黑体辐射
黑体辐射

不同温度的黑体辐射频谱。
随着温度下降,频谱峰值波长增加地球溫度的黑體輻射黑体辐射维基百科,自由的百科全书黑体辐射指处于热力学平衡态的黑体发出的电磁辐射。
黑体辐射的电磁波谱只取决于黑体的温度。
或許我們換一個角度來說: 所謂黑體輻射其實就是光和物質達到平衡所表現出的現象。
物質達到平衡,所以可以用一個溫度來描述物質的狀態,而光和物質的交互作用很強,如此光和光之間也可以用一個溫度來描述(光和光之間本身不會有交互作用,但光和物質的交互作用很強)。
而描述這關係的便是普朗克分佈(Planck distribution )。
黑体辐射能量按波长的分布仅与温度有关。
黑体不仅仅能全部吸收外来的电磁辐射,且散射电磁辐射的能力比同温度下的任何其它物体强。
对于黑体的研究,使自然现象中的量子效应被發现。
而在現實上黑體輻射是不存在的,只有非常近似的黑體【好比在一顆恆星或一個只有單一開口的空腔之中】 舉個例來說,我們觀測到宇宙背景輻射,對應到一個約3K 的黑體輻射,這暗示宇宙早期光是和物質達到平衡的。
而隨著時間演化,溫度慢慢降了下來,但方程式依然存在。
(頻率和溫度的效應抵銷)目录1黑體輻射方程1.1黑体辐射本领1.2黑體輻射的普朗克公式1.3黑體輻射的維恩位移定律1.4黑體輻射的斯特藩玻爾茲曼定律2人體的輻射3行星和其衛星之間的熱力學關係3.1因素3.2推導3.3地球的溫度4運動黑體的多普勒效應5參考文獻6參閱黑體輻射方程黑体辐射本领基尔霍夫(G. R. Kirchhoff)证明,对于任意一个物体,辐射本领与吸收率之比是一个与组成物体的物质无关的普适函数(以表示)其中,辐射本领为单位时间内从辐射体表面的单位面积上发射出的辐射能量的频率分布,所以,在人體的大多數能量以紅外線的形式散射掉了。
一些材料對地球(雲層,大氣和地面)的長波熱輻射強度可以認為地球受到太陽照射的地區仅等於一個二維的圆形面積而非整個球面。
黑體輻射定理的應用之一是用於概略的估計一個行星的溫度。
黑体辐射

1-2 黑体辐射何谓黑体?一般的物体对外来的辐射,都有反射和吸收作用(假定透明度为零). 若一个物体对外来的一切波长的辐射,在一切温度下都能够全部吸收而不发生反射,该物体称为绝对黑体,简称黑体. 事实上当然不存在绝对黑体,但有些物体可以近似地作为黑体来处理,比如,一束光一旦从狭缝射入空腔体内,就很难再通过该狭缝反射回来,那么,这个开着狭缝的空腔体就可以看作是黑体.所有的物体都能发射热辐射,而热辐射和光辐射一样,都是一定频率范围内的电磁波,在常温和低温下,物体一般辐射出不可见的红外线;而在高温下,会辐射可见光、紫外线. 黑体是一种物体,自然也应该辐射电磁波.【实验原理】历史上,很多物理学家都企图用经典理论解释黑体辐射规律.1859年基尔霍夫以实验证明了黑体与热辐射达到平衡时,单色辐射能量密度E(ν,T )随频率ν变化曲线的形状与位置只与黑体的绝对温度有关,而与腔体的形状及组成的材料物质无关.1877年玻尔兹曼由分子运动论认识到熵S 与几率的对数成正比. 他的方法是将能量E 划分为P 个相等的小份(叫能量元ε), 这些能量元ε在N 个谐振子中可以按不同的比例分给单个谐振子. 若单个谐振子的平均能量:NP N E U ε==(1-2-1) 假设有W 种分配方案(也叫配容数),则:k S N =W l N (1-2-2) 配容数W 就是几率,k 为玻尔兹曼常量,2310346.1-⨯=k (J/K ),N 个谐振子系统的熵N S 是单个谐振子的熵的N 倍.1893年维恩从实验中发现了黑体辐射的位定律. 