带电粒子在均匀电磁场中的运动
带电粒子在有界匀强磁场中的运动

廖红英
带电粒子在有界匀 强磁场中的运动
知识回顾
一、带电粒子在匀强磁场中运动形式
(1)V//B-------匀速直线运动 (2)V⊥B-------匀速圆周运动 (3)粒子运动方向与磁场有一夹角 (大于0度小于90度)-------轨迹为螺旋线
带电粒子在匀强磁场中 做匀速圆周运动,洛伦 兹力就是它做圆周运动 的向心力
(3)欲使粒子要打在极板上,
则粒子入射速度v应满足么条 件?
+q L
m
v
B
L
3、如图所示,在y<0的区域内存在匀强磁场,磁 场方向垂直纸面向外,磁感应强度为B。一个正电 子以速度v从O点射入磁场,入射方向在xy平面内, 与x轴正向的夹角为θ。若正电子射出磁场的位置 与O点的距离为L,求:
(1)正电子在匀强磁场中作圆周 运动的圆心角为多少?
(2)正电子作圆周运动的 半径为多少?
(3)正电子的电量和质量之比为多少?
(4)正电子在匀强磁场中运动的时间是多少?
思考:如果是负电子,那么,两种情况下的时间 之比为多少?
4、如图所示在磁感应强度为B,半径为r的圆
形匀强磁场区 ,一质量为m,电荷量为q的
带电粒子从A点沿半径方向以速度ν
射入磁场中,从C点射出,求:
(1)此粒子在磁场中做圆周运
动的半径是多少?
B v
(2)此粒子的电荷q与质量 m 之比。
MP l
ON
2、长为L的水平极板间,有垂直纸面向内的匀强磁场,如 图所示,磁场强度为B,板间距离也为L,板不带电,现有 质量为m,电量为q的带正电粒子(不计重力),从左边极 板间中点处垂直磁场以速度v平行极板射入磁场,求: (1)粒子刚好打在极板的左端点时的速度为多少? (2)粒子刚好打在极板上的右端点时的速度是多少?
带电粒子在匀强磁场中的运动速度公式

带电粒子在匀强磁场中的运动速度公式在我们学习物理的过程中,带电粒子在匀强磁场中的运动速度公式可是个相当重要的知识点。
咱先来说说这个公式到底是啥。
带电粒子在匀强磁场中运动时,它所受到的洛伦兹力大小为 qvB,其中 q 是粒子的电荷量,v 是粒子的速度,B 是磁场的磁感应强度。
当这个洛伦兹力刚好提供了粒子做圆周运动的向心力时,就有 qvB = mv²/r ,通过这个式子一番推导,就得出了带电粒子在匀强磁场中的运动速度公式 v = qBr/m 。
我还记得有一次给学生们讲这个知识点的时候,有个学生一脸懵地问我:“老师,这玩意儿在生活中有啥用啊?”我笑着跟他们说:“这用处可大了去啦!就比如说医院里的核磁共振成像,那可就是利用了带电粒子在磁场中的运动原理。
你们想想,如果没有这些知识,医生怎么能通过这么高科技的手段看到咱们身体里的情况呢?”咱们再深入聊聊这个公式的应用。
比如说在一个特定的磁场中,已知磁场的磁感应强度 B ,还有粒子的电荷量 q 和质量 m ,只要能测量出粒子运动的半径 r ,就能轻松算出粒子的运动速度 v 。
这在科学研究和实际应用中,可都是非常关键的一步。
假设咱们要研究一种新型的带电粒子,通过精心设计的实验,控制好磁场的强度,然后精确地测量出粒子运动的轨迹半径。
这时候,运用这个速度公式,就能准确地算出粒子的速度,从而进一步了解这种新型粒子的性质和特点。
在解题的时候,同学们可一定要注意单位的换算。
有时候就是因为单位没搞清楚,结果得出了一个让人哭笑不得的答案。
