高考数学复习与策略专题限时集训2 解三角形

合集下载

高三数学限时训练(解三角形、数列)(含答案)

高三数学限时训练(解三角形、数列)(含答案)

高三数学限时训练(解三角形、数列)考试时间:60分钟 1-10每题6分 11-12每题20分1.已知锐角△ABC 的面积为33,BC =4,CA =3,则角C 的大小为A .75°B .60°C .45°D .30°2.在200m 高的山顶上,测得山下一塔顶与塔底的俯角分别为30o和60o,则塔高为A .3m B .3m C .4003m D .2003m 3.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c .若a =5,b =3,sin B =22,则符合条件的三角形有A .1个B .2个C .3个D .0个4.在△ABC 中,内角A 、B 、C 的对边分别是a 、b 、c .若a 2-b 2=3bc ,sin C =23sin B ,则A 等于A .30°B .60°C .120°D .150°5.在△ABC 中,cos 2B 2=a +c 2c(a 、b 、c 分别为角A 、B 、C 的对边),则△ABC 的形状为A .等边三角形B .直角三角形C .等腰三角形或直角三角形D .等腰直角三角形6. 已知c b a ,,为△ABC 的三个内角A ,B ,C 的对边,向量(),1,3-=m(),sin ,cos A A n=若,n m⊥且,sin cos cos C c A b B a =+则角A ,B 的大小分别是 A .3,6ππ B .6,32ππ C .6,3ππ D . 3,3ππ7.设△ABC 的内角A ,B ,C 所对边的长分别是a , b , c , 且b =3,c =1,A=2B ,则a= .8.在△ABC 中,AB =3,AC =1,∠B =30°,则△ABC 的面积等于 . 9. 如图,海岸线上有相距5海里的两座灯塔A ,B ,灯塔B 位于灯塔A 的正南方向.海上停泊着两艘轮船,甲船位于灯塔A 的北偏西75°,与A 相距32海里的D 处;乙船位于灯塔B 的北偏西60°方向,与B 相距5海里的C 处.则两艘轮船之间的距离为 海里.10. 已知,,a b c 分别为ABC ∆的三个内角,,A B C 的对边,a =2,且(2)(sin sin )()sin b A B c b C +-=-,则ABC ∆面积的最大值为 .班级:_______________________ 姓名:________________11. 在△ABC 中,内角A ,B ,C 对边的边长分别是c b a ,,,已知3,2==C c .(1)若△ABC的面积等于3,求a ,b ;(2)若A A B C 2sin 2)sin(sin =-+,求△ABC 的面积.12.已知数列{a n }满足a 1=a , a n+1=1+na 1我们知道当a 取不同的值时,得到不同的数列,如当a =1时,得到无穷数列:.0,1,21:,21;,35,23,2,1---=得到有穷数列时当a (1)求当a 为何值时a 4=0;(2)设数列{b n }满足b 1=-1, b n+1=)(11*N n b n ∈-,若a 取数列{b n }中的任一个数,都得到一个有穷数列{a n }吗?请说明理由(3)若)4(23≥<<n a n ,求a 的取值范围.高三数学限时训练(解三角形、数列)参考答案1-6 BCB ABC 7.32 8. 32;349. 1310.11.解:(1)由余弦定理及已知条件,得422=-+ab b a . 又因为△ABC 的面积等于3,所以3sin 21=C ab ,得4=ab . 联立方程组⎩⎨⎧==-+,4,422ab ab b a 解得⎩⎨⎧==.2,2b a故2a ==b(2)由题意,得A A A B A B cos sin 4)sin()sin(=-++,得A A A B cos sin 2cos sin =.因为),0π(,∈B A ①当0cos =A ,即2π=A 时,6π=B ,334=a ,332=b , 此时△ABC的面积12S bc ==. ②当0cos ≠A 时,得A B sin 2sin =,由正弦定理,得a b 2=.联系方程组⎩⎨⎧==-+,2,422a b ab b a 解得342=a此时△ABC 的面积33223221sin 212=⋅⋅==a C ab S . 综上,△ABC 的面积332sin 21==C ab S . 12. (1)解法1:14321111121,,0,1,,;123n n n n a a a a a a a a a ++=+∴==∴=-=-==-- 解法2:1123441121322,1,.,,0,113n n a a a a a a a a a a a a a a a ++++==+∴====∴=-++(2)都是得到一个有穷数列{a n },理由如下:1111,1,{},1n n n n n n n b b a b b a b b b ++=∴=+=- 若取数列的一个数即, 132121111111,11,,n n n n b a b a b a b ---=+=+==+=+= 2则a 0111,111=-+=-==+n n a b a 所以数列{}n a 只能是有穷数列. (3)因为)4(223≥<<n a n ,所以)5(2a 11231≥<+<-n n , 解得2a 11<<-n ,又()2,1()2,23(⊆, 故必需只须2234<<a 时,都有)4(223≥<<n a n a a a a +=+=1112,aa a a a a ++=++=+=121111143 aaa a a a 213221111134++=+++=+= 由2122323<++<a a ,得0>a 所以a 的取值范围0>a .。

2024届高考数学一轮复习第四章《三角函数与解三角形》专项突破二 三角函数与解三角形

2024届高考数学一轮复习第四章《三角函数与解三角形》专项突破二 三角函数与解三角形
记 的内角 , , 的对边分别为 , , ,分别以 , , 为边长的三个正三角形的面积依次为 , , .已知 , .
(1) 求 的面积;
[答案] 规范答题由题意得 , , ,阅卷得分:正确利用面积公式写出三个正三角形的面积,收获1分;则 ,即 ,阅卷得分:根据三个正三角形面积之间的关系求出 , , 之间的关系,收获2分;由余弦定理的推论 ,得 ,阅卷得分:利用余弦定理的推论得出 ,收获2分;则 ,又 ,则 , ,
2. (2022湖北荆州高三四模)在 中,角 , , 所对的边分别为 , , , , ,延长 至 ,使 , 的面积为 .
(1) 求 的长;
[解析] 由 及余弦定理的推论得 ,因为 ,所以 ,又因为 ,所以 为等边三角形,故 ,由 ,可得 ,所以 ,解得 或 .
第四章 三角函数与解三角形
专项突破二 三角函数与解三角形
解三角形是高中数学的一个重要考点,在新高考Ⅰ卷中为解答题必考考点之一.主要与三角恒等变换、三角形的有关性质结合命题.通常第一问是解三角形,第二问是求三角形的面积、周长等的最值或范围.主要位于解答题的前两题位置,难度不大.需重点关注开放性试题,通过对不同条件的选取获得不同的解题思路,培养学生提出问题、发现问题、分析问题、解决问题的能力.
(2) 若 ,求 的取值范围.
[解析] , , , ,当且仅当 时取等号,又 , 的取值范围是 .
例4 (2022山东高三模拟)如图,在 中, , , 的对边分别为 , , , 的面积为 ,且 .
(1) 求 的大小;
[解析] 在 中,由 ,有 ,则 ,即 , , .
阅卷得分:利用已知条件求出 , 的值,收获2分;则 .阅卷得分:利用三角形面积公式求出三角形的面积,收获1分;
[解析] 思路分析先表示出 , , ,然后由 得到 ,结合余弦定理的推论求得 ,再由三角形面积公式求解即可;