他假定辐射能量按频率的分布类似于麦克斯韦速度分布律,得到了现在称之为维恩公式的辐射公式()Taeb T λλλ--=5,R (1-2-3)式中R(λ,T )称为单色辐射度(旧称为单色发射本领),它表示在单位时间内,在黑体的单位面积上从λ到λ+d λ内,单位波长间隔内所辐射出的能量;T 表示绝对温度,a ,b 是两个任意常数,分别称为第一和第二辐射常数. 维恩公式只在短波段与实验结果相符合,在长波段则出现明显偏差.1895年普朗克正在德国柏林大学任理论物理教授,经常参加德国帝国技术物理研究所有关热辐射的讨论. 他认为维恩的推导不大令人信服. 于是从1897年起,投身于这个问题的研究. 普朗克把电磁理论用于热辐射和谐振子的相互作用,通过熵的计算,得到了维恩分布定律,从而使这个定律获得了普遍意义. 但他发现温度增高时,在长波方向,与实验结果仍有偏差,看来需作某些修正. 这时英国物理学家瑞利从另一途径也提出了能量分布定律.1900年6月,瑞利(后经金斯修改)发表了一篇论文,他根据经典电动力学和统计物理学推导而得单色辐射能量密度E(ν,T )由下式决定:ννπννd 8d ),E(23kT cT =(1-2-4) 即瑞利——金斯公式. 式中c 为光速,k 为玻尔兹曼常量,T 为热力学温度,ν为辐射频率. 此公式在低频部分与实验还算相符,但随频率增大与实验值的差距越来越大,当∞→ν时引起发散,这是当时有名的“紫外灾难”, 见图1-2-1.1900年12月14日普朗克在德国物理学会提出:电磁辐射的能量只能是量子化的. 他认为以频率ν作谐振动的振子其能量只能取某些分立值,在这些分立值决定的状态中,其对应的能量应该是某一最小能量的h ν整数倍, 即E=n h ν n=1,2,3,… 这最小的能量称为能量子,h 称为普朗克常量,341065.6⨯=h J ⋅s ,在此能量量子化的假定下,他推导出著名的普朗克公式:()1d 8d ,23-=kT he c h T E νννπνν (1-2-5) 因为 νλc= (1-2-6)λλνd d 2c=(1-2-7)将(1-2-6)和(1-2-7)代入(1-2-5)得1d 8d ),E(5-=kT hc e hc T λλλπλλ (1-2-8)即黑体辐射波长在(λλλd ,+)范围中单色辐射能量密度的分布公式,它与实验结果符合的很好. 普朗克提出的能量子假说具有划时代的意义,标志了量子物理学的诞生,因此获得了1918年诺贝尔物理学奖.考虑到单色辐射能密度E(λ,T )与单色辐射度R(λ,T )之间的关系:),R(4),E(T cT λλ=,(1-2-8)式还可写成如下形式: 1d 2d ),R(52-=kThcehc T λλλπλλ (1-2-9)图1-2-1 黑体辐射能量图 图1-2-2二维恩位移图普朗克公式经微分后可得维恩位移定律:Tk hcm λ=4.965 (1-2-10) 式中m λ为黑体辐射曲线的峰值对应的波长,T 为绝对黑体温度,其他各意义同上. 见图1-2-2,光谱亮度的最大值的波长与它的绝对温度成反比:T A m /=λ (1-2-11)A 为常数,A =2.8978310-⨯m ⋅k ,随温度的升高,绝对黑体光谱亮度的最大值的波长位置会向短波方向移动. 只要测出λ,就可求得黑体的温度,这为光测高温得供了另一种手段。
黑体辐射_精品文档

黑体辐射实验19世纪末,物理学晴朗的天空中飘着两朵乌云,其中之一被称为“紫外灾难”,即瑞利和金斯用经典的能量均分定理并不能完全解释热辐射现象。
1900年,普朗克提出金属空腔壁以与振子频率成正比的能量子为基本单元来吸收或发射能量,得到著名的普朗克公式,从理论上解释了黑体辐射频谱分布。
这一贡献引起物理学的一场革命,对量子理论的建立起到了重要作用。
本实验利用WGH ——10型黑体实验装置测量黑体的辐射能量曲线,从而验证普朗克公式,唯恩位移定律以及斯特藩——玻耳兹曼定律,并进一步研究黑体与一般发光体辐射强度的关系,学会测量一般发光光源的辐射能量曲线。