我之前批改作业的时候,就发现有个同学因为单位的问题,算出的速度比火箭还快,这要是真的,那可就太神奇啦!而且,理解这个公式的时候,不能死记硬背,要真正理解其中每个物理量的含义和它们之间的关系。
比如说,电荷量的变化会怎样影响速度,磁场强度的改变又会带来什么结果。
再给大家举个例子,假如有一个带电粒子在一个强度为 0.5T 的匀强磁场中做圆周运动,粒子的电荷量是 1.6×10⁻¹⁹C ,质量是9.1×10⁻³¹kg ,测量得到运动半径是 0.1m ,那咱们来算算它的速度。
带电粒子在磁场中的运动 动量

带电粒子在磁场中的运动与动量有关。
在匀强磁场中,如果粒子所受合外力为零,则粒子作匀速直线运动;合外力充当向心力时,粒子作匀速圆周运动;其余情况,粒子作的是一般的变速曲线运动。
同时,带电粒子在磁场中的运动也与速度有关,速度方向与磁场方向平行时不受洛伦兹力作用,速度方向与磁场方向垂直时洛伦兹力充当向心力。
此外,带电粒子在磁场中的运动还具有周期性,其周期T=2πm/qB或者T=2πr/v,其中m为动量,q为电量,B为磁感应强度。
在处理带电粒子在磁场中的运动问题时,可以采用力的观点(牛顿运动定律、运动学公式)、能量观点(动能定理、能量守恒定律)和动量观点(动量定理、动量守恒定律)等多种方法进行分析。
以上内容仅供参考,如需更全面准确的信息,可查阅物理专业书籍或咨询物理专业人士。
带电粒子在匀强磁场中的运动 课件

二、质谱仪
阅读教材第100页“例题”部分,了解质谱仪的结构和作用。
1.质谱仪的组成
由粒子源容器、加速电场、偏转磁场和底片组成。
2.质谱仪的用途
质谱仪最初是由汤姆生的学生阿斯顿设计的。他用质谱仪发现
了氖20和氖22,证实了同位素的存在。质谱仪是测量带电粒子的
质量和分析同位素的重要工具。
三、回旋加速器
B.两粒子都带负电,质量比 =4
1
C.两粒子都带正电,质量比 =
4
1
D.两粒子都带负电,质量比 =
4
A.两粒子都带正电,质量比
1
解析:由于 qa=qb、Eka=Ekb,动能 Ek=2mv2 和粒子偏转半径 r= ,
2 2 2
可得 m= 2 ,可见 m 与半径
k
r 的二次方成正比,故 ma∶mb=4∶1,
再根据左手定则判知粒子应带负电,故选 B。
答案:B
【例题2】如图所示,一束电荷量为e的电子以垂直于磁场方向
(磁感应强度为B)并垂直于磁场边界的速度v射入宽度为d的磁场中,
穿出磁场时速度方向和原来射入方向的夹角为θ=60°。求电子的
质量和穿越磁场的时间。
解析:过 M、N 作入射方向和出射方向的垂线,
两垂线交于 O 点,O 点即电子在磁场中做匀速圆周运动的圆心,
连结 ON,过 N 作 OM 的垂线,垂足为 P,如图所示。由直角三角形 OPN
2 3
知,电子的轨迹半径 r=sin60° = 3 d
2
由圆周运动知 evB=m
2 3
联立①②解得 m= 3 。
带电粒子在匀强磁场中的运动
带电粒子在匀强磁场中的运动

带电粒子在匀强磁场中的运动带电粒子在匀强磁场中的运动在带电粒子只受洛伦兹力作用、重力可以忽略的情况下,其在匀强磁场中有两种典型的运动:(1)若带电粒子的速度方向与磁场方向平行时,不受洛伦兹力,做匀速直线运动.(2)若带电粒子的速度方向与磁场方向垂直,带电粒子在垂直于磁感线的平面内以入射速度v做匀速圆周运动,其运动所需的向心力即洛伦兹力.可见T与v及r无关,只与B及粒子的比荷有关.荷质比q/m相同的粒子在同样的匀强磁场中,T,f和ω相同.(3)圆心的确定.