2018版高考数学二轮复习第1部分重点强化专题限时集训2解三角形文

2018版高考数学二轮复习第1部分重点强化专题限时集训2解三角形文

专题限时集训(二) 解三角形[建议A 、B 组各用时:45分钟][A 组 高考达标]一、选择题1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b 3cos B =asin A,则cos B =( ) A .-12B .12 C .-32D .32B [由正弦定理,得b3cos B=a sin A =bsin B,即sin B =3cos B ,∴tan B = 3.又0<B <π,故B =π3,cos B =12.]2.已知外接圆半径为R 的△ABC 的周长为(2+3)R ,则sin A +sin B +sin C =( )【导学号:04024040】A .1+32B .1+34C.12+32D.12+ 3 A [由正弦定理知a +b +c =2R (sin A +sin B +sin C )=(2+3)R . 所以sin A +sin B +sin C =1+32.] 3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( )A .3 B.932C.332D .3 3C [∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6.① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6, ∴S △ABC =12ab sin C =12×6×32=332.]4.在△ABC 中,c =3,b =1,B =π6,则△ABC 的形状为( )A .等腰直角三角形B .直角三角形C .等边三角形D .等腰三角形或直角三角形D [根据余弦定理有1=a 2+3-3a ,解得a =1或a =2,当a =1时,三角形ABC 为等腰三角形,当a =2时,三角形ABC 为直角三角形,故选D.]5.如图2­2,四边形ABCD 中,AB =5,AD =22,CD =3,∠CBD =30°,∠BCD=120°,则∠ADB =( )图2­2A .90°B .60° C.45°D .30°C [在△BCD 中,由正弦定理得BD =CD sin ∠CBD ·sin∠BCD =312×32=3,在△ABD 中,由余弦定理得cos ∠ADB =AD 2+BD 2-AB 22AD ·BD=22+32-522×22×3=22,所以∠ADB =45°,故选C.] 二、填空题6.(2017·长沙二模)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知b =45,c =5,且B =2C ,点D 为边BC 上一点,且CD =3,则△ADC 的面积为________.6 [在△ABC 中,由正弦定理得b sin B =c sin C ,又B =2C ,则b 2sin C cos C =csin C,又sin C >0,则cos C =b 2c =255,又C 为三角形的内角,则sin C =1-cos 2C =1-⎝⎛⎭⎪⎫2552=55,则△ADC 的面积为12AC ·CD sin C =12×45×3×55=6.]7.(2016·石家庄一模)已知△ABC 中,AC =4,BC =27,∠BAC =60°,AD ⊥BC 于点D ,则BDCD的值为__________. 【导学号:04024041】6 [在△ABC 中,由余弦定理可得BC 2=AC 2+AB 2-2AC ·AB cos ∠BAC ,即28=16+AB2-4AB ,解得AB =6或AB =-2(舍),则cos ∠ABC =28+36-162×27×6=27,BD =AB ·cos∠ABC =6×27=127,CD =BC -BD =27-127=27,所以BDCD =6.]8.如图2­3,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =__________m.图2­31039 [分析题意可知,设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2·3h ·h 3·⎝ ⎛⎭⎪⎫-12,解得h =1039,故塔的高度为1039 m .]三、解答题9.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos B -2cos A 2a -b =cos Cc.(1)求ab的值;(2)若角A 是钝角,且c =3,求b 的取值范围.[解](1)由题意及正弦定理得sin C cos B -2sin C cos A =2sin A cos C -sin B cos C ,1分∴sin C cos B +sin B cos C =2(sin C cos A +sin A cos C ), ∴sin(B +C )=2sin(A +C ). 3分 ∵A +B +C =π,4分 ∴sin A =2sin B ,∴a b=2.5分(2)由余弦定理得cos A =b 2+9-a 22b ·3=b 2+9-4b 26b =9-3b 26b<0,∴b > 3.①8分∵b +c >a ,即b +3>2b ,∴b <3,② 10分 由①②得b 的取值范围是(3,3).10.(2016·广州二模)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,2b sin B =(2a +c )sin A +(2c +a )sin C.(1)求B 的大小;(2)若b =3,A =π4,求△ABC 的面积.【导学号:04024042】[解](1)∵2b sin B =(2a +c )sin A +(2c +a )sin C. 由正弦定理得2b 2=(2a +c )a +(2c +a )c , 1分 化简得a 2+c 2-b 2+ac =0,2分 ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.6分 ∵0<B <π,∴B =2π3.5分 (2)∵A =π4,∴C =π-π4-2π3=π3-π4,6分 ∴sin C =sin ⎝ ⎛⎭⎪⎫π3-π4=sin π3cos π4-cos π3sin π4=6-24.由正弦定理得c sin C =bsin B,9分 ∵b =3,B =2π3,∴c =b sin C sin B =6-22,∴△ABC 的面积S =12bc sin A =12×3×6-22×sin π4=3-34.[B 组 名校冲刺]一、选择题1.在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,若b sin A -3a cos B =0,且b 2=ac ,则a +cb的值为( )【导学号:04024043】A.22B . 2C .2D .4C [由正弦定理得sin B sin A -3sin A cos B =0.∵sin A ≠0,∴sin B -3cos B =0,∴tan B = 3.又0<B <π,∴B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,即b 2=(a +c )2-3ac . 又b 2=ac ,∴4b 2=(a +c )2,解得a +cb=2. 故选C.]2.(2016·全国卷Ⅲ)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-31010C [法一:设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c , 则由题意得S △ABC =12a ·13a =12ac sin B ,∴c =23a .由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+29a 2-2×a ×23a ×22=59a 2,∴b =53a .∴cos A =b 2+c 2-a22bc=59a 2+29a 2-a 22×53a ×23a =-1010.故选C. 法二:同法一得c =23a . 由正弦定理得sin C =23sin A, 又B =π4, ∴sin C =sin ⎝ ⎛⎭⎪⎫3π4-A =23sin A ,即22cos A +22sin A =23sin A ,∴tan A =-3,∴A 为钝角. 又∵1+tan 2A =1cos 2A ,∴cos 2A =110,∴cos A =-1010.故选C.] 3.(2017·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sinC -cos C )=0,a =2,c =2,则C =( )A.π12B.π6C.π4D.π3B [因为a =2,c =2,所以由正弦定理可知,2sin A =2sin C ,故sin A =2sin C. 又B =π-(A +C ),故sin B +sin A (sin C -cos C ) =sin(A +C )+sin A sin C -sin A cos C=sin A cos C +cos A sin C +sin A sin C -sin A cos C =(sin A +cos A )sin C =0.又C 为△ABC 的内角, 故sin C ≠0,则sin A +cos A =0,即tan A =-1. 又A ∈(0,π),所以A =3π4.从而sin C =12sin A =22×22=12. 由A =3π4知C 为锐角,故C =π6.故选B.]4.如图2­4,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A =( )图2­4A.223 B.24 C.64D.63C [∵DE =22,∴BD =AD =DE sin A =22sin A .∵∠BDC =2∠A ,在△BCD 中,由正弦定理得BC sin ∠BDC =BD sin C ,∴4sin 2A =22sin A ×23=423sin A,∴cos A =64,故选C.]二、填空题5.已知在△ABC 中,B =2A ,∠ACB 的平分线CD 把三角形分成面积比为4∶3的两部分,则cos A =__________.23[由题意可知S △ACD ∶S △BCD =4∶3, ∴AD ∶DB =4∶3,AC ∶BC =4∶3,在△ABC 中,由正弦定理得 sin B =43sin A ,又B =2A ,∴sin 2A =43sin A ,∴cos A =23.]6.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为S ,且2S =a 2+b 2-c 2+2ab ,则tan C 等于________.【导学号:04024044】-43 [在△ABC 中,2S =a 2+b 2-c 2+2ab ,把cos C =a 2+b 2-c 22ab代入上式,得2S =2ab cos C +2ab ,再利用三角形的面积公式S =12ab sin C ,可得2×12ab sin C =2ab cos C +2ab ,化简,得sin C -2cos C =2,两边平方得sin 2C +4cos 2C -4sin C ·cos C =4,即sin 2C +4cos 2C -4sin C cos C sin 2C +cos 2C =4,分子分母同除以cos 2C ,得tan 2C +4-4tan C tan 2C +1=4,解得tan C =-43或tan C =0(舍去),故填-43.]三、解答题7.(2016·福州模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2b -c )cos A =a cos C.(1)求角A 的大小;(2)若a =3,求△ABC 周长的最大值.【导学号:04024045】[解] (1)由(2b -c )cos A =a cos C 及正弦定理, 得(2sin B -sin C )cos A =sin A cos C , 3分∴2sin B cos A =sin C cos A +sin A cos C , ∴2sin B cos A =sin(C +A )=sin B. ∵B ∈(0,π),∴sin B ≠0. ∵A ∈(0,π),cos A =12,∴A =π3.(2)由(1)得A =π3,由正弦定理得b sin B =c sin C =a sin A =332=23,∴b =23sin B ,c =23sin C. 8分△ABC 的周长l =3+23sin B +23sin ⎝⎛⎭⎪⎫B +π3=3+23sin B +23⎝ ⎛⎭⎪⎫sin B cos π3+cos B sin π3=3+33sin B +3cos B=3+6sin ⎝⎛⎭⎪⎫B +π6.∵B ∈⎝⎛⎭⎪⎫0,2π3,∴当B =π3时,△ABC 的周长取得最大值为9.8.已知a ,b ,c 为△ABC 的内角A ,B ,C 的对边,满足sin B +sin C sin A =2-cos B -cos Ccos A,函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π上单调递减.(1)证明:b +c =2a ;(2)若f ⎝ ⎛⎭⎪⎫π9=cos A ,证明:△ABC 为等边三角形.[证明](1)∵sin B +sin Csin A=2-cos B -cos Ccos A,∴sin B cos A +sin C cos A =2sin A -cos B sin A -cos C sin A , ∴sin B cos A +cos B sin A +sin C cos A +cos C sin A =2sin A , 4分sin(A +B )+sin(A +C )=2sin A , sin C +sin B =2sin A , ∴b +c =2a .6分 (2)由题意知,2πω=4π3,解得ω=32,7分∵f ⎝ ⎛⎭⎪⎫π9=sin π6=12=cos A ,A ∈(0,π), ∴A =π3,8分由余弦定理知,cos A =b 2+c 2-a 22bc =12,∴b 2+c 2-a 2=bc .∵b +c =2a , ∴b 2+c 2-⎝⎛⎭⎪⎫b +c 22=bc ,即b 2+c 2-2bc =0,∴b =c .11分 又A =π3,∴△ABC 为等边三角形.12分。

2023-2024学年高考数学专项复习——三角函数与解三角形(含答案)

