嵌入式Linux开发工具的使用
嵌入式linux操作系统原理与应用

嵌入式Linux操作系统是一种针对嵌入式设备设计和优化的Linux操作系统。
它在嵌入式系统中发挥着关键作用,为嵌入式设备提供了丰富的功能和灵活性。
以下是嵌入式Linux操作系统的原理和应用方面的概述:嵌入式Linux操作系统原理:内核:嵌入式Linux操作系统的核心是Linux内核,它提供了操作系统的基本功能,包括处理器管理、内存管理、设备驱动程序、文件系统和网络协议栈等。
裁剪:为了适应嵌入式设备的资源限制,嵌入式Linux操作系统通常经过裁剪和优化,只选择必要的功能和驱动程序,以减小内存占用和存储空间,并提高性能和响应速度。
交叉编译:由于嵌入式设备通常具有不同的硬件架构和处理器,所以嵌入式Linux操作系统需要通过交叉编译来生成适用于目标设备的可执行文件和库。
设备驱动:嵌入式Linux操作系统需要适配各种硬件设备,因此需要编写和集成相应的设备驱动程序,以使操作系统能够正确地与硬件进行通信和交互。
嵌入式Linux操作系统应用:嵌入式设备:嵌入式Linux操作系统广泛应用于各种嵌入式设备,如智能手机、平板电脑、家用电器、工业控制系统、车载设备等。
物联网(IoT):随着物联网的快速发展,嵌入式Linux操作系统被广泛应用于连接的嵌入式设备,用于数据采集、通信、远程控制和智能化管理。
嵌入式开发板:嵌入式Linux操作系统在开发板上提供了丰富的开发环境和工具链,用于嵌入式软件开发和调试。
自定义嵌入式系统:开发者可以基于嵌入式Linux操作系统构建自定义的嵌入式系统,根据特定需求进行定制和开发,实现各种功能和应用。
嵌入式Linux操作系统的原理和应用非常广泛,它为嵌入式设备提供了灵活性、可定制性和强大的功能支持,使得开发者能够构建高度定制化和功能丰富的嵌入式系统。
gec-6818 嵌入式linux开发指导手册

gec-6818 嵌入式linux开发指导手册嵌入式Linux开发指导手册是针对GEC-6818嵌入式开发板的用户提供的一份使用手册,旨在帮助开发者了解如何在GEC-6818上进行嵌入式Linux开发,并提供一些开发过程中可能遇到的问题和解决方案。
本文将从以下几个方面进行介绍和指导。
一、GEC-6818简介GEC-6818是一款基于ARM架构的嵌入式开发板,搭载了Cortex-A53四核处理器,主频高达 1.3GHz,拥有丰富的外设接口和扩展能力,适合用于嵌入式Linux系统的开发和应用。
本章将介绍GEC-6818的主要硬件组成和接口定义,以便开发者能够快速上手使用。
二、嵌入式Linux系统搭建本章将介绍如何搭建嵌入式Linux系统,并详细介绍了系统的编译和安装过程。
主要内容包括交叉编译工具链的安装、内核的编译和配置、文件系统的构建和配置等。
同时,还会提供一些常见的问题和解决方案,帮助开发者尽快搭建起自己的开发环境。
三、设备驱动开发设备驱动是嵌入式Linux开发中一个重要的环节,本章将介绍设备驱动的基本概念和开发过程。
主要内容包括字符设备驱动、块设备驱动、网络设备驱动等。
同时,还会提供一些实例代码和开发技巧,帮助开发者更好地理解和掌握设备驱动的开发。
四、应用程序开发应用程序开发是嵌入式Linux开发中的另一个重要环节,本章将介绍如何在GEC-6818上进行应用程序的开发。
主要内容包括交叉编译环境的搭建、编写Makefile文件、调试应用程序等。
同时,还会提供一些常见的应用程序开发技巧和调试方法,帮助开发者快速进行应用程序开发。
五、远程调试和调优远程调试和调优是嵌入式Linux开发中的重要环节之一,本章将介绍如何在GEC-6818上进行远程调试和调优。
主要内容包括通过串口进行调试、使用GDB进行调试、使用sysbench进行性能测试等。
同时,还会提供一些常见的调试和调优技巧,帮助开发者尽快定位和解决问题。
嵌入式开发流程及开发工具介绍

linux下的交叉编译环境