因为洛伦兹力f指向圆心,根据f⊥v,画出粒子运动轨迹上任意两点(一般是射入和出磁场的两点)的f的方向,其延长线的交点即为圆心.(4)半径的确定和计算.圆心找到以后,自然就有了半径(一般是利用粒子入、出磁场时的半径).半径的计算一般是利用几何知识,常用解三角形的方法及圆心角等于圆弧上弦切角的两倍等知识.(5)在磁场中运动时间的确定.利用圆心角与弦切角的关系,或者是四边形内角和等于360°计算出圆心角θ的大小,由公式t=θ/360°×T可求出运动时间.有时也用弧长与线速度的比.如图所示,注意到:①速度的偏向角ψ等于弧AB所对的圆心角θ.②偏向角ψ与弦切角α的关系为:ψ<180°,ψ=2α;ψ>180°,ψ=360°-2α;(6)注意圆周运动中有关对称规律如从同一直线边界射入的粒子,再从这一边射出时,速度与边界的夹角相等;在圆形磁场区域内,沿径向射入的粒子,必沿径向射出.确定粒子在磁场中运动圆心的方法①已知粒子运动轨迹上两点的速度方向,作这两速度方向的垂线,交点即为圆心。
②已知粒子入射点、入射方向及运动轨迹上的一条弦,作速度方向的垂线及弦的垂直平分线,交点即为圆心。
③已知粒子运动轨迹上的两条弦,作出两弦垂直平分线,交点即为圆心。
④已知粒子在磁场中的入射点、入射方向和出射方向(不一定在磁场中),延长(或反向延长)两速度方向所在直线使之成一夹角,作出这一夹角的角平分线,角平分线上到两直线距离等于半径的点即为圆心。
高中人教物理选择性必修二第1章第2节 带电粒子在匀强磁场中的运动

依据所给数据分别计算出带电粒子所受的重力和洛伦兹力,就可求出所受重力与洛 伦兹力之比。带电粒子在匀强磁场中受洛伦兹力并做匀速圆周运动,由此可以求出 粒子运动的轨道半径及周期
解: (1)粒子所受的重力 G =mg=1.67×10-27×9.8 N = 1.64×10-26N
所受的洛伦兹力
F= qvB = 1.6×10-19×5×105×0.2N = 1.6×10-14N
的变化。速度增大时,圆周运动的半径增大;反之半径减小。 • 保持出射电子的速度不变,改变磁感应强度,观察电子束径迹
的变化。B增大时,圆周运动的半径减小;反之半径增大。
带电粒子在匀强磁场中做匀速圆周运动时周期有何特征?
根据T 2r 结合r mv
v
qB
可知T 2m
qB
可见同一个粒子在匀强磁场中做匀速圆周运动的周期与速 度无关
A.粒子从a到b,带正电 B.粒子从a到b,带负电 C.粒子从b到a,带正电 D.粒子从b到a,带负电
大小,由公式可求出运动时间。
t
3600
T
( 的单位是:度)
或 t T ( 的单位是 : 弧度)
2π
1. 轨道半径与磁感应强度、运动速度相联系,在磁场中运动的时间与周 期、偏转角相联系。
2. 粒子速度的偏向角 ( φ ) 等于圆心角 ( α ),并等于AB 弦与切线的夹角 ( 弦 切角 θ ) 的 2 倍 ( 如图 ),即
重力与洛伦兹力之比
G F
1.64 1026 1.6 1014
1.03 1012
可见,带电粒子在磁场中运动时,洛伦兹力远大于重力,重力作 用的影响可以忽略。
(2)带电粒子所受的洛伦兹力为
F = qvB 洛伦兹力提供向心力,故 qvB m v2
带电粒子在匀强磁场中的运动教案
带电粒子在匀强磁场中的运动教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN时间:星期:主备人:使用人:【教学主题】3.6带电粒子在匀强磁场中的运动【教学目标】1.推倒出匀速圆周的半径公式和周期公式2.了解质谱仪和回旋加速器的工作原理【知识梳理】学习过程1.带电粒子在匀强磁场中的运动(1)带电粒子的运动方向与磁场方向平行:做运动。