2023-2024学年高考数学专项复习——三角函数与解三角形(含答案)

决胜3.在中,角,,所对的边分别为,,,且,.ABC A B C a b c 23a c b +=3A C π-=(1)求;cos B (2)若,求的面积.5b =ABC 4.设()()()()πsin 2πcos 2cos sin πf ααααα⎛⎫++ ⎪⎝⎭=---(1)将化为最简形式;()f α(2)已知,求的值.()3f θ=-()sin 1sin2sin cos θθθθ++5.已知函数.()π1sin 232f x x ⎛⎫=-- ⎪⎝⎭(1)求函数的单调递增区间,并解不等式;()f x ()0f x ≥(2)关于的方程在上有两个不相等的实数解,求实数的取x 11022m f x +⎛⎫+= ⎪⎝⎭[]0,πx ∈12,x x m 值范围及的值.()12f x x +6.已知角为第四象限角,且角的终边与单位圆交于点.αα1,3P y ⎛⎫ ⎪⎝⎭(1)求的值;sin α(2)求的值.()πtan sin 2sin cos παααα⎛⎫+ ⎪⎝⎭+7.在平面直角坐标系中,角以为始边,它的终边与单位圆交于第二象限内的点xOy αOx .(),P x y (1)若,求及的值;255y =tan α7sin 2cos sin 4cos αααα+-(2)若,求点P 的坐标.sin 11cos 2αα=-(1)若,求;3BC =ADCD (2)若,求线段的长11cos 14A =AD(1)求函数在区间上的最大值和最小值;()f x ππ[,]64-(2)若函数在区间上恰有2个零点,求的值.5()()4g x f x =-π(0,)212,x x 12cos()x x -11.在中,,点D 在AB 边上,且为锐角,,的面积为ABC 25BC =BCD ∠2CD =BCD △4.(1)求的值;cos BCD ∠(2)若,求边AC 的长.30A =︒12.记三个内角的对边分别为,已知为锐角,ABC ,,A B C ,,a b c B .sin sin sin 2sin sin a A b B c C a A B +-=(1)求;()sin A C -(2)求的最小值.sin sin A B 13.已知函数且的最小正周期为.()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭()f x π(1)求函数的单调递减区间;()f x (2)若,求x 的取值范围.()22f x ≤14.已知函数在上单调递增.()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦(1)求的取值范围:ω(2)当取最大值时,将的图象向左平移个单位,再将图象上所有点的横坐标变为原来ω()f x π9的3倍,得到的图象,求在内的值域.()g x ()g x ππ,32⎡⎤-⎢⎥⎣⎦15.在中,角所对的边分别为,已知.ABC ,,A B C ,,a b c sin cos cos cos cos sin sin A B C B C A B +=--(1)求;C (2)若外接圆的半径为,求的面积最大值.ABC 233ABC 16.已知函数.()()πe e sin ,32x xf x xg x --==(1)若,求;321π3f α⎛⎫+= ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)设函数,证明:在上有且仅有一个零点,且()()ln h x x f x =+()h x ()0,∞+0x .()()034g f x >-17.在平面直角坐标系中,角的顶点与原点重合,始边与轴的非负半轴重合,终xOy αO x 边与单位圆交于第三象限点.525,55P ⎛⎫-- ⎪⎝⎭(1)求的值;sin cos αα-(2)若角的终边绕原点按逆时针方向旋转,与单位圆交于点,求点的坐标.αO π2Q Q 18.设函数,且.2()2cos 23sin cos (0)f x x x x m ωωωω=++>(0)1f =(1)求的值;m (2)再从条件①、条件②、条件③这三个条件中选择一个作为已知,使函数存在,求()f x 的值及的零点.ω()f x 条件①:是奇函数;()f x 条件②:图象的两条相邻对称轴之间的距离是;()f x π条件③:在区间上单调递增,在区间上单调递减.()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦注:如果选择的条件不符合要求,第(2)问得分;如果选择多个符合要求的条件分别解答,0按第一个解答计分.答案:1.(1)1-(2)12-【分析】(1)根据点坐标求得.P tan α(2)根据点坐标求得,利用诱导公式求得正确答案.P sin ,cos αα【详解】(1)即,3π,cos π3sin 44P ⎛⎫ ⎪⎝⎭22,22P ⎛⎫- ⎪ ⎪⎝⎭所以.22tan 122α-==-(2)由(1)得,所以,22,22P ⎛⎫- ⎪ ⎪⎝⎭22222sin 22222α-==-⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭,22222cos 22222α==⎛⎫⎛⎫+- ⎪ ⎪⎝⎭⎝⎭()1617πsin πsin πsin sin 808π22αααα⎛⎫⎛⎫-+=++ ⎪ ⎪⎝⎭⎝⎭πsin sin sin cos 2αααα⎛⎫=+= ⎪⎝⎭.221222⎛⎫=-⨯=- ⎪ ⎪⎝⎭2.(1),1tan 7α=1tan 3β=(2)π4【分析】(1)先根据同角三角函数平方关系求出,再根据商数关系和两角和正切公式cos α化简得结果;(2)根据二倍角公式得,,再根据两角和余弦公式得,最后根据sin 2,cos 2ββ()cos 2αβ+范围求结果.【详解】(1)因为为锐角,,所以,,αβ2sin 10α=272cos 1sin 10αα=-=所以,2sin 110tan cos 77210ααα===又因为,所以,tan tan 1tan()1tan tan 2αβαβαβ++==-1tan 3β=(2)因为为锐角,,所以,解得,,αβ1tan 3β=22sin 1cos 3sin cos 1ββββ⎧=⎪⎨⎪+=⎩10sin 10310cos 10ββ⎧=⎪⎪⎨⎪=⎪⎩所以,sin 22sin cos 103103101052βββ==⨯=⨯,24cos 212sin 5ββ=-=所以,()724232cos 2cos cos 2sin sin 21051052αβαβαβ+=-=⨯-⨯=又因为为锐角,所以,,αβ3π022αβ<+<所以.π24αβ+=3.(1)78(2)111512【分析】(1)根据已知条件,利用正弦定理化为,结合23a c b +=sin sin 23sin A C B +=已知条件,有,,代入解三角形即可.3A C π-=32B C π=-232B A π=-sin sin 23sin A C B +=(2)根据(1)终结论,利用余弦定理,结合,,解得,利用面5b =23a c b +=443ac =积公式即可求得面积为.11115sin 212ABC S ac B ==△【详解】(1)因为,所以由正弦定理得,23a c b +=sin sin 23sin A C B +=因为,且,所以,,3A C π-=A B C π++=32B C π=-232B A π=-所以2sin sin 23sin 3232B B B ππ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭即,22sin cos cos sin sin cos cos sin 23sin 32323232B B B B B ππππ-+-=所以,所以,3cos 23sin 2B B =cos 4sin cos 222B B B =因为,所以,所以;022B π<<1sin 24B =27cos 12sin 28B B =-=(2)由余弦定理可得,2222cos b a c ac B =+-即,得,得,()27524a c ac ac =+--()2155234b ac =-443ac =因为,所以,所以7cos 8B =15sin 8B =11115sin 212ABC S ac B ==△4.(1)tan α-(2)65【分析】(1)根据三角函数的诱导公式,结合同角三角函数的商式关系,可得答案;(2)利用正弦函数的二倍角公式以及同角三角函数的平方式,整理齐次式,可得答案.【详解】(1).()()()()πsin 2πcos sin sin 2tan cos sin πcos sin f αααααααααα⎛⎫++ ⎪-⎝⎭===----(2)由,则,()tan 3f θθ=-=-tan 3θ=,()()()()()22222sin 1sin2sin (sin cos )tan (tan 1)sin cos sin cos sin cos tan 1tan 1θθθθθθθθθθθθθθθ+++==+++++.()()2223(31)34641053131⨯+⨯===⨯+⨯+5.(1)答案见解析(2)(()1212,3,2f x x ⎤--+=-⎦【分析】(1)由题意分别令,πππ2π22π,Z 232k x k k -+≤-≤+∈,解不等式即可得解.ππ5π2π22π,Z 366k x k k +≤-≤+∈(2)由题意得在上有两个不相等的实数解,结合三角()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 函数单调性、最值即可求出的取值范围,结合对称性代入求值即可得的值.m ()12f x x +【详解】(1)由题意令,解得,πππ2π22π,Z 232k x k k -+≤-≤+∈π5πππ,Z 1212k x k k -+≤≤+∈即函数的单调递增区间为,()f x ()π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦令,所以,()π1sin 2032f x x ⎛⎫=--≥ ⎪⎝⎭π1sin 232x ⎛⎫-≥ ⎪⎝⎭所以,解得,ππ5π2π22π,Z 366k x k k +≤-≤+∈π7πZ 412ππ,k x k k +≤≤+∈所以不等式的解集为.()0f x ≥()π7ππ,π,Z 412k k k ⎡⎤++∈⎢⎥⎣⎦(2)由题意即,11022m f x +⎛⎫+= ⎪⎝⎭πsin 032m x ⎛⎫-+= ⎪⎝⎭即在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 当时,,而在上单调递减,在上单[]0,πx ∈ππ2π,333t x ⎡⎤=-∈-⎢⎥⎣⎦2sin y t =-ππ,32⎡⎤-⎢⎥⎣⎦π2π,23⎡⎤⎢⎥⎣⎦调递增,所以当即时,,ππ32t x =-=5π6x =()min 2g x =-当即时,,ππ33t x =-=-0x =()max 3g x =又即时,,π2π33t x =-=πx =()3g x =-所以若在上有两个不相等的实数解,()π2sin 3m x g x ⎛⎫=--= ⎪⎝⎭[]0,πx ∈12,x x 则实数的取值范围为,m (2,3⎤--⎦因为,所以是的对称轴,()min 5π26g x g ⎛⎫==- ⎪⎝⎭5π6x =()g x所以.()125π5ππ112sin 263322f x x f ⎛⎫⎛⎫+=⨯=⨯--=- ⎪ ⎪⎝⎭⎝⎭6.(1)223-(2)3-【分析】(1)将点代入单位圆后结合任意角三角函数定义求解即可.(2)利用诱导公式化简求值即可.【详解】(1)在单位圆中,解得,22113y ⎛⎫+= ⎪⎝⎭223y =±因为第四象限角,所以α223y =-22sin 3α∴=-(2)第四象限角22sin ,3αα=-1cos 3α∴=.()πtan sin 123sin cos πcos ααααα⎛⎫+ ⎪⎝⎭∴=-=-+7.(1),;2-2(2).34(,)55-【分析】(1)根据给定条件,求出点的坐标及,再利用齐次式法计算即得.P tan α(2)利用同角公式,结合三角函数定义求解即得.【详解】(1)角以Ox 为始边,它的终边与单位圆交于第二象限内的点,α(),P x y 当时,,则,255y =22551()55x =--=-tan 2y x α==-所以.7tan 27(2)227ta 4sin 2cos sin 42c 4os n αααααα+⨯-++==---=-(2)依题意,,sin 0,cos 0αα><由,得,代入,sin 11cos 2αα=-cos 12sin αα=-22sin cos 1αα+=于是,解得,22sin (12sin )1αα+-=2sin ,cos 1sin 5543ααα==--=-即,所以点P 的坐标为.34,55x y =-=34(,)55-8.