• • • • 针对目标系统的二进制工具binutils 针对目标系统的编译器gcc 目标系统的标准c库glibc 目标系统的linux内核头文件 linux
交叉编译环境的建立步骤
• • • • • • ※编译binutils ※配置linux内核头文件 ※第一次编译gcc ※交叉编译glibc glibc ※第二次编译gcc ※几点注意事项
Make工程管理器
• 管理较多的文件 • Make工程管理器也就是个“自动编译管理 器”,这里的“自动”是指它能够根据文 件时间戳自动发现更新过的文件而减少编 译的工作量,同时,它通过读入Makefile文 件的内容来执行大量的编译工作
Makefile
• Makefile的作用是根据项目配置的情况,构造出需 要编译的源文件列表,然后分别编译,链接。 • Linux内核中与Makefile相关的文件 • ※顶层Makefile:整个内核配置、编译的总体控制 文件 • ※.config:内核配置文件、包括由用户选择的配 置选项,用来存放内核配置后的结果 • ※arch/*/Makefile:位于各种CPU体系结构下的 Makefile,如arch/arm/Makefile,是针对特定平 台的Makefile • ※各个子目录下的Makefile:比如 drivers/Makefiel,负责所在子目录下源代码的管 理。
第二次编译gcc
• 运行configure,参数设置为--prefix=$PREFIX --target=arm-linux --enable-languages=c,c++ 。 • 运行make install。
几点注意事项
• 第一点、在第一次编译gcc的时候可能会出 现找不到stdio.h的错误,解决办法是修改 gcc/config/arm/t-linux文件,在 TARGET_LIBGCC2_CFLAGS变量的设定中增加Dinhibit_libc和-D__gthr_posix_h。 • 第二点、对与2.3.2版本的glibc库,编译 linuxthread/sysdeps/pthread/sigaction.c时可 能出错,需要通过补丁glibc-2.3.2-arm.patch解 决:执行patch -p1 < glibc-2.3.2-arm.patch
buildroot 使用手册

让我们来了解一下什么是Buildroot。
Buildroot是一个嵌入式Linux 系统的构建框架,它可以帮助开发人员构建定制的Linux系统。
它提供了一种简单的方式来从头开始构建一个嵌入式Linux系统,可以为各种架构和评台生成交叉编译工具链、内核映像、根文件系统和各种库、应用程序等。
在构建一个嵌入式Linux系统时,我们通常会遇到很多问题和挑战。
Buildroot主要的目标就是简化这个过程,让开发人员能够更轻松地构建自己的定制化Linux系统。
而本篇文章的目的就是要帮助读者理解并掌握使用Buildroot的方法和技巧。
一、Buildroot的基本原理和架构1.1 Buildroot的基本原理Buildroot的基本原理是通过配置文件来描述需要构建的目标系统,包括目标CPU架构、内核配置、根文件系统中的软件包选择和配置等。
它类似于一个自动化的脚本,根据配置文件中的信息,自动下载所需的软件包、交叉编译工具链和内核源码,并将它们编译信息成一个完整的嵌入式Linux系统。
1.2 Buildroot的架构Buildroot的架构可以分为三个主要部分:配置、编译和生成。
首先是配置阶段,用户需要通过一系列的配置选项来描述目标系统的需求,包括CPU架构、内核配置、软件包选择等。
然后是编译阶段,Buildroot会根据配置文件自动下载、编译和安装所需的软件包和工具链等。
最后是生成阶段,Buildroot会生成包括内核映像、根文件系统和各种库、应用程序等在内的完整嵌入式Linux系统。
二、使用Buildroot的基本步骤和常用命令2.1 配置Buildroot在开始使用Buildroot前,首先需要进行配置。