一、实验原理1、热辐射,黑体任何物体都具有不断辐射、吸收、发射电磁波的本领。
辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。
这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。
为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。
黑体的特点:1、热辐射与辐射体材料的具体性质无关。
2、黑体辐射仅与温度有关。
3、黑体是为理论研究方便假想出来的,世界上不存在真正的黑体。
2、描述热体辐射的几个物理量单色辐出度()T M λ:在单位时间内物体从表面单位面积上发射的波长界于λ和λd 之间的辐射电磁波能量λE d 则λE d 与λd 之比称为单色辐出度()T M λ 即()T M λ=λE d /λd (与辐射体的温度和辐射波长有关)。
(1)辐出度()T M :在单位时间内物体从单位表面积上发射的所有各种波长的电磁波能量总和为辐出度()T M 即()()λλd M T M =T ⎰∞(1)2)单色吸收率()T λa :当辐射从外界入射到物体表面时,被物体吸收的能量与入射总能量之比称为吸收率A ,其中波长在λ到λ+λd 之间的吸收率A d 与λd 之比为单色吸收率()T λa 即()λλd d a A=T (2)3、黑体辐射定律(1)斯特藩——玻耳兹曼定律此定律首先由斯特藩于1879年从实践数据的分析中发现。
黑体辐射名词解释

黑体辐射名词解释
黑体辐射,也称之为核电磁辐射,是由原子弹、核反应堆以及射线技术等可
观测核技术产生的一种辐射能。
它指的是射线的能量以电磁波的形式被释放出来。
由于具有伦理与安全性的威胁,黑体辐射一直被严格监管。
黑体辐射有很多类型,比如可见光、紫外线和X射线仅仅是其中的几种。
这种
辐射的性质为单色的、短波的、高能的电磁辐射,且具有穿透性,能够穿过绝大多数物质,当它们与物质碰撞时会释放出能量。
说起黑体辐射,首先应引起人们对它的足够重视,一定要谨慎处理和使用,防
止造成污染和对人体造成伤害。
一般情况下,人们长时间接触黑体辐射可能会有不良后果,其中常见的损害有损伤皮肤、眼睛、呼吸道等组织和器官,同时还可能对免疫力造成干扰,甚至诱发癌症。
因此,为了人们的健康,应避免接触黑体辐射。
对于待在高辐射水平区域的人群,最好避免低限,使用保护设施并减少长期接触时间。
另一方面,应当充分改进监测技术与抗辐射研究,以更好地分析黑体辐射的危害,以免发生不可逆转的事故。
黑体辐射通俗理解

黑体辐射通俗理解
摘要:
一、黑体辐射的定义
二、黑体辐射的特点
三、斯特藩- 玻尔兹曼定律
四、普朗克辐射定律
五、黑体辐射与量子力学的关系
六、实际应用与前景
正文:
黑体辐射是指黑体(理想热辐射体)在热平衡状态下产生的辐射现象。
黑体辐射具有以下特点:
1.连续谱:黑体辐射的强度与波长之间的关系是连续的,没有明显的谱线。
2.强度与温度成正比:黑体辐射的强度与温度成正比,这一特点由斯特藩- 玻尔兹曼定律描述。
3.紫外灾难:经典物理理论无法解释黑体辐射在紫外区的强度分布,导致紫外灾难。
为了解决紫外灾难,普朗克提出了量子假说,认为能量是以离散的量子形式传递的。
这一假说不仅解决了紫外灾难,还为量子力学的发展奠定了基础。
黑体辐射的研究对量子力学产生了深远的影响。
从黑体辐射现象中,科学家们发现了量子化、能量量子、波粒二象性等重要概念。
这些概念为量子力学
的发展奠定了基础。
在实际应用中,黑体辐射在许多领域都有重要作用,如热辐射、太阳能电池、红外遥感等。