(2)带电粒子的运动方向与磁场方向垂直:粒子做运动且运动的轨迹平面与磁场方向。
轨道半径公式:周期公式:。
(3)带电粒子的运动方向与磁场方向成θ角:粒子在垂直于磁场方向作运动,在平行磁场方向作运动。
叠加后粒子作等距螺旋线运动。
2.质谱仪是一种十分精密的仪器,是测量带电粒子的和分析的重要工具。
3.回旋加速器:(1)使带电粒子加速的方法有:经过多次直线加速;利用电场和磁场的作用,回旋速。
(2) 回旋加速器是利用电场对电荷的加速作用和磁场对运动电荷的偏转作用,在的范围内来获得的装置。
(3)为了保证每次带电粒子经过狭缝时均被加速,使之能量不断提高,要在狭缝处加一个电压,产生交变电场的频率跟粒子运动的频率。
⑷带电粒子获得的最大能量与D形盒有关。
【典型例题】一、带电粒子在匀强磁场中的运动【例1】电子、质子、氘核、氚核以同样的速度垂直射入同一匀强磁场Array做匀速圆周运动,其中轨道半径最大的是()A.电子 B.质子 C.氘核 D.氚核二、带电粒子做圆周运动的分析方法【例2】如图1所示,一束电子(电量为e)以速度V垂直射入磁感应强度为B、宽度为d 的匀强磁场,穿透磁场时的速度与电子原来的入射方向的夹角为300。
求 : (1) 电子的质量m= (2) 电子在磁场中的运动时间t=【例3】如图2所示,在半径为R 的圆的范围内,有匀强磁场,方向垂直圆所在平面向里.一带负电的质量为m电量为q粒子,从A点沿半径AO的方向射入,并从C点射出磁场.∠AOC=120o.则此粒子在磁场中运行的时间t=__________.(不计重力).三、质谱仪【例4】如图3所示,一质量为m,电荷量为q的粒子从容器A下方小孔S1飘入电势差为U的加速电场。
匀强磁场中带电粒子运动半径计算公式
匀强磁场中带电粒子运动半径计算公式1.概述在物理学中,磁场是一种十分重要的物理现象,它对带电粒子的运动轨迹有着重要影响。
当带电粒子穿过均匀磁场时,会受到洛伦兹力的作用而产生弯曲的运动轨迹。
在研究带电粒子在磁场中的运动时,运动半径是一个十分重要的物理量,它可以描述带电粒子在磁场中的轨迹大小。
2.洛伦兹力和带电粒子的运动轨迹当带电粒子在磁场中运动时,会受到洛伦兹力的作用。
洛伦兹力的大小和方向分别与带电粒子的电荷、速度以及磁场的强度和方向有关。
具体来说,洛伦兹力的大小可以通过以下公式来计算:\[F = qvBsin\theta\]其中,\(F\)表示洛伦兹力的大小,\(q\)表示带电粒子的电荷,\(v\)表示带电粒子的速度,\(B\)表示磁场的强度,\(\theta\)表示磁场和带电粒子速度的夹角。
根据洛伦兹力的作用,带电粒子在磁场中会产生圆周运动。
为了描述这种圆周运动的大小,引入了运动半径的概念。
3.带电粒子运动半径计算公式带电粒子在磁场中的运动半径可以通过以下公式来计算:\[r = \frac{mv}{qB}\]其中,\(r\)表示运动半径,\(m\)表示带电粒子的质量,\(v\)表示带电粒子的速度,\(q\)表示带电粒子的电荷,\(B\)表示磁场的强度。
4.运动半径计算公式的推导关于带电粒子在磁场中的运动半径计算公式的推导,可以通过牛顿第二定律和洛伦兹力的平衡来进行。