可以通过运行命令`make menuconfig`来进入配置界面,选择目标评台和系统架构、内核配置、根文件系统中的软件包配置等。
2.2 编译Buildroot配置完成后,可以通过运行命令`make`来开始编译。
linux的gcc使用方法

linux的gcc使用方法Linux是一种开源的操作系统,广泛应用于服务器和嵌入式系统中。
而GCC(GNU Compiler Collection)是Linux下最常用的编译器套件之一,用于将源代码编译成可执行文件。
本文将介绍GCC的使用方法,帮助读者快速上手。
一、安装GCC在Linux系统中,默认情况下已经安装了GCC。
可以通过运行以下命令来验证是否已经安装了GCC:```gcc --version```如果GCC已经安装,则会显示GCC的版本信息;如果没有安装,则可以通过运行以下命令来安装GCC:```sudo apt-get install gcc```二、编写源代码在使用GCC之前,我们需要先编写源代码。
可以使用任何文本编辑器创建一个以.c为后缀的源文件,例如hello.c。
下面是一个示例的源代码:```c#include <stdio.h>int main() {printf("Hello, world!\n");return 0;}```三、编译源代码编写完源代码后,我们可以使用GCC来将其编译成可执行文件。
在终端中运行以下命令:```gcc -o hello hello.c```其中,-o参数用于指定编译后生成的可执行文件的名称,hello为示例的可执行文件名,hello.c为源代码文件名。
如果编译成功,GCC将会生成一个名为hello的可执行文件。
四、运行可执行文件在编译成功后,我们可以通过以下命令来运行可执行文件:```./hello```如果一切顺利,终端将会输出"Hello, world!"的字符串。
五、GCC的其他常用选项除了上述基本的使用方法外,GCC还提供了许多其他的选项,用于控制编译过程的行为。
以下是一些常用的选项:- -Wall:开启所有警告信息的显示。
- -g:生成供调试器使用的调试信息。
- -O2:进行优化处理,提高程序执行效率。
嵌入式Linux系统开发与应用实践

嵌入式Linux系统开发与应用实践嵌入式Linux系统是指将Linux操作系统嵌入到应用程序中,使其静态化运行。
嵌入式Linux系统可以在嵌入式设备中进行应用开发和应用实践。
随着人工智能技术的快速发展,嵌入式Linux 系统为嵌入式设备的应用带来了新的可能性。
本文将深入探讨嵌入式Linux系统的开发与应用实践。
一、嵌入式Linux系统的优点嵌入式Linux系统的优点主要有如下几个方面:1. 开放性:Linux是开放源代码的操作系统,用户可以通过自由软件协议获取开放源代码,进行修改和自定义。
这意味着随着Linux的发展,用户可以让其应用于更多应用场景,定制化程度更高。
2. 稳定性:Linux操作系统稳定性高,能够长时间稳定运行且系统崩溃的概率非常小。
3. 灵活性:嵌入式Linux系统灵活性非常高,用户可以根据具体设备进行开发和部署。
同时,也能够为设备提供更高的安全和性能支持。
4. 海量资源:Linux作为走在开源世界前沿的操作系统,具有海量的资源和社区支持。
用户可以通过社区开放的技术和资源,为设备提供更多的功能。
二、嵌入式Linux系统的应用实践嵌入式Linux系统包括了从裸机应用到成型系统的全过程,对于嵌入式应用开发来说是非常有益的。
嵌入式Linux系统的应用实践主要有以下几个步骤:1. 内核的选择和构建:嵌入式设备的内核和框架选择很重要,需要仔细考虑选用哪一种内核或框架,需要根据具体的应用进行选择。
然后需要构建一个内核。
2. 驱动的集成和调试:驱动是嵌入式设备重要的组成部分,需要根据之前构建的内核进行驱动的集成和调试。
