带电粒子在电磁场中的运动

合集下载

带电粒子在正交匀强电磁场中运动的轨迹和摆线hao

带电粒子在正交匀强电磁场中运动的轨迹和摆线hao

带电粒子在正交匀强电磁场中运动的轨迹和摆线陈升科高中物理中介绍了速度选择器,速度选择器两极板间有正交的匀强电场和匀强磁场,带电粒子在速度选择器中的运动实际上是在正交的匀强电场和匀强磁场中的运动.带电粒子垂直匀强电场和匀强磁场方向进入速度选择器,且速度大小等于电场强度E跟磁感强度B之比(E/B)(称(E/B)为选择速度,用veb表示),将做匀速直线运动.如果带电粒子的速度大小不等于选择速度或偏离垂直匀强电场和匀强磁场方向进入速度选择器,将做什么运动,其运动轨迹怎样?一、带电粒子在正交的匀强电磁场中的运动方程设空间有正交的匀强电场和匀强磁场(下称电磁场),电场强度矢量和磁感强度矢量分别为E=Ej,B=Bk.有一个电量为q、质量为m的带电粒子从坐标原点以初速v0射入电磁场中.初速度矢量为v0=v0xi+v0yj+v0zk,带电粒子射入电磁场后,在某时刻的速度矢量为v=vxi+vyj+vzk.带电粒子在此时刻受到的电场力矢量为F=qE=qEj,受到的磁场力(洛伦兹力)矢量为f=qv×B=qijkvxvyvz00B=qvyBi-qvxBj.带电粒子在电磁场中的动力学方程为F+f=m.动力学方程的三个分量式分别为mx=qBvy,①my=qE-qBvx,②mz=0.③令ω=(qB)/m,由方程①得vy=(1/ω)x.④④式对时间t微分得加速度的y方向分量y=(1/ω)x.将上式代入②式,并令ux=vx-(E/B)=vx-veb,得x+ω2ux=0.此微分方程的通解是ux=-Acos(ωt+φ),它可改写为vx=-Acos(ωt+φ)+veb.⑤⑤式对时间t微分得带电粒子在电磁场中运动时的加速度的x方向的分量x=Aωsin(ωt+φ),⑥将⑥式代入④式得速度的y方向的分量vy=Asin(ωt+φ),⑦⑦式对时间t微分得加速度的y方向的分量y=Aωcos(ωt+φ),⑧③式对时间t积分得速度的z方向的分量vz=C3.⑨⑤、⑦、⑨式分别对时间t积分得带电粒子在电磁场中运动的运动学方程的三个分量x=-(A/ω)sin(ωt+φ)+vebt+C1,⑩y=-(A/ω)cos(ωt+φ)+C2,⑾z=C3t+C4.⑿以上三式中A、φ、C1、C2、C3和C4均为积分常数,可用带电粒子射入电磁场时的初始条件确定.由①、②两式得,带电粒子初始加速度在x方向和y方向的分量分别为0x=(qBv0y)/m=ωv0y,0y=(qE-qBv0x)/m=ωveb-ωv0x.将以上两式分别代入⑥、⑧两式得Asinφ=v0y,Acosφ=veb-v0x,解得积分常数A=.⒀A的大小等于带电粒子的初速度沿x方向以选择速度veb做匀速直线运动的相对速度的大小.称(A/ω)为“幅”,称积分常数φ为初相,它有三种情况若v0x<veb,φ=tg-1[v0y/(veb-v0x)],若v0x=veb,v0y>0,φ=(π/2),v0y<0,φ=-(π/2),若v0x>veb,φ=π+tg-1[v0y/(veb-v0x).⒁将带电粒子初速度分量v0z代入⑨式得积分常数C3=v0z.将带电粒子射入电磁场时的初始坐标x=0,y=0,z=0.代入⑩⑾⑿三式得积分常数1=v0y/ω,2=(A/ω)cosφ=(1/ω)(veb-v0x),C4=0.带电粒子在正交的匀强电场和匀强磁场中运动的运动学方程为x=vebt+(v0y/ω)-(A/ω)sin(ωt+φ),⒂y=(1/ω)(veb-v0x)-(A/ω)cos(ωt+φ),⒃z=v0zt.⒄式中的A和φ由⒀、⒁两式确定.带正电的粒子原先静止在坐标原点,在电场力和磁场力作用下开始运动,带电粒子初速度的三个分量都为零.由⒀、⒁式得A=veb,φ=0.带电粒子运动轨迹的三个参量方程为x=vebt-(veb/ω)sinωt,y=(veb/ω)(1-cosωt),z=0.