根据牛顿第二定律,带电粒子在磁场中的圆周运动可以描述为:\[F = \frac{mv^2}{r}\]其中,\(F\)表示圆周运动的向心力,\(m\)表示带电粒子的质量,\(v\)表示带电粒子的速度,\(r\)表示运动半径。
将洛伦兹力的大小公式代入上面的式子中,可以得到:\[qBv = \frac{mv^2}{r}\]整理上式可以得出带电粒子运动半径的计算公式:\[r = \frac{mv}{qB}\]这就是带电粒子在磁场中运动半径的计算公式。
《带电粒子在匀强磁场中的运动》教案
一、教学目标1. 让学生了解带电粒子在匀强磁场中的运动规律。
2. 让学生掌握洛伦兹力公式,并能够运用到实际问题中。
3. 培养学生的实验操作能力和观察能力,提高学生的科学思维能力。
二、教学内容1. 带电粒子在匀强磁场中的运动规律。
2. 洛伦兹力公式及其应用。
3. 实验操作步骤及数据分析。
三、教学重点与难点1. 教学重点:带电粒子在匀强磁场中的运动规律,洛伦兹力公式及其应用。
2. 教学难点:洛伦兹力公式的推导,实验数据的处理。
四、教学方法1. 采用实验演示法,让学生直观地观察带电粒子在匀强磁场中的运动。
2. 采用讲授法,讲解洛伦兹力公式及其应用。
3. 采用问题驱动法,引导学生思考和探讨问题。
五、教学过程1. 引入新课:通过回顾电流的磁效应,引导学生了解磁场对带电粒子的影响。
2. 实验演示:进行带电粒子在匀强磁场中的运动实验,让学生观察并记录实验现象。
3. 讲解洛伦兹力公式:结合实验现象,讲解洛伦兹力公式,并解释其物理意义。
4. 应用练习:给出实例,让学生运用洛伦兹力公式解决问题。
5. 实验数据分析:让学生分析实验数据,探讨带电粒子运动规律与磁场强度、粒子电荷量、粒子速度之间的关系。
6. 总结与拓展:总结本节课所学内容,提出拓展问题,引导学生课后思考。
7. 布置作业:布置相关练习题,巩固所学知识。
六、教学评价1. 通过课堂讲解、实验演示和练习题,评价学生对带电粒子在匀强磁场中运动规律的理解程度。
2. 通过学生实验操作和数据分析,评价学生的实验技能和观察能力。
3. 通过课后作业和拓展问题,评价学生对洛伦兹力公式的应用能力和科学思维能力。
七、教学资源1. 实验器材:带电粒子实验装置、电流表、电压表、磁铁、粒子源等。
2. 教学课件:带电粒子在匀强磁场中运动的动画演示、洛伦兹力公式的推导过程等。
3. 参考资料:相关学术论文、教学书籍、网络资源等。
八、教学进度安排1. 第一课时:引入新课,实验演示,讲解洛伦兹力公式。
带电粒子在匀强磁场中的运动
〔思考与讨论〕
◎带电教粒材子在资匀料强分磁场析中做匀速圆周运动的圆半径,与粒
子的速度、磁场的磁感应强度有什么关系? 点拨: 由演示实验知,粒子做圆周运动的半径与速度、
磁感应强度有关系,分析可知,因洛伦兹力提供向心力,即 qvB=mrv2,可得:r=mqBv.
可见,粒子圆周运动的半径与速度大小成正比,与磁感 应强度 B 成反比.
质谱仪可以求出该粒子的比荷(电荷量与质量之比)mq =B22Ur2.
(2)回旋加速器 ①工作原理 利用电场对带电粒子的加速作用和磁场对
运a.动磁电场的荷作的用 偏 转 作 用 来 获 得 高 能 粒 子 , 这 些带电过粒程子在以某回一旋速度加垂速直器磁场的方核向心进入部匀件强磁——场两后,个在D 洛伦形兹盒力作和用其下间做匀的速窄圆缝周运内动完,其成周.期与速率、半径均无
(1)M点与坐标原点O间的距离; (2)粒子从P点运动到M点所用的时间.