3. 应用程序编写:应用层开发是系统开发的最终目的,需要根据应用的场景进行编写,对于嵌入式Linux系统的应用编写,需要进行编译和交叉编程等步骤。
4. 应用部署:最后一步是将应用部署到嵌入式设备中,进行运行和测试。
需要注意的是在遇到问题时,需要快速定位问题,分析原因,并解决问题。
嵌入式实验一(嵌入式 Linux 开发环境的搭建及 Makefile 应用)
实验一嵌入式 Linux 开发环境的搭建及 Makefile 应用一、实验目的:1.熟悉嵌入式 Linux 开发基本过程及基本命令。
2.了解嵌入式 Linux 开发中各种工具的基本用途。
3.搭建好嵌入式 Linux 的开发环境。
4.通过对包含多文件的 Makefile 的编写,熟悉各种形式的Makefile 编写,加深对 Makefile 中用户自定义变量、自动变量及预定义变量的理解。
二、实验内容:1.安装 Vmware 及 Ubuntu;2.熟悉 Linux 下相关命令:属性查询、修改,路径、目录的查询、修改、删除,压缩、解压等;3.熟悉编辑工具;4.熟悉 makefile 文件的基本作用(编写一个包含多文件的Makefile)。
三、Make 工程管理器:Makefile如今能得以广泛应用,这还得归功于它被包含在Unix系统中。
在make诞生之前,Unix系统的编译系统主要由“make”、“install”shell脚本程序和程序的源代码组成。
它可以把不同目标的命令组成一个文件,而且可以抽象化依赖关系的检查和存档。
这是向现代编译环境发展的重要一步。
1977年,斯图亚特·费尔德曼在1贝尔实验室里制作了这个软件。
2003年,斯图亚特·费尔德曼因发明了这样一个重要的工具而接受了美国计算机协会(ACM)颁发的软件系统奖。
Makefile文件是可以实现自动化编译,只需要一个“make”命令,整个工程就能完全自动编译,极大的提高了软件开发的效率。
目前虽有众多依赖关系检查工具,但是make是应用最广泛的一个。
一个程序员会不会写makefile,从一个侧面说明了这个程序员是否具备完成大型工程的能力。
1.Makefile 基本规则一个简单的 Makefile 语句由目标、依赖条件、指令组成。
smdk6400_config :unconfig@mkdir -p $(obj)include $(obj)board/samsung/smdk6400其中:smdk6400_config:目标;unconfig:先决条件;@mkdir -p $(obj)include $(obj)board/samsung/smdk6400:指令。
嵌入式linux开发教程pdf
嵌入式linux开发教程pdf嵌入式Linux开发是指在嵌入式系统中使用Linux操作系统进行开发的过程。
Linux作为一种开源操作系统,具有稳定性、可靠性和灵活性,因此在嵌入式系统中得到了广泛的应用。
嵌入式Linux开发教程通常包括以下内容:1. Linux系统概述:介绍Linux操作系统的发展历程和基本原理,包括内核、文件系统、设备驱动等方面的知识。
了解Linux系统的基本结构和工作原理对后续的开发工作至关重要。
2. 嵌入式开发环境搭建:通过搭建开发环境,包括交叉编译器、调试器、仿真器等工具的配置,使得开发者可以在本机上进行嵌入式系统的开发和调试。
同时,还需要了解各种常用的开发工具和调试技术,如Makefile的编写、GDB的使用等。
3. 嵌入式系统移植:嵌入式系统往往需要根据不同的硬件平台进行移植,以适应各种不同的硬件环境。
这个过程包括引导加载程序的配置、设备驱动的移植和内核参数的调整等。
移植成功后,就可以在目标硬件上运行Linux系统。
4. 应用程序开发:在嵌入式Linux系统上进行应用程序的开发。
这包括编写用户空间的应用程序,如传感器数据采集、数据处理、网络通信等功能。
还需要熟悉Linux系统提供的各种库函数和API,如pthread库、socket编程等。