二、带电粒子在正交的匀强电磁场中的运动图象带电粒子运动轨迹在xOy平面内,如图1中“0”曲线.如果粒子带负电,ω<0,参量方程x不变,而参量方程y的符号相反,带负电粒子的运动轨迹跟带正电粒子运动轨迹关于x轴对称.图1带电粒子(以下只讨论带正电)由坐标原点,沿x方向,以不同速度射入电磁场.它们的入射初速度只有x方向分量v0x.它们的幅(A/ω)和初相φ的值如下表中所示.初速度vox/veb-1 0 0.5 1 1.5 2 3幅Aω-1/vebω-12 1 0.5 0 0.5 1 2 初相φ0 0 0 0 πππ带电粒子入射初速度分量v0x的大小以选择速度veb对称(如0.5vev跟1.5veb对称)时,它们的幅相等,初相差为.它们的运动轨迹都在xOy平面,依次如图1中“-1”、“0”、“0.5”、“1”、“1.5”、“2”、“3”曲线所示.带电粒子由坐标原点射入,初速度既有x方向分量,又有y方向分量.设y方向分量等于1倍选择速度,v0y=veb.它在电磁场中运动轨迹的参量方程x和y如⒂、⒃两式,z=0.轨迹在xOy平面内,如图2所示,图中“0”、“1”、“2”分别表示v0x=0、v0x=veb、v0x=2veb时粒子的运动轨迹.带电粒子由坐标原点射入,初速度有三个方向的分量.它在电磁场中运动轨迹的参量方程由⒂、⒃、⒄三式确定.运动轨迹在同一平面内,轨迹跟如图1和/v如图2所示轨迹相似,只是轨迹平面绕y轴向纸外或纸内转过tg-1(v0z)角度.0x图2三、带电粒子在正交匀强电磁场中运动轨迹的分析⑩、⑾、⑿三式和⒂、⒃、⒄三式表明带电粒子在正交的匀强电场和匀强磁场中的运动是以速度做匀速直线运动和以(A/ω)为半径、ω为角速度的匀速圆周运动的合成.我们知道,一轮子在水平地面匀速滚动时,轮子上各点的运动是轮心的匀速直线运动和绕轮心的匀速圆周运动的合成.轮子上各点的运动轨迹是摆线,带电粒子在正交的匀强电场和匀强磁场中的运动轨迹也应是摆线.现有像火车轮那样的塔轮,大轮半径是小轮半径的两倍,如图3所示.小轮的匀速直线运动,塔轮的在水平轨道Ox上匀速滚动.塔轮轮心O′做速度为veb/r).角速度ω=(veb图3图4初时刻大轮跟轨道接触点A点的初速度为零,小轮最高点B点的初速度为2veb.这两点的运动轨迹如图4所示.如果将B点运动轨迹向下平移2r,这两点运动轨迹就是图1中的“0”和“2”两条带电粒子在电磁场中运动轨迹.初始时刻小轮最高点C点有3veb水平向前的初速度,大轮最低点D点有veb水平向后的初速度.小轮上E点和F点在同一条竖直直径上,到轮心O′的距离都为(r/2),E点有1.5veb水平向前的初速度,F点有0.5veb水平向前的初速度.这四点的运动轨迹如图5所示.如果C点轨迹向下平移3r,D点轨迹向上平移r,E点轨迹向下平移1.5r,F点轨迹向下平移0.5r,其运动轨迹就是图1中“3”、“-1”、“1.5”和“0.5”四条带电粒子在电磁场中的运动轨迹.图5图6中,初时刻塔轮轮心在O′.塔轮上的P点到轮心的距离PO′=r,P到水平轨道的距离PO=2r,圆心角φ=(3/4)π.A是塔轮瞬时转轴.图6可以求得P点的初速度v0=veb,它的x方向分量v0x=2veb,y方向的分量v0y=veb,P点的运动轨迹如图6中曲线所示.将P点的运动轨迹向下平移2r,就是图2中曲线“2”所示的带电粒子在电磁场中的运动轨迹.塔轮上Q点(跟坐标原点O重合)、S点的运动轨迹分别跟图2中“1”、“0”两条曲线所示的带电粒子在电磁场中的运动轨迹相对应.如果塔轮在水平轨道上匀速滚动,轨道又在xOz平面内沿z轴匀速移动,移动过程中保持轨道跟x轴平行,塔轮上的点的运动轨迹跟初速度有z方向分量的带电粒子在电磁场中运动轨迹相应.带电粒子在正交的匀强电场和匀强磁场中运动跟匀速滚动的塔轮上的点的运动相似,运动的轨迹为摆线.。