黑体辐射什么

黑体辐射什么
黑体辐射是指一个处于热平衡状态的理想物体所发出的电磁辐射。
其名称“黑体”是因为这个物体能够完全吸收所有射入它的辐射,不反射也不透过任何辐射。
黑体辐射的研究与理解起源于19世纪,当时科学家们通过实验观察到,当一个物体被加热至足够高的温度时,它会发出一种特定的光谱,这种光谱与物体的温度有关。
根据理论推导和实验测量,经典物理学建立了黑体辐射的描述模型。
根据普朗克的理论,黑体辐射的能量与频率之间存在一定的关系,即普朗克公式。
这个公式描述了单位面积、单位时间内每个频率的辐射能量的数量。
根据普朗克公式,辐射的能量随着其频率的增加而增加,而根据维恩位移定律,辐射最强的频率对应于其温度的倒数。
黑体辐射的研究不仅对物理学有重大影响,还对天文学和热力学等其他科学领域都有重要意义。
通过观察天体的光谱,科学家们可以推断出它们的温度和成分,从而了解宇宙的起源和演化。
在热力学中,黑体辐射是理解热平衡和热传导等现象的关键。
黑体辐射理论的发展也导致了量子力学的诞生。
经典物理学无法解释黑体辐射中的紫外灾变问题,而量子理论则成功解释了这一现象。
这一发现标志着经典物理学的失败,同时也为量子力学的发展铺平了道路。
总之,黑体辐射是一个重要的物理现象,它在物理学、天文学和热力学等领域都有广泛应用。
通过对黑体辐射的研究,科学家们不仅在理论上增进了对自然界的理解,还在技术上取得了一系列重大突破,如发展了激光、红外线技术等。
黑体辐射实验

黑体辐射实验的结果比较
黑体辐射实验的结果总结
• 辐射光谱的呈现
• 不同实验条件下的结果比较
• 实验结果的一致性
• 辐射温度的呈现
• 与理论预测的结果比较
• 实验结果的差异性
• 辐射强度的呈现
• 与其他实验结果的比较
• 实验结果的解释与讨论
黑体辐射实验的结果分析
黑体辐射实验的结果分析
• 辐射光谱的分析
CREATE TOGETHER
DOCS SMART CREATE
黑体辐射实验研究
DOCS
01
黑体辐射实验的背景及意义
黑体辐射实验的历史背景
19世纪末,黑体辐射问题引发物理学界关注
• 基尔霍夫定律的提出
• 普朗克假设的提出
• 量子力学的诞生
20世纪初,实验物理学家开始研究黑体实验物理学的影响
• 黑体辐射实验对天体物理学的影响
黑体辐射实验在工程技术领域中的应用
• 黑体辐射实验在材料科学中的应用
• 黑体辐射实验在能源科学中的应用
• 黑体辐射实验在环境科学中的应用
黑体辐射实验在未来的发展趋势与挑战
• 黑体辐射实验在新兴领域的应用前景
• 黑体辐射实验面临的挑战与问题
黑体辐射实验的基本原理
黑体辐射实验的结果与分析
• 黑体辐射实验的结果
• 黑体辐射实验的分析
• 黑体辐射实验的结论
黑体辐射实验的原理
• 黑体辐射实验的基本原理
• 黑体辐射实验的数学模型
• 黑体辐射实验的实验方法
黑体辐射实验的装置与测量
• 黑体辐射实验的装置
• 黑体辐射实验的测量方法
• 黑体辐射实验的数据处理
黑体辐射实验的测量方法
黑体辐射通俗理解

黑体辐射通俗理解什么是黑体辐射?黑体辐射是指处于热平衡状态下的物体所发出的辐射,它的特点是不吸收任何辐射,同时也不反射辐射。
黑体辐射的研究对于理解物体的热辐射和热力学性质具有重要意义。
在物理学中,黑体辐射被广泛应用于热力学、量子力学、天体物理学等领域。
黑体辐射的特性黑体辐射具有以下几个特性:1. 完全吸收和完全发射黑体是完全吸收所有辐射的物体,所以它看起来是黑色的。
与此同时,黑体也是完全发射辐射的物体,不论是可见光、红外线还是紫外线等电磁辐射,黑体都能够以最大强度发射出来。
2. 频谱特性黑体辐射的频谱特性与温度有关。
根据普朗克辐射公式,黑体辐射的频谱强度与频率成正比,而与温度的四次方成正比。