5. 系统优化和性能调优:在开发过程中,经常需要对系统进行调优和优化,以提高系统的性能和稳定性。
这包括对内核的优化、内存管理的优化、性能分析和调试等。
只有深入了解和熟练掌握这些技术,才能使得嵌入式系统运行得更加高效和稳定。
嵌入式Linux开发教程PDF通常会结合理论和实践相结合的方式进行教学,通过实际的案例和实践操作,帮助开发者快速掌握嵌入式Linux开发的技术和方法。
同时还会介绍一些常见的开发板和硬件平台,以及开源项目等,帮助开发者在实际项目中应用所学的技术。
总之,嵌入式Linux开发教程PDF提供了系统而详细的指导,帮助开发者快速入门嵌入式Linux开发,掌握相关的技术和方法,以便更好地进行嵌入式系统的开发工作。
嵌入式linux系统开发标准教程
嵌入式linux系统开发标准教程嵌入式Linux系统开发是一门非常重要的技术,它在嵌入式设备、物联网和智能家居等领域中得到广泛应用。
本文将介绍嵌入式Linux系统开发的标准教程,帮助读者了解该技术的基本原理和常用的开发工具。
一、嵌入式Linux系统开发的基本原理嵌入式Linux系统开发是指将Linux操作系统移植到嵌入式设备中,并针对特定的应用领域进行定制开发。
它与传统的桌面Linux系统有很大的区别,主要体现在以下几个方面:1. 硬件平台的选择:嵌入式设备通常采用ARM架构或者其他低功耗的处理器架构,而不是传统的x86架构。
因此,在进行嵌入式Linux系统开发时,需要根据具体的处理器架构进行相应的移植和优化。
2. 精简的内核:由于嵌入式设备的资源有限,为了提高系统性能和节省资源,嵌入式Linux系统通常会精简内核。
这需要对Linux内核的源代码进行裁剪和优化,以去除不必要的模块和功能,并保留对应用需求的必要功能。
3. 定制化的驱动程序和应用程序:嵌入式设备通常需要与各种外设进行交互,因此需要编写相应的驱动程序。
此外,根据具体的应用需求,还需要定制相关的应用程序和用户界面。
二、嵌入式Linux系统开发的工具嵌入式Linux系统开发需要使用一些常用的工具,下面是一些常用的工具和其功能的介绍:1. 交叉编译工具链:由于嵌入式设备和开发主机的处理器架构不同,无法直接在开发主机上编译和运行目标代码。
因此,需要使用交叉编译工具链,在开发主机上生成适用于目标设备的可执行文件。
2. 调试工具:在嵌入式Linux系统开发过程中,调试是非常重要的一环。
常用的调试工具包括GDB(GNU调试器)和strace(系统调用跟踪工具),它们可以帮助开发人员追踪程序的执行过程和定位错误。
3. 文件系统工具:嵌入式设备的存储资源有限,需要使用文件系统来组织和管理存储的数据。
常用的文件系统工具包括mkfs(创建文件系统)、mount(挂载文件系统)以及文件传输工具(如scp和rsync)等。
嵌入式Linux系统开发教程实验报告
嵌入式实验报告:学号:学院:日期:实验一熟悉嵌入式系统开发环境一、实验目的熟悉Linux 开发环境,学会基于S3C2410 的Linux 开发环境的配置和使用。
使用Linux的armv4l-unknown-linux-gcc 编译,使用基于NFS 方式的下载调试,了解嵌入式开发的基本过程。
二、实验容本次实验使用Redhat Linux 9.0 操作系统环境,安装ARM-Linux 的开发库及编译器。
创建一个新目录,并在其中编写hello.c 和Makefile 文件。
学习在Linux 下的编程和编译过程,以及ARM 开发板的使用和开发环境的设置。
下载已经编译好的文件到目标开发板上运行。
三、实验设备及工具硬件::UP-TECH S2410/P270 DVP 嵌入式实验平台、PC 机Pentium 500 以上, 硬盘10G 以上。
软件:PC 机操作系统REDHAT LINUX 9.0+超级终端(或X-shell)+AMR-LINUX 开发环境。