带电粒子在电磁场中运动的相对论效应

带电粒子在电磁场中运动的相对论效应

带电粒子在电磁场中运动的相对论效应
等离子体理论研究中,电磁场是一种重要的物理场,它可以改变电荷粒子的运动轨迹。

质点在电磁场中的运动受到电磁力的影响,当质点带有电荷时,电磁力会改变它的运动方向和速度。

受电磁场影响而发生的运动称为电磁力学运动。

在电磁场中,电子和其他带电粒子的运动受到电磁力的影响。

质点在电磁场中的运动被称为电磁力学运动,其中最重要的物理过程是电磁力对质点运动的影响。

当带电粒子在电磁场中运动时,它们会受到电磁力的影响,使它们的运动方向发生变化,这一现象被称为相对论效应。

相对论效应是一种由物理学家阿尔伯特·爱因斯坦提出的重要概念,它描述了带电粒子在电磁场中运动时受到电磁力的影响。

这种效应可以用一个方程式来描述,这个方程式可以用来描述带电粒子在电磁场中运动时所受到的电磁力的大小和方向。

这个方程式可以描述电磁力对带电粒子运动的影响,让我们更好地理解电磁力在电磁场中的作用。

相对论效应在等离子体物理中发挥着重要作用,它是研究等离子体物理的基础,它可以帮助我们更好地理解带电粒子在电磁场中的运动。

相对论效应可以用来解释在电磁场中受到电磁力影响而发生的各种运动,如电子在电磁场中的运动,以及电磁场对电子的影响。

因此,相对论效应是等离子体物理研究不可或缺的一部分,它可以帮助我们理解电磁场如何影响电子和其他带电粒子的运动,以及如何影响等离子体的行为。

相对论效应也是现代物理学的一个重要概念,因为它可以帮助我们理解电磁场如何影响物质的运动,以及它如何影响宇宙中各种运动现象。

专题四 带电粒子在电磁场中的运动

专题四 带电粒子在电磁场中的运动

专题四带电粒子在电磁场中的运动【内容要点】1.三种场力做功特点比较(1)重力G:大小为mg,方向总是竖直向下,其做功与路径无关,做功多少除与带电粒子的质量有关外,还与始、末位置的高度差有关。

(2)电场力F电:大小为Eq,方向与电场强度E的方向及带电粒子的性质有关,其做功与路径无关,做功多少除与带电粒子的电量有关外,还与始、末位置的电势差有关。

(3)洛伦磁力F洛:大小跟速度与磁场方向的夹角有关,当带电粒子的速度与磁场方向平行时,F洛= 0,当带电粒子的速度与磁场方向垂直时,F洛= qvB,其方向垂直于速度v 与磁感应强度B所决定的平面,与带电粒子的性质有关,可用左手定则判断,无论带电粒子做什么运动,洛伦磁力都不做功。

4.在电磁场中,微观带电粒子的重力在两种情况下不要考虑(1)题目明确指出重力忽略不计或可以不考虑的;(2)题目未明确指出,但重力远小于其他力的。

5.处理带电粒子在电磁场中运动的三个基本观点(1)动力学观点:利用牛顿运动定律和运动学公式;(2)动量观点:利用动量定理和动量守恒定律;(3)能量观点:利用动能定理和能量守恒定律。