(1);π3A =(2).2AD =【分析】(1)由正弦定理化边为角,然后由三角恒等变换求解;(2)设,利用由余弦定理求得,从而由正弦定理求得AD x =πADB ADC ∠+∠=cos ADB ∠(用表示),再代入余弦定理的结论中求得值.AC x x 【详解】(1)由正弦定理及已知得2cos cos cos 2c a A B b A =-,sin 2sin cos cos sin cos 2sin 2cos sin cos 2sin(2)C A A B B A A B B A A B =-=-=-或,C 2A B =-2πC A B +-=又,所以,A B ≤22πC A B C B B C B +-≤+-=+<所以,从而,所以;C 2A B =-2πB C A A +==-π3A =(2)由余弦定理得,,2222cos AB BD AD AD BD ADB =+-⋅∠,2222cos AC CD AD AD CD ADC =+-⋅∠又是角平分线,所以,又,则,记,因为AD 2AC CD AB BD ==3a =2,1CD BD ==AD x =,πADB ADC ∠+∠=所以,所以,2244cos 412cos x x ADC x x ADC +-∠=++∠cos 4x ADC ∠=-,则,0πADC <∠<2sin 116x ADC ∠=-由正弦定理得,sin sin AC CD ADC CAD =∠∠所以,222116π16sin 6x AC x =⋅-=-所以,解得,即.221644()4x x x x -=+-⋅-2x =2AD =9.(1)263(2)677【分析】(1)利用正弦定理及其余弦定理求解;(2)利用三角形的面积公式求解.【详解】(1)因为平分,,故,AD BAC ∠3AB BC ==2C BAC θ∠=∠=在中,由正弦定理知:,ADC △sin sin 22cos sin sin AD ACD CD DAC θθθ∠===∠由余弦定理有,2222223231cos 2cos 22323CA CB BA C CA CB θ+-+-====⋅⨯⨯又因为,所以,21cos 22cos 13θθ==-6cos 3θ=即;262cos 3AD CDθ==(2)由,得,则,11cos 14A =11cos 214θ=cos 2157cos 214θθ+==又由,()11sin 2sin 22ABC ABD ACD S AB AC S S AB AC AD θθ=⋅=+=+△△△得.()sin 21267cos sin 57AB AC AD AB AC θθθ⋅===+10.(1)最大值和最小值分别为;2,1-(2).58【分析】(1)求出函数的解析式,再利用余弦函数的性质求解即得.()f x (2)利用余弦函数图象的对称性,结合诱导公式计算.12cos()x x -【详解】(1)由函数的最小正周期为,得,解得,()f x π2ππω=π2,()2cos(2)3x f x ω==-当时,,则当,即时,,ππ[,]64x ∈-π2ππ2[,]336x -∈-π2π233x -=-π6x =-min ()1f x =-当,即时,,π203x -=π6x =max ()2f x =所以函数在区间上的最大值和最小值分别为.()f x ππ[,]64-2,1-(2)()2222252cos 25222525BD BC CD BC CD BCD =+-⨯∠=+-⨯⨯⨯,故,204816=+-=4BD =有,故,22216420BD CD BC +=+==CD AB ⊥则,即.21sin sin 302CD A AC AC ==︒==4AC =12.(1);()sin 1A C -=(2)无最小值;【分析】(1)利用正弦定理和余弦定理可得,结合为锐角可得,所sin cos A C =B π2A C =+以;()sin 1A C -=(2)利用诱导公式可得,再由导数判断出在3sin sin 2sin sin A B A A =-()32f t t t =-上单调递增,可得无最小值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭sin sin A B 【详解】(1)因为,sin sin sin 2sin sin a A b B c C a A B +-=由正弦定理得,2222sin a b c ab A +-=由余弦定理可得,2222cos a b c ab C +-=所以可得,解得或;sin cos A C =π2A C =-π2A C =+又为锐角,所以(舍),即,B π2A C =-π2A C =+因此;()πsin sin12A C -==(2)结合(1)中,又可得:π2A C =+πA B C ++=;33πsin sin sin sin 2sin cos 22sin sin 2A B A A A A A A ⎛⎫=-=-=- ⎪⎝⎭令,则,sin t A =()3sin sin 2A B f t t t ==-又为锐角,,所以,B 3ππ20,22A ⎛⎫-∈ ⎪⎝⎭π3π24A <<可得,212t <<所以,当时,恒成立,()261f t t '=-212t <<()2610f t t '=->即可得为单调递增,()32f t t t =-所以时,,所以无最值;2,12t ⎛⎫∈ ⎪ ⎪⎝⎭()()0,1f t ∈()f t 因此无最小值;sin sin A B 13.(1)答案见解析(2)答案见解析【分析】(1)根据最小正周期为求得,求出单调递减区间;π=1ω±(2)根据写出x 的取值范围.()22f x ≤【详解】(1)因为的周期为,()πsin 23f x x ω⎛⎫=+ ⎪⎝⎭π故,所以.2ππ2ω==1ω±当时,,=1ω()πsin 23f x x ⎛⎫=+ ⎪⎝⎭由,得到,ππ3π2π22π232k x k +≤+≤+π7πππ1212k x k +≤≤+故的递减区间为.()f x π7ππ,π,Z 1212k k k ⎡⎤++∈⎢⎥⎣⎦当时,,1ω=-()ππsin 2sin 233f x x x ⎛⎫⎛⎫=-+=-- ⎪ ⎪⎝⎭⎝⎭由,得到πππ2π22π232k x k -+≤-≤+π5πππ1212k x k -+≤≤+故的递减区间为.()f x π5ππ,π,Z 1212k k k ⎡⎤-++∈⎢⎥⎣⎦(2)当时,,=1ω()π2sin 232f x x ⎛⎫=+≤ ⎪⎝⎭所以,5πππ2π22π434k x k -+≤+≤+解得.19ππππ,Z 2424k x k k -+≤≤-+∈当时,,1ω=-()ππ2sin 2sin 2332f x x x ⎛⎫⎛⎫=-+=--≤ ⎪ ⎪⎝⎭⎝⎭即,π2sin 232x ⎛⎫-≥- ⎪⎝⎭所以,ππ5π2π22π434k x k -+≤-≤+解得.π19πππ2424k x k +≤≤+综上:当时,;=1ω19ππππ2424k x k -+≤≤-+当时,.1ω=-π19πππ,Z 2424k x k k +≤≤+∈14.(1)302ω<≤(2)260,4⎡⎤+⎢⎥⎣⎦【分析】(1)由题设条件,列出不等式,求解即可.,32πππ4π2ωω-≥-≤(2)根据函数图像平移变换,写出函数,再结合区间和三角函数性质求1π()sin 26g x x ⎛⎫=+ ⎪⎝⎭出值域.【详解】(1)由,得 ,ππ,34x ⎡⎤∈-⎢⎥⎣⎦ππ,34x ωωω⎡⎤∈-⎢⎥⎣⎦又函数在上单调递增,()sin (0)f x x ωω=>ππ,34⎡⎤-⎢⎥⎣⎦所以,解得,32πππ4π2ωω-≥-≤32ω≤因为,所以.0ω>302ω<≤(2)由(1)知的最大值为,此时,ω323()sin 2f x x =根据题意,,31π1π()sin sin 23926g x x x ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦当时,.ππ,32x ⎡⎤∈-⎢⎥⎣⎦1πππ02664x ≤+≤+所以,故值域为.ππ260()sin 644g x +⎛⎫≤≤+= ⎪⎝⎭260,4⎡⎤+⎢⎥⎣⎦15.(1)π3C =(2)3【分析】(1)利用正弦定理、三角恒等变换计算即可.(2)利用正余弦定理、三角形面积公式及基本不等式计算即可.【详解】(1)由已知可得:,222sin sin sin cos cos A A B B C -=-∴,()222sin sin sin 1sin 1sin A A B B C -=---∴,222sin sin sin sin sin A B C A B +-=根据正弦定理可知:,222a b c ab +-=∴.2221cos 22a b c C ab +-==又.π(0,π),3C C ∈∴=(2)∵外接圆的半径为,ABC 233r =∴,解得.432sin 3c r C==2c =又由(1)得,222a b c ab +-=故,∴,当且仅当时等号成立22424a b ab ab +-=≥-4ab ≤2a b ==∴,13sin 324ABC S ab C ab ==≤△∴的面积最大值为.ABC 316.(1)23(2)证明见解析【分析】(1)化简已知条件求得,利用诱导公式求得.πsin 3α⎛⎫+ ⎪⎝⎭32πf α⎛⎫- ⎪⎝⎭(2)先求得的表达式,然后对进行分类讨论,结合零点存在性定理证得在()h x x ()h x 上有且仅有一个零点,求得的表达式,然后利用函数的单调性证得不等()0,∞+0x()()0g f x 式成立.()()034g f x >-【详解】(1)由,则,321π3f α⎛⎫+= ⎪⎝⎭π2sin 33α⎛⎫+= ⎪⎝⎭所以32π2sin π3f αα⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.ππ2sin πsin 333αα⎡⎤⎛⎫⎛⎫=-+=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦(2)证明:由题意得.()πln sin 3h x x x =+①当时,,所以单调递增.30,2x ⎛⎤∈ ⎥⎝⎦ππ0,32x ⎛⎤∈ ⎥⎝⎦()h x 又,由于,而,1πsin ln226h ⎛⎫=- ⎪⎝⎭π1sin 62=1ln2ln e 2>=所以.又,102h ⎛⎫< ⎪⎝⎭()3102h =>所以由零点存在定理得在内有唯一零点,使得.()h x 30,2⎛⎤ ⎥⎝⎦0x ()00h x =当时,,所以,则在上无零点;3,32x ⎛⎤∈ ⎥⎝⎦πln 0,sin 03x x >≥()0h x >()h x 3,32⎛⎤ ⎥⎝⎦当时,,所以,则在上无零点.()3,x ∈+∞πln 1,1sin 13x x >-≤≤()0h x >()h x ()3,+∞综上,在上有且仅有一个零点.()h x ()0,∞+0x ②由①得,且,0112x <<()00ln 0x f x +=则.()()()()00000011ln ,ln 2f x x g f x g x x x ⎛⎫=-=-=- ⎪⎝⎭由函数的单调性得函数在上单调递增,()000112x x x ϕ⎛⎫=-⎪⎝⎭1,12⎛⎫ ⎪⎝⎭则,()01324x ϕϕ⎛⎫>=- ⎪⎝⎭故.()()034g f x >-求解已知三角函数值求三角函数值的问题,可以考虑利用诱导公式等三角恒等变换的公式来进行求解.判断函数零点的个数,除了零点存在性定理外,还需要结合函数的单调性来进行判断.17.(1)55-(2)255,55⎛⎫- ⎪ ⎪⎝⎭【分析】(1)直接根据三角函数的定义求解;(2)利用诱导公式求出旋转后的角的三角函数值即可.【详解】(1)由三角函数的定义可得,5sin c 5o 255s αα-=-=,所以;5s 5in 5c 2os 555αα⎛⎫--=- ⎪ ⎪⎝⎭-=-(2)角的终边绕原点O 按逆时针方向旋转,得到角,απ2π2α+则,,π5sin cos 25αα⎛⎫+==- ⎪⎝⎭π25cos sin 25αα⎛⎫+=-= ⎪⎝⎭所以点Q 的坐标为.255,55⎛⎫- ⎪ ⎪⎝⎭18.(1)1m =-(2)选择①,不存在;选择②,,;选择③,,12ω=ππ,Z 6k k -+∈1ω=ππ,Z 122k k -+∈【分析】(1)利用二倍角公式以及辅助角公式化简函数,根据,即可求解;(0)1f =(2)根据奇函数性质、三角函数图象的性质以及三角函数的单调性,即可逐个条件进行判断和求解.【详解】(1)2()2cos 23sin cos f x x x x m ωωω=++,πcos 23sin212sin 216x x m x m ωωω⎛⎫=+++=+++ ⎪⎝⎭又,所以.1(0)2112f m =⨯++=1m =-(2)由(1)知,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭选择①:因为是奇函数,()f x 所以与已知矛盾,所以不存在.()00f =()f x 选择②:因为图象的两条相邻对称轴之间的距离是,()f x π所以,,,π2T =2πT =2π21T ω==12ω=则,()π2sin 6f x x ⎛⎫=+ ⎪⎝⎭令,()π2sin 06f x x ⎛⎫=+= ⎪⎝⎭解得.ππ,Z 6k x k -+∈=即零点为.()f x ππ,Z 6k k -+∈选择③:对于,,()π2sin 26f x x ω⎛⎫=+ ⎪⎝⎭0ω>令,,πππ2π22π,Z 262k x k k ω-+≤+≤+∈ππ3π2π22π,Z 262k x k k ω+≤+≤+∈解得,,ππππ,Z 36k k x k ωωωω-+≤≤+∈ππ2ππ,Z 63k k x k ωωωω+≤≤+∈即增区间为,()f x ππππ,,Z 36k k k ωωωω⎡⎤-++∈⎢⎥⎣⎦减区间为,()f x ππ2ππ,,Z 63k k k ωωωω⎡⎤++∈⎢⎥⎣⎦因为在区间上单调递增,在区间上单调递减,()f x π0,6⎡⎤⎢⎥⎣⎦ππ,63⎡⎤⎢⎥⎣⎦所以时符合,0k =即在上单调递增,在上单调递减,()f x ππ,36ωω⎡⎤-⎢⎥⎣⎦π2π,63ωω⎡⎤⎢⎥⎣⎦所以且,π03ππ66ωω⎧-≤⎪⎪⎨⎪≥⎪⎩2ππ33ππ66ωω⎧≥⎪⎪⎨⎪≤⎪⎩解得,则,1ω=()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭所以令,()π2sin 206f x x ⎛⎫=+= ⎪⎝⎭解得,ππ,Z 122k x k =-+∈即零点为.()f x ππ,Z 122k k -+∈。