四、实验步骤1、建立工作目录[rootlocalhost root]# mkdir hello[rootlocalhost root]# cd hello2、编写程序源代码我们可以是用下面的命令来编写hello.c的源代码,进入hello目录使用vi命令来编辑代码:[rootlocalhost hello]# vi hello.c按“i”或者“a”进入编辑模式,将上面的代码录入进去,完成后按Esc 键进入命令状态,再用命令“:wq!”保存并退出。
这样我们便在当前目录下建立了一个名为hello.c的文件。
hello.c源程序:#include <stdio.h>int main() {char name[20];scanf(“%s”,name);printf(“hello %s”,name);return 0;}3、编写Makefile要使上面的hello.c程序能够运行,我们必须要编写一个Makefile文件,Makefile文件定义了一系列的规则,它指明了哪些文件需要编译,哪些文件需要先编译,哪些文件需要重新编译等等更为复杂的命令。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
嵌入式Linux开发工具的使用
TCT的使用
•配置编译内核
•加载内核模块选项•实时性能选项
•设备驱动选项
•文件系统选项
•内核调试选项
配置编译内核
•使用TCT编译内核
–TCT是一个图形工具,可以轻松的选择内核
选项和文件系统的软件包。
也可以使用TCT
管理内核编译和控制选项,例如目标板二进制码是否裁剪等。
另外,TCT支持单个目标
板环境的多种配置。
•手工编译内核
–使用make menuconfig等命令,按照前面编
译内核的方法逐行敲入命令。
TCT的主要功能
•创建一个新的配置文件
•创建/编辑内核配置
•创建/编辑文件系统
•编译生成目标板内核和文件系统–内核仍然在源程序的目录中,例如:
arch/ppc/boot/images/zImage.embedded
–文件系统为fsimage.tar,打开包可以添加应
用程序和用户配置文件。
TCT Kernel Configure •启动make xconfig,
完成内核的配置功能。
•后面对主要的选项最
一下介绍。
TCT Package Selector
•选择文件系统包含的
软件包
•200多个软件包
•Busybox是类UNIX最
小工具集。
•手工编写最小文件系
统脚本。
TCT Target Options
•设置目标板的选项
•精简二进制文件。
•添加到文件系统。
–/boot/
–/lib/
•生成文件名:
fsiamge.tar
加载内核模块选项
•在内核运行起来以后根据需要加载模块,而不是把所有的模块都编译到内核中。
这样可以减小内核的体积,又可以动态加载模块。
具备这种功能必须选择下列选项:
•Loadable module support --->
–[*] Enable loadable module support
–Set version information on all module symbols.
–Kernel module loader
实时性能选项
•MontaVista对于Linux内核的基准和实时性能的提高工程付出了大量努力,提高内核的本质性能。
主要的实时特性包括:
–MontaVista实时调度器
–抢占式内核
•Platform support --->
–[*] Real Time Scheduler
–[*] Preemptiblekernel support
设备驱动选项
•I/O设备驱动,以太网卡和串口设备驱动•MPC8xx CPM Options --->
–[*]CPM SCC Ethernet (SCC1)
–[ ] 860T FEC Ethernet
•Network device support --->
Ethernet (10 or 100Mbit) --->>
•硬盘的支持
–IDE ATA support?