解这类综合题的关键是受力分析,并能画出受力及运动情况示意图,而后灵活运用上述观点求解。

【典型例题】例1串列加速器是用来产生高能离子的装置,如图虚线框内为其主体的原理示意图,其中加速管的中部b处有很高的正电势U,a、c两端均有电极接地(电势为零),现将速度很小的负一价碳离子从a端输入,当离子到达b处时,可被设在b处的特殊装置将其电子剥离,成为n价正离子,而不改变其速度大小,这些正n价碳离子从c端飞出后进入一与其速度方向垂直的、磁感应强度为B的匀强磁场中,在磁场中做半径为R的圆周运动,已知碳离子的质量m = 2.0×10-26kg,U = 7.5×105V,B = 0.50T,n = 2,元电荷e =1.6×10-19C,求R。

例2 1998年6月2日,我国科学家研制的阿尔法磁谱仪由“发现号”航天飞机搭载升空,用于探测宇宙中的反物质和暗物质(即由“反粒子”构成的物质),如31H反粒子3-1H。

广东高三物理二轮复习3一带电粒子在电磁场运动

广东高三物理二轮复习3一带电粒子在电磁场运动

广东高考物理提高第三篇----带电粒子在电磁场中的运动一、 带电粒子在匀强电场中的运动 1. 加速(通常应用动能定理求解)【例2】如图所示,两个极板的正中央各有一小孔,两板间加以电压U ,一带正电荷q 的带电粒子以初速度v 0从左边的小孔射入,并从右边的小孔射出,则射出时速度为多少?mquv V 220+= 小结:1.带电粒子在匀强电场中加速运动,它的运动特点是:带电粒子在匀强电场中的电场力F 的作用下,以恒定加速度F qU a m md==做匀加速直线运动,处理方法有:(1)牛顿运动定律和运动学公式;(2)能量观点。

2.偏转(通常垂直进入电场,作类平抛运动)电荷量为q 、质量为m 的带电粒子由静止开始经电压U 1加速后,以速度v 1垂直进入由两带电平行金属板产生的匀强电场中,则带电粒子在匀强电场中做类平抛运动,其轨迹是一条抛物线(如图所示).qU 1=12m v 12设两平行金属板间的电压为U 2,板间距离为d ,板长为L . (1)带电粒子进入两板间后粒子在垂直于电场的方向上做匀速直线运动,有:v x =v 1,L =v 1t粒子在平行于电场的方向上做初速度为零的匀加速直线运动,有:v y =at ,y =12at 2,a =qE m =qU 2md.(2)带电粒子离开极板时侧移距离y =12at 2=qU 2L 22md v 12=U 2L 24dU 1轨迹方程为:y =U 2x 24dU 1(与m 、q 无关)偏转角度φ的正切值tan φ=at v 1=qU 2L md v 12=U 2L2dU 1若在偏转极板右侧D 距离处有一竖立的屏,在求电子射到屏上的侧移距离时有一个很有用的推论,即:所有离开偏转电场的运动电荷好像都是从极板的中心沿中心与射出点的连线射出的.这样很容易得到电荷在屏上的侧移距离 y ′=(D +L2)tan φ.以上公式要求在能够证明的前提下熟记,并能通过以上式子分析、讨论侧移距离和偏转角度与带电粒子的速度、动能、比荷等物理量的关系.q练习1.一束电子流在经U=5000V 的加速电压加速后,在距两极板等距处垂直进入平行板间的匀强电场,如图所示,若两板间距d=1.0cm ,板长l =5.0cm ,那么,要使电子能从平行板间飞出,两个极板上最多能加多大电压?试着讨论:要让荧光屏上出现如下所示的四种情况的亮斑,在偏转电极XX ’,以及YY ’方向上应该分别加上怎样的偏转电压? ( 如U XX ’>0,U YY ’<0)U XX ’=0, U YY ’>0 U XX ’=0, U YY ’<0 U XX ’<0, U YY ’=0 U XX ’>0, U YY ’>0二、不计重力的带电粒子在磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动. 2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m 、电荷量为q 的带电粒子以初速度v 垂直进入匀强磁场B 中做匀速圆周运动,其角速度为ω,轨道半径为R ,运动的周期为T ,则有:由q v B =m v 2R 得:R =m v qB T =2πmqB(与v 、R 无关),3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点. (1)粒子圆轨迹的圆心的确定①若已知粒子在圆周运动中的两个具体位置及通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向及圆轨迹的半径R ,可在该位置上作速度的垂线,垂线上距该位置R 处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2 图4-3 图4-4(2)粒子圆轨迹的半径的确定①可直接运用公式R =m vqB来确定.②画出几何图形,利用半径R 与题中已知长度的几何关系来确定.在利用几何关系时,要注意一个重要的几何特点,即:粒子速度的偏向角φ等于对应轨迹圆弧的圆心角α,并等于弦切角θ的2倍,如图4-5所示. (3)粒子做圆周运动的周期的确定①可直接运用公式T =2πm qB来确定. ②利用周期T 与题中已知时间t 的关系来确定.若粒子在时间t 内通过的圆弧所对应的圆心角为α,则有:t =α360°·T (或t =α2π·T ).(4)圆周运动中有关对称的规律①从磁场的直边界 射入的粒子,若再从此边界射出,则速度方向与边界的夹角相等,如图4-6所示. ②在 圆形磁场区域 内,沿径向射入的粒子必沿径向射出,如图4-7所示.(5)带电粒子在有界磁场中运动的极值问题刚好穿出磁场边界的条件通常是带电粒子在磁场中运动的轨迹与边界相切. 题型一 选择题1.空间虚线上方存在匀强磁场,磁感应强度为B ;一群电子以不同速率v 从边界上的P 点以相同的方向射入磁场。