解析:(1)带电粒子在匀强电场中做类平抛 运 负OP方动=l向,=12上在at1做x2,正初O方Q速=向2度上3为l=做零v匀0t1的,速a匀=直加qmE线速运运动动,,在设y 加 用解得速 的v度时0=大间小为6qmt为E1l,a;进粒入子磁从场P时点速运度动方到向Q与点x所轴 正方向的夹角为θ,则
解析: 粒子在电场中加速时,只有静电力做功,由动
能定理得 qU=12mv2,故EEkk12=qq12UU=qq12=12,同时也能求得 v = 2mqU,因为粒子在磁场中运动的轨迹半径 r=mqBv=qmB
2mqU=B1
2mqU,所以有rr12=
m1 q1 = 1 ,粒子做圆周运 m2 2 q2
动的周期 T=2qπBm,故TT21=mm12//qq12=12.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目 录一、引言 (1)二、认识等离子体 (1)三、单粒子轨道运动 (5)3.1带电粒子在均匀电场中的运动学特性 (5)3.1.10v 与E 垂直或平行时带电粒子的运动轨迹 (5)3.1.20v 与E 成任一夹角时带电粒子的运动轨迹 (5)3.2带电粒子在均匀磁场中的运动学特性 (6)3.2.1洛伦兹力 (6)3.2.2粒子的初速度0v 垂直于B (7)3.2.3粒子的初速度0v与B 成任一夹角时 (8)3.3带电粒子在均匀电磁场中的运动学特性 (10)3.3.10v 、E 和B 两两相互垂直 (10)3.3.20v 与E 成任一夹角,B 垂直它们构成的平面 ..... 12 四、小结 .. (16)参考文献 (16)等离子体的单粒子轨道运动——带电粒子在均匀电磁场中的运动摘要:等离子体是由电子、离子等带电粒子以及中性粒子(原子、分子、微粒等)组成的。
只讨论单个粒子在外加电磁场中的运动,忽略粒子间的相互作用,即单粒子轨道运动,它是描述等离子体运动状态的三种方法之一。
这种方法能给出带电粒子运动的直观物理图像,是进一步了解复杂运动的基础。
粒子轨道理论的基本方法是求解粒子的运动方程。
本文中,我们着重介绍带电粒子在均匀电磁场中的运动特性。
关键词:等离子体;带电粒子;电磁场;轨迹Abstrac t: A plasma is an ionised gas, consisting of free electrons, ions and atoms or molecules. It is discussed that a single particle moves in an external electromagnetic field, which is one of methods described the plasma motion. This method can give a concise physical picture about the charged particles. The solution of particles motion is the basic method of particle orbit theory. In this thesis, I highlight the motion characteristics of the charged particle in even electrical and magnetic field.Key words: Plasma; charged particles; electromagnetic field; track一、引言物质的三态(固态、液态和气态)人们早已司空见惯,可是被称为物质第四态的等离子体,尽管占宇宙中可见物质的99%,可是我们对它的认识依然很少。
实际上,认识等离子体的运动规律是人类认识自然界,认识地球空间环境,进而冲出地球,走向太空的必要条件。
看似神秘的等离子体其实广泛存在于我们的这个世界,从炽热的恒星、灿烂的气态星云、浩瀚的星际间物质,到多变的电离层和高速的太阳风,都是等离子体的天下。