文件系统选项
•使用旋转介质、网络、FLASH和RAM设备都可以有文件系统。
•MVL PE 支持EXT2、EXT3、ReiserFS、CramFS、JFFS 和JFFS2 文件系统类型。
但是不是所有的平台都支持全部文件系统。
•File systems --->
File System 选项
<*> Reiserfssupport
<*> Ext3 journallingfile system support
(EXPERIMENTAL)
<*> Second extended fssupport < > (JFFS) support
< > (JFFS2) support
<*> Compressed ROM file system support
<*> Simple RAM-based file system support
Network File Systems --->
File System 选项
< > Apple Macintosh file system support (EXPERIMENTAL)
<M> DOS FAT fssupport
< > VFAT (Windows-95) fssupport
<*> ISO 9660 CDROM file system support
< > Minix fs support
< > NTFS file system support (read only) < > OS/2 HPFS file system support
< > QNX4 file system support (read only) (EXPERIMENTAL)
内核调试选项
•KGDB通过串口连接目标板和开发主机。
•Abatron BDI2000通过BDM口连接目标板,然后通过以太网连接主机。
•两者都是通过gdb实现内核源码级调试。
调试前要添加调试选项,重新编译内核。
•Kernel hacking --->
–[ ] Include kgdb kernel debugger
–[ ] Include BDI-2000 user context switcher
程序开发工具
•交叉开发工具
•DDD
•KDevelop
•KGDB
•BDI2000
交叉开发工具
•目标板的开发工具在下面目录:
/opt/hardhat/devkit/ppc/8xx/bin
–例如:对于PowerPC 8xx系列的目标板,编
译器为ppc_8xx-gcc;调试器为ppc_8xx-gdb •gdb 为调试器,所要调试的程序要先加参数-g –ggdb编译。
•gdbserver是运行在目标板上的一个很小的程序,支持GDB远程调试程序。
DDD
•MontaVista提供DDD最新版本,DDD是图形界面调试工具:/opt/hardhat/host/bin/ddd
•DDD与GDB结合调试应用程序的过程:–编译应用程序hello.c,带选项-g
ppc_8xx-gdb –g -ggdb-o hello hello.c
–在开发主机上启动ddd,要指定调试器和调试文件:ddd–debugger ppc_8xx-gdb –gdb hello
–在目标板上启动gdbserver
–在ddd下边的控制台窗口,连接目标板gdbserver,
可以使用工具条调试了。
DDD界面
KDevelop
•Kdevelop是简单易用的C/C++集成开发环境(IDE) ,主要特点有:
•基于GUI的开发
•语法感知文本编辑器
•文件、类和函数层次结构浏览器
•工程模板
•内嵌式基于gdb的调试器
•GNU关于编译器、连接等开发工具集的隐含调用。
•针对特殊类型开发的工程—对于选择的工程类型,预定义
文件模板和对应的包含文件和库。
•内嵌的文档(HTML)浏览器。
•兼容CVS版本控制
KDevelop
•Kdevelop管理C/C++编程需要的开发工具,例如编译器、连接器、自动make和自动
配置工具。
•MontaVista已经把Kdevelop定制成在交叉开发环境中使用。
•通过配置启动:DDD KGDB TCT等工具。
KDevelop界面
KDevelop界面
KGDB
•内核调试方式。
•重新编译内核,添加调试选项:-g •需要在Makefile中需要一些编译选项。
•目标板加载新内核,启动后,停住等待连接。
•启动DDD调试,在命令窗口输入:target remote /dev/ttyS1
•连接成功,就可以设置断点执行了。
BDI2000
•Abatron BDI2000是BDM调试器,其作用相当于gdbserver,可以调试Linux内核源码。
•BDI2000针对不同类型的目标板需要固化不同的fiemware,例如PPC的8xx和4xx,ARM、MIPS等。
•需要配置BDI2000的IP地址,目标板初始化文件等。
•BDI2000通过JTAG口与目标板连接,通过以太网接口与开发主机连接。
BDI2000的连接。