带电粒子在电磁场中的运动重点内容解读

带电粒子在电磁场中的运动重点内容解读

带电粒子在电磁场中的运动重点内容解读孝感三中陈继芳带电粒子在电磁场中运动是高中物理中研究的重点之一,也是高考命题重点之一。

近几年高考题中的压轴题都是这类题型;高考对带电粒子在电磁场中运动的考查每年每份试卷都有2个以上的题,分值占总分的12~20%。

高考对带电粒子在电磁场中运动的考查涉及的知识点主要是:电场力、电势差、洛伦兹力、带电粒子在电场中的加速和类平抛运动、带电粒子在磁场中的匀速圆周运动等。

核心考点一、带电粒子在电场中加速、在匀强电场中的类平抛运动与磁场中的圆周运动【核心考点解读】带电粒子在电场中的类平抛运动可按照运动分解把带电粒子的运动分解为垂直电场方向的匀速直线运动和沿电场方向的匀变速直线运动。

带电粒子在电场中加速利用动能定理列方程解答,在磁场中的匀速圆周运动可依据洛仑兹力提供向心力列方程解答。

题1如图所示,一带电微粒质量为m=2.0×10-11kg、电荷量q=+1.0×10-5C,从静止开始经电压为U1=100V的电场加速后,水平进入两平行金属板间的偏转电场中,微粒射出电场时的偏转角θ=60°,并接着沿半径方向进入一个垂直纸面向外的圆形匀强磁场区域,微粒射出磁场时的偏转角也为θ=60°。

已知偏转电场中金属板长L=23cm,圆形匀强磁场的半径R=103cm,重力忽略不计。

求:(1)带电微粒经U1=100V的电场加速后的速率;(2)两金属板间偏转电场的电场强度E;(3)匀强磁场的磁感应强度的大小。

解析:略【名师点评】此题通过带电粒子在电场中加速、在匀强电场中的类平抛运动与磁场中的圆周运动,综合考查对动能定理、平抛运动规律迁移、电场力、速度分解与合成,洛伦兹力、牛顿第二定律、圆周运动等知识的掌握情况。