21世纪人们已经掌握和利用电场和磁场产生来控制等离子体。
最常见的等离子体是高温电离气体,如电弧、霓虹灯和日光灯中的发光气体,又如闪电、极光等。
金属中的电子气和半导体中的载流子以及电解质溶液也可以看作是等离子体。
在地球上,等离子体物质远比固体、液体、气体物质少。
在宇宙中,等离子体是物质存在的主要形式,占宇宙中物质总量的99%以上,如恒星(包括太阳)、星际物质以及地球周围的电离层等,都是等离子体。
简单的将等离子体分类,可以认为等离子体是由电子、离子以及未电离的中性粒子组成,宏观上呈现准中性。
单粒子轨道运动作为描述等离子体运动状态中最简单的一种,即在给定的电磁场中的运动,我们只考虑单个粒子在场中的运动,而忽略离子间的相互作用以及粒子对场的反作用。
粒子轨道理论适用于稀薄等离子体,对于稠密等离子体也可以提供某些描述,但由于没有考虑集体效应,局限性很大。
粒子轨道理论基本方法是求解粒子的运动方程。
利用粒子轨道运动来描述等离子体的行为的前提是假定磁场和电场是预先确定的,不会受到带电粒子运动的影响。
二、认识等离子体大家早已熟知物质的固体、液体和气体三态。
将固体加热到熔点时,粒子的平均动能超过晶格的结合能,固体会变成液体;将液体加热到沸点时,粒子的动能会超过粒子之间的结合能,液体会变成气体。
如果将气体进一步加热,气体则会部分电离或完全电离,即原子的外层电子会摆脱原子核的束缚成为自由电子,而失去外层电子的原子变成带电的离子。
当带电粒子的比例超过一定程度时,电离气体凸显出明显的电磁性质,而其中正离子和负离子(电子)的数目相等,因此被称为等离子体(plasma ),又被称为物质的第四态。
“plasma ”一词最早在生物学名词原生质中出现。
1839年,捷克生物学家浦基尼最先将“原生质”的名词引入科学词汇。
它表示一种在其内部散布许多粒子的胶状物质,是组成细胞体的一部分,也称为“血浆”。
1929年,郎缪尔和托克斯在研究气体放电时首次将“plasma ”一词用于物理学领域,用来表示所观察到的放电物质,该词来源为古希腊语 ,即为可塑物质或浆状物质之意,我国大陆学者将之翻译成“等离子体”,而台湾学者翻译成“电浆”。
根据印度天体物理学家沙哈的计算,宇宙中的99%的可见物质都处于等离子体状态。
从炽热的恒星、灿烂的气态星云、浩瀚的星际见物质,到多变的电离层和高速的太阳风,都是等离子体的天下。
地球上的生物生活在另外的1%中,人们最早见到的等离子体是火焰、闪电和极光。
但当今人类接触到越来越多的等离子体,如荧光灯和霓虹灯里炫目的电弧。
等离子体显示屏中彩色的放电、聚变装置中燃烧的等离子体,尽管它们大多是由人工产生的。
固、液、起三态仅仅存在于低温高密度的参数区域,而等离子体存在的参数空间非常宽广。
从星际空间的稀薄等离子体到太阳核心的致密等离子体,粒子数密度n 从3310 m 到33310 m ,跨越了30个量级(采用国际单位制);从火焰的低温等离子体到聚变实验的高温等离子体,温度T 从eV 110 到eV 610跨越了7个量级(采用电子伏特为单位)。
等离子体————物质第四态K T /3/cmn图1 等离子体存在的参量空间图2 常见的等离子体形态包括人造等离子体荧光灯、霓虹灯灯管中的电离气体核聚变实验中的高温电离气体电焊时产生的高温电弧,电弧灯中的电弧火箭喷出的气体等离子显示器和电视太空飞船重返地球时在飞船的热屏蔽层前端产生的等离子体在生产集成电路用来蚀刻电介质层的等离子体等离子球地球上的等离子体火焰(上部的高温部分)闪电球状闪电大气层中的电离层极光中高层大气闪电太空和天体物理中的等离子体太阳和其他恒星(其中等离子体由于热核聚变供给能量产生)太阳风行星际物质(存在于行星之间)星际物质(存在于恒星之间)星系际物质(存在于星系之间)木卫一与木星之间的流量管吸积盘星际星云在地球上自然存在的等离子体之所以很少见,是因为在常温下气体的电离度非常低。
所谓电离度,就是气体中被电离的粒子数目与中性粒子数目之比。