新教材2024高考数学二轮专题复习分册一专题二三角函数解三角形课件

新教材2024高考数学二轮专题复习分册一专题二三角函数解三角形课件
=2,则
的值
2
sin α
1
D.
2
C. 2
答案:D
α
解析:由tan
α
2
cos2 2
α
1+cos α 1+2 cos 2 −1
1
1
=2,则

α
α =
α
α=
α= .故选D.
2
sin α
2
2 sin cos
sin cos
tan
2
2
2
2
2
(2)[2023·安徽宣城二模]已知 3sin α-sin
=(
)
7
9
7
4
)
1
B.
2
D.-
3
2
答案:D
解析:由已知可得,sin
1−cos2α 3
= .
2
4
所以sin2α=

(2α+ )=cos
2
(2α+π)=-cos
3
2
1
2α= ,所以cos
2
又角α在第四象限内,所以sin α=- sin2 α=- .故选D.
1
2α=- ,
2
2. (1)[2023·安徽安庆二模]已知第二象限角α满足sin
2
即sin2α+2sinαcos α+cos2α= ,所以2sinαcos
3
因为0<α<π,所以cos α<0<sin α,所以sin α-cos α>0.
1
4
2 3
.
3
因为(sin α-cos α)2=sin2α-2sinαcos α+cos2α=1+ = ,所以sinα-cos α=