题2.如图所示,MN 是相距为d 的两平行金属板,O 、O '为两金属板中心处正对的两个小孔,N 板的右侧空间有磁感应强度大小均为B 且方向相反的两匀强磁场区,图中虚线CD 为两磁场的分界线,CD 线与N 板的距离也为d.在磁场区内适当位置放置一平行磁场方向的薄挡板PQ ,并使之与O 、O '连线处于同一平面内.现将电动势为E 的直流电源的正负极按图示接法接到两金属板上,有O 点静止释放的带电粒子(重力不计)经MN 板间的电场加速后进入磁场区,最后恰好垂直撞上挡板PQ 而停止运动。

带电粒子在电磁场中的运动与辐射

带电粒子在电磁场中的运动与辐射

带电粒子在电磁场中的运动与辐射带电粒子在电磁场中的运动是一个经典物理学中的基本问题,也是电动力学研究的重要内容之一。

在电磁场的作用下,带电粒子受到洛伦兹力的作用,其轨迹和运动性质会发生变化,并且会辐射电磁波。

本文将探讨带电粒子在电磁场中的运动以及与之相关的辐射现象。

一、运动方程在电磁场中,带电粒子受到洛伦兹力的作用,其运动满足运动方程:m(d²r/dt²) = q(E + v × B)其中,m是带电粒子的质量,q是电荷量,r是位置矢量,t是时间,E是电场强度,B是磁感应强度,v是粒子的速度。

这个方程描述了带电粒子在电磁场中受力的情况,即电场和磁场对粒子的作用力。

通过求解这个运动方程,可以得到带电粒子的轨迹以及相应的运动性质。

二、洛伦兹力的效应带电粒子在电磁场中受到洛伦兹力的作用,这个力会改变粒子的运动状态。

具体来说,洛伦兹力可分为电场力和磁场力两个分量。

电场力与电场强度呈正比,其方向与电场强度的方向相同或相反,决定于带电粒子的电荷正负。

而磁场力与速度和磁感应强度的叉乘结果成正比,其方向垂直于速度和磁感应强度所决定的平面。

洛伦兹力的作用使得带电粒子的运动轨迹发生偏离,通常出现螺旋状的运动路径,称为洛伦兹运动。

带电粒子在电场和磁场的共同作用下,可以在特定的运动参数下呈现出稳定的轴向向前加速或向后减速运动。

三、带电粒子的辐射现象带电粒子在电磁场中的运动不仅仅影响其轨迹,还会产生辐射现象。

根据经典电动力学理论,加速运动的带电粒子会辐射出电磁波。

带电粒子辐射的功率与粒子的加速度成正比,具体表示为洛伦兹辐射公式:P = q²a²/6πε₀c³其中,P是辐射功率,q是电荷量,a是加速度,ε₀是真空介电常数,c是光速。

带电粒子的辐射包含两种成分:同步辐射和非同步辐射。

同步辐射主要发生在粒子的运动轨迹与电场方向相平行或完全垂直的情况下,其频率与粒子的圆周运动频率相等。

带电粒子在电磁场中的运动(教案)

带电粒子在电磁场中的运动(教案)

带电粒子在电磁场中的运动一、教学目标:1. 让学生了解带电粒子在电磁场中的运动规律。

2. 让学生掌握带电粒子在电磁场中的动力学方程。

3. 培养学生运用物理知识解决实际问题的能力。

二、教学内容:1. 带电粒子在电场中的运动2. 带电粒子在磁场中的运动3. 带电粒子在电磁场中的运动方程4. 带电粒子在电磁场中的轨迹5. 带电粒子在电磁场中的加速和减速三、教学重点与难点:1. 教学重点:带电粒子在电磁场中的运动规律,动力学方程的运用。

2. 教学难点:带电粒子在电磁场中的轨迹计算,加速和减速过程的分析。

四、教学方法:1. 采用讲授法,讲解带电粒子在电磁场中的运动规律和动力学方程。

2. 采用案例分析法,分析带电粒子在电磁场中的轨迹和加速减速过程。

3. 采用讨论法,引导学生探讨带电粒子在电磁场中的运动特点。

五、教学过程:1. 导入:通过展示带电粒子在电磁场中的实验现象,引发学生对带电粒子在电磁场中运动规律的兴趣。

2. 新课:讲解带电粒子在电场中的运动规律,带电粒子在磁场中的运动规律,带电粒子在电磁场中的动力学方程。

3. 案例分析:分析带电粒子在电磁场中的轨迹,如圆周运动、螺旋运动等。

4. 课堂讨论:引导学生探讨带电粒子在电磁场中的加速减速过程,以及影响加速减速的因素。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学评估:1. 课堂问答:通过提问方式检查学生对带电粒子在电磁场中运动规律的理解程度。