在气体处于热力学平衡时,电离度 [1]由沙哈方程确定:kT U nn i n i i i e n T n n n n n /2/321104.2 (1) 式中,i n 和n n 分别为带电粒子数密度和中性粒子数密度,T 为温度,k 为波尔兹曼常量(K J /1038.123 ),i U 为对应气体的电离能(最外层电子逸出所需要的能量)。
以氮气为例,在常温下,取K T 300 ,325103 m n n ,eV U i 5.14 ,可以求得12210/ n i n n 。
由此可知,在常温下,气体电离度非常低,还不具有等离子提的性质。
等离子体是由电子、离子等带电粒子以及中性粒子(原子、分子、微粒等)组成的,宏观上呈现准中性,且具有集体效应的混合气体。
所谓准中性是指在等离子体中的正负离子数目基本相等,系统在宏观上呈现中性,但在小尺度上则呈现电磁性。
而集体效应则突出地反映了等离子体与中性气体的区别。
中性气体中粒子的相互作用是粒子间频繁的碰撞,两个粒子只有在碰撞的瞬间才有相互作用,除此之外没有相互作用。
而等离子体中带电粒子之间的相互作用是长程库仑力作用,体系内的多个带电粒子均同时且持续地参与作用,任何带电粒子的运动状态均受到其他带电粒子(包括近处和远处)的影响。
另外,带电粒子的运动可以形成局部的电荷集中,从而产生电场,带电粒子的运动也可以产生电流,从而产生磁场,这些电磁场又会影响其他带电粒子的运动。
因此等离子体呈现出集体效应。
按照这个一般的定义,许多物质都可以归入等离子体的范畴,例如,电解质溶液,它含有相等的正负离子,可称之为电解质等离子体;金属,由自由电子和固定不动的带正电的晶格组成,称之为固体等离子体。
由电子和空穴组成的半导体,也属于固体等离子体。
三、单粒子轨道运动迄今为止,理论上描述等离子体的运动状态有三种方法。
第一种是单粒子轨道运动,这是最简单的一种,即在给定的电磁场中的运动,不考虑带电粒子运动对场的反作用以及带电粒子间的相互作用。
这种方法能给出带电粒子运动的直观物理图像,是进一步了解复杂运动的基础。
本文着重讨论带电粒子在电磁场中的运动规律, 针对带电粒子处于均匀电磁场环境 , 研究特殊情况和一般情况下带电粒子的运动学特性。
3.1 带电粒子在均匀电场中的运动学特性3.1.1 0v 与E 垂直或平行时带电粒子的运动轨迹[2]带电粒子在电场中,它所受的力是通过电场实现的,电场是矢量,既有大小又有方向。
电场的方向和大小与电子无关。
在均匀电场中,任何位置的场强大小和方向相同。
在特殊的情况下,带电粒子的运动只有两种。
一是粒子的初速度平行射入电场,二是带电粒子垂直射入电场。
当带电粒子平行射入电场时,带电粒子由于电场作用,它所受的电场力与初速度方向平行,所以电子做的是变速直线运动。
当电子垂直射入电场时,由于带电粒子的初速度与电场方向垂直,带电粒子在电场中运动会发生偏转,它做的是类平抛运动。
3.1.2 0v 与E 成任一夹角时带电粒子的运动轨迹[3]当0v 与E 有一夹角时(0v 、E 都在x 、y 平面内),忽略重力影响。
由牛顺第二定律a m E q ,得k dt dv j dt dv i dt dv m k E j E i E q z y x z y x (1) 当j E E 时,(1)式变为k dt dv j dt dv i dt dv m j qE z y x (2)所以 0 dt dv x E mq dt dv y 0 dt dv z (3) (3)式积分得到sin 0v v x c Et mq v y 0 z v (4) 由初始条件 0 t cos 00v v y 可得cos 0v c (5) 所以有sin 0v v x cos 0v Et mq v y 0 z v (6) (6)式积分得 10sin k t v x (7a ) 202cos 2k t t v Et mq y (7b ) 0 z (7c ) 再把初始条件0 t 时,0 x ,0 y 代入上式,有021 k k (8) 则 sin 0t v x cos 2102t v t mqE y 0 z (9) 它表示带电粒子在电场中的运动轨迹是一条抛物线。