年高考数学二轮专题复习与策略第部分专题三角函数、解三角形、平面向量第平面向量专题限时集训理

年高考数学二轮专题复习与策略第部分专题三角函数、解三角形、平面向量第平面向量专题限时集训理

专题限时集训(八) 平面向量(建议用时:45分钟)1.(2021 ·江苏高考)向量a =(2,1),b =(1,-2),假设m a +n b =(9,-8)(m ,n ∈R ),那么m -n 的值为______.-3 [∵m a +n b =(2m +n ,m -2n )=(9,-8),∴⎩⎪⎨⎪⎧2m +n =9,m -2n =-8,∴⎩⎪⎨⎪⎧m =2,n =5,∴m -n =2-5=-3.]2.设x ,y ∈R ,向量a =(x,1),b =(1,y ),c =(2,-4),且a ⊥c ,b ∥c ,那么|a +b |=________.【导学号:19592024】10 [∵a =(x,1),b =(1,y ),c =(2,-4), 由a ⊥c ,得a ·c =0,即2x -4=0,∴x =2. 由b ∥c ,得1×(-4)-2y =0,∴y =-2. ∴a =(2,1),b =(1,-2). ∴a +b =(3,-1), ∴|a +b |=32+-12=10.]3.在平行四边形ABCD 中,AC 为一条对角线,AB →=(2,4),AC →=(1,3),那么DA→=________.(1,1) [DA→=CB →=AB →-AC →=(2,4)-(1,3)=(1,1).]4.△ABC 中,AB 边的高为CD .假设CB→=a ,CA →=b ,a ·b =0,|a |=1,|b |=2,那么AD→=________.(用a ,b 表示)45a -45b [如图,∵a ·b =0,∴a ⊥b , ∴∠ACB =90°,∴AB =AC 2+BC 2= 5. 又CD ⊥AB ,∴AC 2=AD ·AB ,∴AD =455.∴AD →=45AB →=45(a -b )=45a -45b .] 5.|OA →|=1,|OB →|=2,∠AOB =2π3,OC →=12OA →+14OB →,那么OA→及OC →的夹角大小为________.π3 [令12OA →=OA →1,14OB →=OB →1,因为|OA →|=1,|OB →|=2,所以|OA →1|=|OB →1|,由OC →=12OA →+14OB →=OA →1+OB →1,得四边形OA 1CB 1为菱形.因为菱形对角线平分所对的角,因此∠AOC =π3.]6.如图7-8,在△ABC 中,D ,E 分别为边BC ,AC 的中点.F 为边AB 上的点,且AB →=3AF →,假设AD →=xAF →+yAE →,x ,y ∈R ,那么x +y 的值为________.图7-852 [∵D 为BC 的中点,∴BD →=12BC →=12(AC →-AB →)=12AC →-12AB→, ∴AD→=AB →+BD → =AB →+⎝ ⎛⎭⎪⎪⎫12AC →-12AB →=12AB →+12AC →=12×3AF →+12×2AE →=32AF→+AE→=xAF →+yAE →,∴x =32,y =1,∴x +y =32+1=52.]7.如图7-9,在等腰三角形△ABC 中,底边BC =2,AD →=DC →,AE →=12EB →,假设BD →·AC →=-12,那么CE→·AB →=______.图7-9-43[如图建立直角坐标系,设A (0,h )(h >0), 那么B (-1,0),C (1,0),由AE →=12EB →,AD →=DC →,得E =⎝ ⎛⎭⎪⎪⎫-13,2h 3,D ⎝ ⎛⎭⎪⎪⎫12,h 2. 那么BD →=⎝ ⎛⎭⎪⎪⎫32,h 2,AC →=(1,-h ),故BD →·AC →=32-h 22=-12,h 2=4,h =2, 故CE →=⎝ ⎛⎭⎪⎪⎫-43,43,AB →=(-1,-2),那么CE →·AB →=-43.] 8.△ABC 外接圆的半径等于1,其圆心O 满足AO →=12(AB →+AC →),|AO →|=|AC →|,那么向量BA →在BC →方向上的投影等于________.32 [由AO →=12(AB →+AC →)可知O 是BC 的中点,即BC 为外接圆的直径,所以|OA→|=|OB →|=|OC →|,又因为|AO →|=|AC →|=1,故△OAC 为等边三角形,即∠AOC =60°,由圆周角定理可知∠ABC =30°,且|AB→|=3,所以BA →在BC →方向上的投影为|BA →|·cos ∠ABC =3×cos 30°=32.]9.(2021·扬州期中)在△ABC 中,假设AB =1,BC =2,CA =5,那么AB→·BC →+BC →·CA →+CA →·AB →的值是________.-5 [∵AB =1,BC =2,CA =5, ∴AB 2+BC 2=CA 2, ∴∠ABC =90°, ∴AB→·BC →=0, ∴AB →·BC →+BC →·CA →+CA →·AB →=CA →(BC →+AB →)=CA →·AC →=-AC→2=-5.]10.(2021·南京三模)如图7-10,在梯形ABCD 中,AB ∥CD ,AB =4,AD =3,CD =2,AM→=2MD →.假设AC →·BM →=-3,那么AB→·AD →=________. 图7-1032[∵AC →·BM →=-3, ∴(AD→+DC →)(AM →-AB →)=-3, ∴⎝ ⎛⎭⎪⎪⎫AD →+12AB →⎝ ⎛⎭⎪⎪⎫23AD →-AB →=-3, ∴23|AD →|2-AD →·AB →+13AB →·AD →-12|AB →|2=-3, ∴23×9-23AB →·AD →-12×42=-3, ∴-23AB →·AD →=-1,∴AB →·AD →=32.] 11.(2021·无锡期末)平面向量α,β满足|β|=1,且α及β-α的夹角为120°,那么α的模的取值范围是________.⎝ ⎛⎦⎥⎥⎤0,233 [如图,设AB →=α,AC →=β,那么BC→=β-α,又α及β-α的夹角为120°, ∴∠ABC =60°. 又|AC →|=|β|=1, 由正弦定理得 |α|sin C =|β|sin 60°,∴|α|=233sin C ≤233,∴|α|∈⎝ ⎛⎦⎥⎥⎤0,233.] 12.(2021·南京盐城二模)在△ABC 中,A =120°,ABD 在边BC 上,且BD →=2DC →,AD =273,那么AC 的长为________.【导学号:19592025】3 [如下图,△ABC 中,∠BAC =120°,AB =4,点D 在BC 上,BD→=2DC →,∴BD→=AD →-AB →, DC→=AC →-AD →, ∴AD→-AB →=2(AC →-AD →), ∴3AD→=2AC →+AB →, ∴9AD→2=4AC →2+AB →2+4AC →·AB →. 又|AD →|=273, 代入化简得:|AC →|2-2|AC →|-3=0,解得|AC →|=3或-1(舍去).]13.(2021·江苏高考)如图7-11,在△ABC 中,D 是BC 的中点,E ,F 是AD 上的两个三等分点,BA →·CA →=4,BF →·CF →=-1,那么BE→·CE →的值是________.图7-1178[由题意,得BF →·CF →=(BD →+DF →)·(CD →+DF →) =(BD→+DF →)·(-BD →+DF →)=DF →2-BD →2 =|DF→|2-|BD →|2=-1,① BA→·CA →=(BD →+DA →)·(CD →+DA →) =(BD →+3DF →)·(-BD →+3DF →) =9DF→2-BD →2 =9|DF→|2-|BD →|2=4.②由①②得|DF →|2=58,|BD →|2=138.∴BE→·CE →=(BD →+DE →)·(CD →+DE →)=(BD→+2DF →)·(-BD →+2DF →)=4DF →2-BD →2 =4|DF →|2-|BD →|2=4×58-138=78.]14.在△ABC 中,AB =2,BC =3,∠ABC =60°,BD ⊥AC ,D 为垂足,那么BD→·BC →的值为________. 277 [由余弦定理AC 2=4+9-2×2×3×12=7, 那么AC =7,由S △ABC =12×AC ×BD =12AB ·BC ·sin∠ABC ,得12×7×BD =12×2×3×32,那么BD =337, 从而BD→·BC →=BD →·(BD →+DC →)=BD →2+BD →·DC →=BD →2=⎝ ⎛⎭⎪⎪⎫3372=277.] 15.在△ABC 中,D 为BC 边的中点,AD =1,点P 在线段AD 上,那么PA→·(PB →+PC →)的最小值为________.-12 [依题意得PA →·(PB →+PC →)=2PA →·PD →=-2|PA →|·|PD →|≥-2⎝ ⎛⎭⎪⎫|PA →|+|PD →|22=-|AD →|22=-12,当且仅当|PA→|=|PD →|=12时取等号,因此PA →·(PB →+PC →)的最小值是-12.]16.(2021 ·江苏高考)设向量a k =⎝ ⎛⎭⎪⎪⎫cos k π6,sin k π6+cos k π6(k =0,1,2,…,12),那么(a k ·a k +1)的值为______.93 [因为a k =⎝⎛⎭⎪⎪⎫cos k π6,2sin ⎝ ⎛⎭⎪⎪⎫k π6+π4, a k +1=⎝⎛⎭⎪⎪⎫cosk +1π6,2sin ⎝⎛⎭⎪⎪⎫k +1π6+π4,所以a k ·a k +1=cosk π6cosk +1π6+2sin ⎝ ⎛⎭⎪⎪⎫k π6+π4·sin ⎝⎛⎭⎪⎪⎫k +1π6+π4=12cos 2k +1π6+12cos π6+cos π6- cos ⎝⎛⎭⎪⎪⎫2k +1π6+π2 =sin2k +1π6+12cos 2k +1π6+334.由正弦函数的周期性,得(a k ·a k +1)=0+0+93=9 3.]。