2. 练习题:布置课后练习题,评估学生对动力学方程和轨迹计算的掌握情况。

3. 小组讨论:评估学生在讨论中的参与程度,以及对加速减速过程的理解。

七、教学拓展:1. 带电粒子在电磁场中的辐射:介绍带电粒子在电磁场中运动时产生的辐射现象,如电磁辐射、Cherenkov 辐射等。

2. 应用领域:探讨带电粒子在电磁场中运动在现实中的应用,如粒子加速器、电磁轨道等。

八、教学资源:1. 实验视频:展示带电粒子在电磁场中的实验现象,增强学生对运动规律的理解。

带电粒子在电磁场中的运动

带电粒子在电磁场中的运动

带电粒子在电磁场中的运动在物理学中,电磁场是一种具有电力和磁力效应的力场。

当带电粒子处于电磁场中时,它会受到电磁力的作用而发生运动。

本文将探讨带电粒子在电磁场中的运动规律及其相关特性。

一、洛伦兹力在电磁场中,带电粒子受到的力被称为洛伦兹力。

洛伦兹力由电场力和磁场力两部分组成,可以用如下公式表示:F = q(E + v × B)其中,F表示洛伦兹力,q为带电粒子的电荷量,E为电场强度,v 为带电粒子的速度,B为磁场强度。

根据洛伦兹力的方向,带电粒子会在电磁场中发生不同的运动。

如果电场力和磁场力方向相同或相反,带电粒子会受到一个向加速度的力,其运动轨迹将呈现弯曲的形状;如果电场力和磁场力方向垂直,带电粒子将受到一个向速度方向的力,其运动轨迹将变成圆形。

二、带电粒子在磁场中的运动当带电粒子以一定的速度进入磁场时,它会受到磁场力的作用,引起其运动轨迹的变化。

带电粒子在磁场中的运动可以通过以下几个特性进行描述:1. 弯曲半径带电粒子在磁场中做圆周运动,其弯曲半径由以下公式确定:r = mv / (qB)其中,r表示圆周运动的弯曲半径,m为带电粒子的质量,v为速度,q为电荷量,B为磁感应强度。

2. 周期带电粒子在磁场中做圆周运动的周期为:T = 2πm / (qB)其中,T表示周期,m为质量,q为电荷量,B为磁感应强度。

3. 轨道速度带电粒子在磁场中的轨道速度由以下公式确定:v = (qBr / m)其中,v表示轨道速度,q为电荷量,B为磁感应强度,r为弯曲半径,m为质量。

三、带电粒子在电场和磁场共存时的运动当带电粒子同时处于电场和磁场中时,其运动将会更为复杂。

在稳恒磁场的作用下,带电粒子将绕磁力线做螺旋线运动。

同时,在电场力的作用下,带电粒子的轨迹将受到偏转。

此时,带电粒子的运动方程可以通过以下公式描述:m(dv/dt) = q(E + v × B)其中,m为质量,v为速度,q为电荷量,E为电场强度,B为磁感应强度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电粒子在电磁场中的运动
须熟练掌握带电粒子在匀强电场、匀强磁场中受力运动的动力学公式,灵活根据运动求解受力以及根据受力情况求解运动。

一、带电粒子在电场中的运动
1.带电粒子的加速
带电粒子在电场中受到电场力的作用且初速度方向和电场方向在一条直线上(初速度也可以为零),若不考虑重力,则粒子做匀变速直线运动,给出的物理量可能会有电场强度E 、电势差U 、粒子运动位移d ,总结其运动规律:
(1)外力:
加速度:
(2
)速度
① 利用动能定理(功能关系)求解
① 利用力和运动的关系求解
2.带电粒子的偏转
带电粒子以初速度v 0垂直于电场线进入匀强电场中, 受到与速度方向垂直的电场力的作用而做类平抛运动。

