用少,因此在实际中使用最广泛。
但由于超静定次数高,温度变化,材料收缩,结构变形,特别是墩台位移会产生较大附加应力。
混凝土空腹无铰拱桥三铰拱桥:(san jiao gong qiao) three-hinged arch bridge 如图,在拱桥的两个拱脚和拱的中间各设一铰称为三铰拱。
属外部静定结构构。
因而温度变化,支座沉陷等不会在拱内产生附加应力,故当地质条件不良,可以采用三铰拱,但铰的存在使其构造复杂,施工困难,维护费用高,而且减小了整体刚度降低了抗震能力,因此一般较少使用。
第五拱式结构
5 拱式结构拱是一种十分古老而现代仍在大量应用的一种结构形式。
它是主要受轴向力为主的结构,这对于混凝土、砖、石等抗压强度较高的材料是十分适宜的,它可充分利用这些材料抗压强 度高的特点,避免它们抗拉强度低的缺点,因而很早以前,拱就得到了十分广泛的应用。
拱式 结构最初大量应用于桥梁结构中,在混凝土材料出现后,逐渐广泛应用于大跨度房屋建筑中。
我国古代拱式结构的杰出建筑是河北省的赵州桥,跨度为37m ,建于1300多年前,为石拱桥 结构,经受历次地震考验,至今保存完好。
在房屋建筑中也有许多成功的实例。
5.1拱的受力特点按结构支承方式分类,拱可分成三铰拱、两铰拱和无铰拱三种,如图5-1所示。
三铰拱为 静定结构,较少采用;两铰拱和无铰拱为超静定结构,目前较为常用。
一、 支座反力为说明拱式结构的基本受力特点,下面以较简单的三铰拱为例进行拱的受力分析,并与同 跨度受同样荷载作用下的简支梁进行比较。
设三铰拱受竖向荷载作用,如图5-2所示。
以整 个拱结构为脱离体,在支座处分别代之以支座力反力A V ,B V ,A H ,B H ,则 ()()[]22111a l P a l P lV A -+-= (5-1)[]22111a P a P lV B +=(5-2)图5-2三铰拱支座反力的计算由上两式可知,拱式结构的竖向反力VA 、HA ,与相同跨度、承受相同荷载简支梁所产生 竖向反力'A V ,'B V ,则是相同的,即'=A A V V (5-3) '=B B V V (5-4)再将拱的左半部分Ae 为脱离体,在铰C 处以相互作用C X ,C Y ,等效,则对C 点取矩。
由0=C M 得⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=11221a l P l V fH A A (5-5) 若以C M 表示简支梁在C 截面处的弯矩,则由简支梁的分析,可得⎪⎭⎫ ⎝⎛--'=1122a l P lV M AC (5-6) 注意到'=A A V V 由以上两式可得fM H CA 0= (5-7)通过上面例子可知:(1)在竖向荷载作用下,拱脚支座内将产生水平推力。
拱桥构造
5.横梁 分为: 固定横梁:桥面系与拱肋相交处,应尽量避免 普通横梁:通过吊杆悬挂在拱肋下,截面形式常用矩 形、工字形或土字形或箱形。一般为钢筋混凝土构件, 跨度较大时,也可采用预应力混凝土构件。 刚架横梁:通过立柱支承在拱肋上
2. 拱上建筑的构造 —据构造方式不同,分为实腹式和空腹式 (1)实腹式拱上建筑 1、组成:侧墙、拱腹填料、护拱、变形缝、防水层、泄 水管及桥面等 2、特点:构造简单,施工方便,恒载重 3、适用:小跨径拱桥
拱腹填料的做法: (1)填充式:拱腹填料:砾石、碎石、粗砂或卵类粘土, 亦可用轻质材料侧墙:设于两侧,围护填料,按挡土墙设 计,采用浆砌块、片石,也可采用钢筋混凝土护壁式侧墙。 (2)砌筑式拱腹填料:干砌圬工或浇筑素混凝土侧墙:用 素混凝土浇筑时,可不设侧墙而用砂浆饰面或设镶面
③梁式或板式腹孔:通常是在桥台和墩顶立柱处设 置标准伸缩缝,而在其余立柱处采用桥面连续。
5. 拱铰 (1)拱桥中哪些情况应设铰? 1)按两铰拱或三铰拱设计的主拱圈 2)按构造要求需采用铰的腹拱圈 3)需设置铰的矮小腹孔墩 4)施工中,设置临时铰 (2)铰的分类:永久性铰,临时性铰
(3)常用的铰的型式: 1)弧形铰 材料:石、砼、钢筋砼 构造:R2(凹):R1(凸)=1.2~1.5 宽:等于构件宽 长:(1.15~1.2)倍拱厚 适用:主要用于主拱圈
4、拱板 (1)作用:“集零为整”,加 强拱圈整体性 (2)现浇混凝土(不低于C20)
折线形
平板形 波形
5、横向联系构件 (1)作用:使拱肋变形在横桥 向均匀,避免拱波顶纵裂,保证 横向稳定 (2)形式:横系梁和横隔板 (3)布置:拱顶、腹孔墩下、 接头处,间距3~5m。
(4)箱形拱 箱形拱包括箱形板拱和箱形肋拱 ������ 箱形截面拱的主要特点:
拱式结构体系
拱式结构体系在本小节中我们要给大家介绍拱式结构体系的组成、优缺点及适用范围;拱式结构体系的合理布置原则及及受力特点。
在房屋建筑和桥梁工程中,拱是一种十分古老而现代仍在大量应用的结构型式。
它是以受轴向压力为主的结构,这对于混凝土、砖、石等材料是十分适宜的,特别是在没有钢材的年代,它可充分利用这些材料抗压强度高的特点,避免它们抗拉强度低的缺点。
而且能获得较好的经济和建筑效果。
因而很早以前,拱就得到了十分广泛的应用。
在我国,很早就成功地采用了拱式结构。