高考数学复习专题训练—三角函数与解三角形解答题(含解析)

高考数学复习专题训练—三角函数与解三角形解答题1.(2021·山东滨州期中)已知向量a=(cos x,sin x),b=(4√3sin x,4sin x),若f(x)=a·(a+b).(1)求f(x)的单调递减区间;]上的最值.(2)求f(x)在区间[0,π22.(2021·北京丰台区模拟)如图,△ABC中,∠B=45°,N是AC边的中点,点M在AB边上,且MN⊥AC,BC=√6,MN=√3.(1)求∠A;(2)求BM.3.(2021·山东潍坊二模)如图,D为△ABC中BC边上一点,∠B=60°,AB=4,AC=4√3.给出如下三种数值方案:①AD=√5;②AD=√15;③AD=2√7.判断上述三种方案所对应的△ABD的个数,并求△ABD唯一时,BD的长.4.(2021·海南海口月考)在△ABC中,已知a,b,c分别是角A,B,C的对边,b cos C+c cos B=4,B=π.请再在下4列三个条件:①(a+b+c)(sin A+sin B-sin C)=3a sin B;②b=4√2;③√3c sin B=b cos C中,任意选择一个,添加到题目的条件中,求△ABC的面积.5.(2021·辽宁大连一模)如图,有一底部不可到达的建筑物,A为建筑物的最高点.某学习小组准备了三种工具:测角仪(可测量仰角与俯角)、米尺(可测量长度)、量角器(可测量平面角度).(1)请你利用准备好的工具(可不全使用),设计一种测量建筑物高度AB的方法,并给出测量报告;注:测量报告中包括你使用的工具,测量方法的文字说明与图形说明,所使用的字母和符号均需要解释说明,并给出你最后的计算公式.(2)该学习小组利用你的测量方案进行了实地测量,并将计算结果汇报给老师,发现计算结果与该建筑物实际的高度有误差,请你针对误差情况进行说明.6.(2021·湖北武汉3月质检)在△ABC中,它的内角A,B,C的对边分别为a,b,c,且B=2π3,b=√6.(1)若cos A cos C=23,求△ABC的面积;(2)试问1a +1c=1能否成立?若能成立,求此时△ABC的周长;若不能成立,请说明理由.7.(2021·湖南长沙模拟)在△ABC中,内角A,B,C所对的边分别为a,b,c,且(b-c)sinCb+a=sin B-sin A.(1)求角A;(2)若a=2,求1tanB +1tanC的最小值.8.(2021·江苏南京期中)如图,某景区内有一半圆形花圃,其直径AB为6,O是圆心,且OC⊥AB.在OC上有一座观赏亭Q,其中∠AQC=2π3.计划在BC⏜上再建一座观赏亭P,记∠POB=θ(0<θ<π2).(1)当θ=π3时,求∠OPQ的大小;(2)当∠OPQ越大时,游客在观赏亭P处的观赏效果越佳,当游客在观赏亭P处的观赏效果最佳时,求sin θ的值.答案与解析1.解由于f(x)=a·(a+b)=|a|2+a·b=1+4√3sin x cos x+4sin2x=1+2√3sin 2x+4·1-cos2x2=2√3sin 2x-2cos 2x+3=4sin(2x-π6)+3.(1)由π2+2kπ≤2x-π6≤3π2+2kπ(k∈Z),解得π3+kπ≤x≤5π6+kπ(k∈Z),所以f(x)的单调递减区间是[π3+kπ,5π6+kπ](k∈Z).(2)由于x∈[0,π2],所以2x-π6∈[-π6,5π6],故当2x-π6=π2即x=π3时,函数f(x)取最大值7;当2x-π6=-π6即x=0时,函数f(x)取最小值1.2.解(1)如图,连接MC,因为N是AC边的中点,且MN⊥AC, 所以MC=MA.在Rt△AMN中,MA=MNsinA=√3sinA,所以MC=√3sinA.在△MBC中,由正弦定理可得MCsinB=BCsin∠BMC,而∠BMC=2∠A,所以√3sinA·sin45°=√6sin2A,即√3sinA·√22=√62sinAcosA,所以cos A=12,故∠A=60°.(2)由(1)知MC=MA=√3sin60°=2,∠BMC=2∠A=120°.在△BCM中,由余弦定理得BC2=BM2+MC2-2BM·MC·cos∠BMC,所以(√6)2=BM2+22-2BM·2·cos 120°,解得BM=√3-1(负值舍去).3.解过点A作AE⊥BC,垂足为点E(图略),则AE=4·sin 60°=2√3,当AD=√5时,AD<AE,所以方案①对应△ABD无解,当AD=√15时,AE<AD<AB<AC ,所以方案②对应△ABD 有两解, 当AD=2√7时,AB<AD<AC ,所以方案③对应△ABD 只有一解. 由方案③知AD=2√7,设BD=x (x>0),所以在△ABD 中由余弦定理得(2√7)2=42+x 2-2×4×x×cos 60°,即x 2-4x-12=0,解得x=6或x=-2(舍去).又因为在△ABC 中易得BC=8,BD=6<BC ,符合题意, 所以BD 的长为6.4.解 若选择条件①,则(a+b+c )(sin A+sin B-sin C )=3a sin B ,由正弦定理可得(a+b+c )(a+b-c )=3ab ,所以(a+b )2-c 2=3ab ,整理得a 2+b 2-c 2=ab ,所以cos C=12,故C=π3.又B=π4,所以A=π-π3−π4=5π12. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,即a=4.由正弦定理可得asinA =bsinB , 所以b=asinB sinA=4sin π4sin 5π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π3=4(3-√3). 若选择条件②,则b=4√2. 又因为b cos C+c cos B=4,所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b22ac =4,即a=4.又B=π4,所以由正弦定理可得asinA =bsinB , 所以sin A=asinBb=4sin π44√2=12,所以A=π6或A=5π6.由于b>a ,所以B>A ,因此A=5π6不合题意舍去,故A=π6,从而C=π-π6−π4=7π12. 故△ABC 的面积S=12ab sin C=12×4×4√2×sin 7π12=4(√3+1). 若选择条件③,因为b cos C+c cos B=4, 所以b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac=4,所以a=4.因为√3c sin B=b cos C ,所以√3sin C sin B=sin B cos C ,所以tan C=√33,于是C=π6,从而A=π-π6−π4=7π12,所以由正弦定理可得a sinA =bsinB , 所以b=asinB sinA=4sin π4sin 7π12=4(√3-1), 故△ABC 的面积S=12ab sin C=12×4×4(√3-1)×sin π6=4(√3-1). 5.解 (1)选用测角仪和米尺,如图所示.①选择一条水平基线HG ,使H ,G ,B 三点在同一条直线上;②在H ,G 两点用测角仪测得A 的仰角分别为α,β,HG=a ,即CD=a.测得测角仪器的高是h ;③(方法一)在△ACD 中,由正弦定理,得ACsinα=CDsin (β-α), 所以AC=CDsinαsin (β-α)=asinαsin (β-α),在Rt △ACE 中,有AE=AC sin β=asinαsinβsin (β-α), 所以建筑物的高度AB=AE+h=asinαsinβsin (β-α)+h. (方法二)在Rt △ADE 中,DE=AEtanα, 在Rt △ACE 中,CE=AEtanβ, 所以CD=DE-CE=AEtanα−AEtanβ=AE (tanβ-tanα)tanαtanβ,所以AE=atanαtanβtanβ-tanα,所以建筑物的高度AB=AE+h=atanαtanβtanβ-tanα+h. (2)①测量工具问题;②两次测量时位置的间距差; ③用身高代替测角仪的高度.6.解 (1)由B=2π3,得A+C=π3,cos(A+C )=cos A cos C-sin A sin C ,即12=cos A cos C-sin A sin C.因为cos A cos C=23,所以sin A sin C=16.因为a sinA =c sinC =√6√32=2√2,所以a=2√2sin A ,c=2√2sin C.所以S △ABC =12·2√2sin A·2√2sin C·sin B=4sin A·sin B sin C=4×16×√32=√33. (2)假设1a +1c =1能成立,所以a+c=ac.由余弦定理,得b 2=a 2+c 2-2ac cos B ,所以6=a 2+c 2+ac.所以(a+c )2-ac=6,所以(ac )2-ac-6=0,所以ac=3或ac=-2(舍去),此时a+c=ac=3. 不满足a+c ≥2√ac ,所以1a +1c =1不成立.7.解 (1)由(b -c )sinCb+a =sin B-sin A ,可得(b-c )sin C=(sin B-sin A )(b+a ),由正弦定理得(b-c )c=(b-a )(b+a ),即b 2+c 2-a 2=bc , 由余弦定理,得cos A=b 2+c 2-a 22bc=12,因为0<A<π,可得A=π3.(2)由(1)知A=π3,设△ABC 的外接圆的半径为R (R>0),可得2R=asinA =4√33, 由余弦定理得a 2=b 2+c 2-2bc cos A=b 2+c 2-bc ≥bc , 即bc ≤a 2=4,当且仅当b=c=2时取等号, 又1tanB +1tanC =cosBsinB +cosCsinC =cosBsinC+sinBcosCsinBsinC =sin (B+C )sinBsinC =sinAsinBsinC =2R ·2RsinA 2RsinB ·2RsinC=2R ·abc =8√33bc ≥8√33×4=2√33,所以1tanB +1tanC 的最小值为2√33.8.解 (1)在△POQ 中,因为∠AQC=2π3,所以∠AQO=π3.又OA=OB=3,所以OQ=√3. 设∠OPQ=α,则∠PQO=π2-α+θ. 由正弦定理,得3sin (π2-α+θ)=√3sinα,即√3sin α=cos(α-θ), 整理得tan α=√3-sinθ,其中θ∈(0,π2).当θ=π3时,tan α=√33.因为α∈(0,π2),所以α=π6. 故当θ=π3时,∠OPQ=π6.(2)设f(θ)=√3-sinθ,θ∈(0,π2),则f'(θ)=-sinθ(√3-sinθ)+cos 2θ(√3-sinθ)2=1-√3sinθ(√3-sinθ)2.令f'(θ)=0,得sin θ=√33,记锐角θ0满足sin θ0=√33,当0<θ<θ0时,f'(θ)>0;当θ0<θ<π2时,f'(θ)<0, 所以f(θ)在θ=θ0处取得极大值亦即最大值.由(1)可知tan α=f(θ)>0,则α∈(0,π2),又y=tan α单调递增,则当tan α取最大值时,α也取得最大值.故游客在观赏亭P处的观赏效果最佳时,sin θ=√33 .。