若不考虑重力,给出的物理量可能会有电场强度E 、电势差U 、电场宽度d ,其运动规律应该用类平抛运动来分析处理,利用运动和力的合成和分解的方式,总结运动规律:
(1)沿初速度方向作匀速直线运动,运动时间:
(2)垂直于初速度方向(沿电场力方向)作初速度为零的匀加速直线运动
① 加速度:
① 离开电场时的偏移量(沿电场方向的位移): ① 离开电场时的偏转角(出射速度的方向):
带电粒子能否飞出偏转电场,关键是看带电粒子在电场中的侧移量y 。

如质量为m ,带电荷量为q 的粒子以速度v 0射入板长为l 、板间距为d 的匀强电场中,要使粒子飞出电场,则应该满足t = 时,y = ,若t = 时,y > ,则粒子打在板上,不能飞出电场。

由此可见,临界条件“刚好射出(或射不出)”这一临界状态很重要(y=0.5d )。

V 0 E E
① 这类问题首选方法是用v -t 图像对带电体的运动进行分析;
② 然后利用动力学知识分段求解,重点分析各段时间内的加速度、运动性质、每段运动时间与交变电场的周期T 之间的关系。

要注意的一点是!!!认真读题,带电粒子在电场中未必只会做匀变速直线运动和类平抛运动,也有可能根据外界条件(比如有斜面、圆轨道等)作其他运动,这时候可以考虑把电场力类比于重力分析。

二、带电粒子在磁场中的运动
1.匀速直线运动
当 时该带电粒子在匀强
磁场中作匀速直线运动。

2.匀速圆周运动
当带电粒子沿 磁场方向进入匀强磁场,由于在匀强磁场中受到的 (左手定则)始终与运动方向 ,因此该力不改变带电粒子速
度的大小,且该力为带电粒子提供了作 运动的 。

给出
了带电粒子的电荷量为q 、质量为m 、初速度v 以及匀强电场的场强B ,总结的运
动规律为:
① 粒子做匀速圆周运动的轨道半径:
① 粒子圆周运动的周期:
角速度:
带电粒子在磁场中作匀速圆周运动的分析
研究带电粒子在磁场中作匀速圆周运动的问题,应遵循“一找圆心,二找半径,三
找周期或时间”的基本方法和规律,确定半径和周期后再结合匀速圆周运动的运动
规律求解待求解问题。

① 圆心的确定
带电粒子在磁场中作匀速圆周运动,其运动轨迹必为一段圆弧,找圆心的基本
思维是——圆心必定在与速度方向垂直的直线上。

a.已知入射方向和出射方向:如何确定?
b.已知入射点和出射点:如何确定?
a b
②半径的确定和计算
半径一般可以利用几何关系根据三角形的知识求解,注意以下两个特点:
a.φ=α=2θ,φ为速度的偏向角,α 为弦切角。

b.θ+θ’=180°,相对的弦切角相等,和相邻
V 0
的弦切角互补。

③在磁场中运动时间t 的确定
由圆心角与360°(2π)角度的关系,对应时间t 与圆周运动周期T 的关系即可
求得时间
a.α用弧度表示:
b.α用角度表示:
④几种典型的带电粒子在不同边界磁场中的运动情境(画出轨迹并找角度关系) a.直线边界(以带负电的粒子为例)
x x x x x x x x x x x x x x x x x x x x x
x x x x
x x x
b.平行边界(以带负电的粒子为例)
x x x x ཾ ཾ ཾ ཾ ཾ x x
x x 注意:v 0大小和方向的不同也会导致其轨迹不同,因此要特别关注临界条件。

临界轨迹有两种情况:一种是与磁场边界端点相交,一类是与磁场边界相切。

c.
3.等螺距的螺旋线运动
当带电粒子的速度与磁场有一夹角θ(θ≠0。

、90。

、180。

)时,带电粒子将做等螺
距的螺旋线运动。

V 0。

相关文档
最新文档