公元605~616年隋代人在河北赵县建造的单孔石拱桥一安济桥(又称赵州桥),横越交河,跨度37.37m。
它距今近1400年,虽经多次地震,而巍峨挺立,是驰名中外的工程技术与建筑艺术完美结合的杰作。
在古代的西方,建造了许多体型庞大、气魄雄伟的拱式建筑。
在建筑规模、空间组合、建筑技术与建筑艺术等方面都取得了辉煌的成就,并对欧洲与世界建筑产生巨大的影响。
古罗马最著名的穹顶(半圆拱)结构,当推公元前27~14年建造,后因焚毁并于公元120~123年重建的罗马万神庙(图1-29),其中央内殿为直径43.5m的半圆球形穹顶,穹顶净高距地面也是43.5m。
它是古罗马穹顶技术的最高代表作,也是世界建筑史上最早、最大的大跨结构。
图1-29罗马,万神庙a一剖面图;b一平面图;c一穹顶(半圆拱)结构近、现代的拱式结构应用范围很广,而且型式多种多样。
例如著名的澳大利亚悉尼歌剧院(图1-30,始建于1957年)是大家熟知的建筑,处于深入海中的半岛上。
建筑形象的基本元素一一拱壳,不但是主要的结构构件,而且是一个符号,一种象征,一个母题,它既象“白帆”、“浪花”,又象盛开的巨莲,使人产生丰富的联想。
图1-30 澳大利亚悉尼歌剧院一、拱结构的类型及其受力特点拱的类型很多,按结构组成和支承方式,拱可分为三铰拱、两铰拱、和无铰拱三种,如图1-31。
图1-31 拱结构计算简图a)三铰拱b)两铰拱c)无铰拱三铰拱为静定结构,两铰拱和无铰拱为超静定结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)建立代梁的内力方程 称性只考虑半跨。
利用对
l 0 0 0 x , M P FP x, FQ FP 4 l 1 1 0 0 x , M P FP l , FQ 0 4 2 4
(2)计算水平推力FH
2 2 hC hC 8 2 y 2 dx f l, dx 12 l, 15 12 l l
K
M1 y FQ1 sin FN 1 cos
外荷载作用的内力方程
M 0 0 0
K
M P FAy x FP a FQP ( FAy FP ) cos FN 1 ( FAy FP ) sin
F1 FH 1P
11
0 yM P EI ds y2 cos2 EI ds EA ds
最后内力由叠加原理得
0 M M 1 F1 M P M P FH y 0 FQ FQ1 F1 FQP FQP cos FH sin 0 FN FN 1 F1 FNP ( FQP sin FH cos )
§4—7 力法计算超静定拱
一、概述
拱结构在工程中得到广泛的应用。静定拱有三铰 拱;超静定拱常见的有两铰拱和无铰拱。
二、两铰拱的计算
基本系:简支曲梁。 基本未知量:水平约束力F1 力法典型方程为
11F1 1P 0
系数和自由项的计算必须采用积分法。
F1单独作用的内力方程
M 0 0 0
FQ1 FQP FN 1 FNP M 1M P 1P ds ds ds EI GA EA 0 0 0 ( sin ) FQP cos cosFQP sin ( y ) M P ds ds ds EI GA EA
1P中只考虑弯矩项,11中有时还需考虑轴力项。
当 E1 A1
,受力特性与刚性铰支座的两铰拱相同。
当
l E1 A1 0 时, E1 A1
,F1 FH 0 ,受力特性与简支曲梁相同。
例:求图(a)两铰拱的内力。设拱轴线为 y
4f x (l x ), 2 l
l=30m,f=5m,矩形截面hc=0.5m。EI与EA均为常数。 矢跨比
l l 1 x , M 10 30x 16.67 y 4 2 4 FQ 16.67sin FN 16.67 cos
其中,y
4f 4f x(l x) , tan y 2 (l 2 x) 。 l l2
0 0 0 M P M P , FQP FQP cos , FQN FQP sin
用积分法计算系数和自由项
FQ21 FN21 M 12 11 ds ds ds EI GA EA y2 sin 2 cos2 ds ds ds EI GA EA
19 yM dx FP l 2 f 128 l
0 P
19 FP l 2 f FH 128 16.67kN 2 8 2 hC f l l 15 12
(3)计算内力,考虑半跨。
l 0 0 x , M M P FH y 10x 16.67 y 4 0 FQ FQP cos FH sin 10cos 16.67sin 0 FN ( FQP sin FH cos ) (10sin 16.67 cos )
两铰拱与三铰拱的区别: ①两铰拱的拱顶无铰,该处弯矩不为零; ②水平推力FH计算方法不同
条件和位移协调条件 两铰拱:利用静力平衡 条件 三铰为基本未知量
F1 FH
l 时, A 0 E1 1
1P
11
0 yM P EI ds y2 cos2 l EI ds EA ds E A 1 1
f 5 1 1 l 30 6 5
11应考虑轴力的影响。
cos 1 ds dx , 12 对矩形截面有 A 2 I hC
0 yM P 0 yM P dx ds EI l s FH 2 2 2 hC y cos y 2 dx dx ds ds EI s EA 12 l l s