随着温度的升高,黑体辐射的峰值频率也会向高频方向移动。
这就是为什么高温物体的辐射呈现为蓝色或白炽的原因,而低温物体的辐射呈现为红色或暗淡的原因。
3. 斯特凡-玻尔兹曼定律斯特凡-玻尔兹曼定律描述了黑体辐射的总功率与温度之间的关系。
根据这个定律,黑体辐射的总功率与温度的四次方成正比。
公式如下:P=σ∗T4其中,P表示黑体辐射的总功率,σ为斯特凡-玻尔兹曼常数,T为黑体的温度。
黑体辐射的应用黑体辐射在许多领域都有重要的应用,下面列举了几个常见的应用:1. 热力学研究黑体辐射是热力学研究中的基本概念之一。
通过对黑体辐射的研究,科学家们可以深入理解热力学定律和热力学性质,为能源转换、热力学系统的设计和优化提供理论基础。
2. 量子力学黑体辐射在量子力学中也有重要的应用。
根据普朗克辐射公式,科学家们可以推导出黑体辐射的频谱分布和平均能量。
这对于理解量子力学的基本原理和量子态的统计性质非常重要。
3. 天体物理学黑体辐射在天体物理学中具有重要的意义。
天体物体的辐射主要来自于它们的表面温度和组成。
通过研究黑体辐射,科学家们可以了解恒星、行星和其他天体的物理性质,例如它们的温度、亮度和组成。
这对于研究宇宙的起源和演化非常重要。
总结黑体辐射是处于热平衡状态下的物体所发出的辐射,它具有完全吸收和完全发射的特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
量子(quantum):
现代物理的重要概念。
最早是由德国物理学家M·普朗克在1900年提出的。
他假设黑体辐射中的辐射能量是不连续的,只能取能量基本单位的整数倍,从而很好地解释了黑体辐射的实验现象。
后来的研究表明,不但能量表现出这种不连续的分离化性质,其他物理量诸如角动量、自旋、电荷等也都表现出这种不连续的量子化现象。
这同以牛顿力学为代表的经典物理有根本的区别。
量子化现象主要表现在微观物理世界。
描写微观物理世界的物理理论是量子力学。
量子一词来自拉丁语Quantus,意为“有多少”,代表“相当数量的某物质”。
自从普朗克提出量子这一概念以来,经爱因斯坦、玻尔、德布罗意、海森伯、薛定谔、狄拉克、玻恩等人的完善,在20世纪的前半期,初步建立了完整的量子力学理论。
绝大多数物理学家将量子力学视为理解和描述自然的基本理论。
任何物体都具有不断辐射、吸收、反射电磁波的本领。
辐射出去的电磁波在各个波段是不同的,也就是具有一定的谱分布。
这种谱分布与物体本身的特性及其温度有关,因而被称之为热辐射。
为了研究不依赖于物质具体物性的热辐射规律,物理学家们定义了一种理想物体——黑体(black body),以此作为热辐射研究的标准物体。
黑体:
在任何条件下,对任何波长的外来辐射完全吸收而无任何反射的物体,即吸收比为1的物体。
在黑体辐射中,随着温度不同,光的颜色各不相同,黑体呈现由红——橙红——黄——黄白——白——蓝白的渐变过程。
某个光源所发射的光的颜色,看起来与黑体在某一个温度下所发射的光颜色相同时,黑体的这个温度称为该光源的色温。
“黑体”的温度越高,光谱中蓝色的成份则越多,而红色的成份则越少。
例如,白炽灯的光色是暖白色,其色温表示为4700K,而日光色荧光灯的色温表示则是6000K。
黑体辐射:
指由理想放射物放射出来的辐射,在特定温度及特定波长放射最大量之辐射。
同时,黑体是可以吸收所有入射辐射的物体,不会反射任何辐射,但黑体未必是黑色的,例如太阳为气体星球,可以认为射向太阳的电磁辐射很难被反射回来,所以认为太阳是一个黑体(绝对黑体是不存在的)。
理论上黑体会放射频谱上所有波长之电磁波。
维恩位移定律是描述黑体电磁辐射能流密度的峰值波长与自身温度关系的定律。