高考数学二轮总复习层级二专题二三角函数与解三角形第二讲三角恒等变换与解三角形学案理含解

学习资料第二讲 三角恒等变换与解三角形1.(2019·全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-错误!,则错误!=( )A .6B .5C .4D .3解析:选A ∵a sin A -b sin B =4c sin C , ∴由正弦定理得a 2-b 2=4c 2,即a 2=4c 2+b 2。

由余弦定理得cos A =错误!=错误!=错误!=-错误!,∴错误!=6.故选A . 2.(2019·全国卷Ⅰ)tan 255°=( ) A .-2-错误! B .-2+错误! C .2-错误!D .2+错误!解析:选D tan 255°=tan(180°+75°)=tan 75°=tan(45°+30°)=tan 45°+tan 30°1-tan 45°tan 30°=错误!=2+错误!。

故选D .3.(2018·全国卷Ⅱ)在△ABC 中,cos 错误!=错误!,BC =1,AC =5,则AB =( ) A .4错误! B .错误! C .29D .2错误!解析:选A ∵cos 错误!=错误!,∴cos C =2cos 2错误!-1=2×错误!2-1=-错误!.在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC ·cos C =52+12-2×5×1×错误!=32,∴AB =32=4错误!.故选A .4.(2018·全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c 。

若△ABC 的面积为a 2+b 2-c 24,则C =( ) A .错误! B .错误! C .错误!D .错误! 解析:选C ∵S =12ab sin C =错误!=错误!=错误!ab cos C ,∴sin C =cos C ,即tan C =1。

2017高考数学二轮复习与策略课件 专题2 解三角形


8分
10分 12分 14分
第十六页,编辑于星期六:二十一点 九分。
2017版高三二轮复习与策略
5.(2014·浙江高考在△ABC中,内角A,B,C所对的边分别为a,b,c.已知 a≠b,c= 3,cos2A-cos2B= 3sin Acos A- 3sin Bcos B.
(1求角C的大小; (2若sin A=45,求△ABC的面积.
2017版高三二轮复习与策略
(2由tan C=2,C∈(0,π,得
sin
C=2 5 5,cos
C=
5 5.
因为sin B=sin(A+C=sinπ4+C,
所以sin
B=3
10 10 .
由正弦定理得c=2 32b,
又因为A=π4,12bcsin A=3,所以bc=6 2,故b=3.
上一页
返回首页
下一页
2017版高三二轮复习与策略
6 3
[因为sin∠BAM=13,
所以cos∠BAM=
2
3
2
.如图,在△ABM中,利用正弦定理,得
BM sin∠BAM

sAinMB, 所以BAMM=sins∠inBBAM=3si1n B=3cos∠1 BAC.
在Rt△ACM中,有
CM AM
=sin∠CAM=sin(∠BAC-∠BAM.由题意知BM=
上一页
返回首页
下一页
第三页,编辑于星期六:二十一点 九分。
2017版高三二轮复习与策略 提炼3 三角形的常用面积公式
设△ABC 的内角 A,B,C 的对边分别为 a,b,c ,其面积为 S. (1S=12aha=12bhb=12chc(ha,hb,hc 分别表示 a,b,c 边上的高. (2S=12absin C=12bcsin A=12casin B. (3S=12r(a+b+c(r 为三角形 ABC 内切圆的半径.

浙江专版2018年高考数学第1部分重点强化专题专题1三角函数与平面向量专题限时集训2解三角形20180305114

专题限时集训(二) 解三角形(对应学生用书第114页) [建议A 、B 组各用时:45分钟][A 组 高考达标]一、选择题1.(2017·杭州模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b3cos B =asin A,则cos B =( )【导学号:68334041】A .-12B.12 C .-32D.32B [由正弦定理,得b3cos B=asin A=bsin B,即sin B =3cos B ,∴tan B = 3.又0<B <π,故B =π3,cos B =12.]2.在△ABC 中,内角A ,B ,C 所对应的边分别为a ,b ,c ,若b sin A -3a cos B =0,且b 2=ac ,则a +cb的值为( ) 【导学号:68334042】A.22B. 2 C .2D .4C [由正弦定理得sin B sin A -3sin A cos B =0.∵sin A ≠0,∴sin B -3cos B =0,∴tan B = 3.又0<B <π,∴B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ,即b 2=(a +c )2-3ac . 又b 2=ac ,∴4b 2=(a +c )2,解得a +cb=2.故选C.] 3.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,若c 2=(a -b )2+6,C =π3,则△ABC 的面积是( ) A .3B.932C.332D .3 3C [∵c 2=(a -b )2+6,∴c 2=a 2+b 2-2ab +6. ① ∵C =π3,∴c 2=a 2+b 2-2ab cos π3=a 2+b 2-ab .②由①②得-ab +6=0,即ab =6, ∴S △ABC =12ab sin C =12×6×32=332.]4.在△ABC 中,c =3,b =1,∠B =π6,则△ABC 的形状为( )A .等腰直角三角形B .直角三角形C .等边三角形D .等腰三角形或直角三角形D [根据余弦定理有1=a 2+3-3a ,解得a =1或a =2,当a =1时,三角形ABC 为等腰三角形,当a =2时,三角形ABC 为直角三角形,故选D.]5.如图2­1,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A =( )图2­1A.223 B.24 C.64D.63C [∵DE =22,∴BD =AD =DE sin A =22sin A .∵∠BDC =2∠A ,在△BCD 中,由正弦定理得BCsin ∠BDC =BD sin C ,∴4sin 2A =22sin A ×23=423sin A,∴cos A =64,故选C.]二、填空题6.已知△ABC 中,AC =4,BC =27,∠BAC =60°,AD ⊥BC 于点D ,则BDCD的值为__________.【导学号:68334043】6 [在△ABC 中,由余弦定理可得BC 2=AC 2+AB 2-2AC ·AB cos ∠BAC ,即28=16+AB 2-4AB ,解得AB =6或AB =-2(舍),则cos ∠ABC =28+36-162×27×6=27,BD =AB ·cos∠ABC =6×27=127,CD =BC -BD =27-127=27,所以BDCD =6.]7.如图2­2,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =______m.图2­21039 [分析题意可知,设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h2+h 23-2·3h ·h 3·⎝ ⎛⎭⎪⎫-12,解得h =1039,故塔的高度为1039 m .] 8.如图2­3,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是__________.图2­3(6,43] [在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DAsin θ=DC-θ,则DA +DC =4[sin θ+sin(120°-θ)]=4⎣⎢⎡⎦⎥⎤32sin θ+32cos θ=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.] 三、解答题9.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,2b sin B =(2a +c )sin A +(2c +a )sinC .(1)求B 的大小;【导学号:68334044】(2)若b =3,A =π4,求△ABC 的面积.[解] (1)∵2b sin B =(2a +c )sin A +(2c +a )sin C . 由正弦定理得2b 2=(2a +c )a +(2c +a )c , 1分化简得a 2+c 2-b 2+ac =0,2分∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.4分 ∵0<B <π,∴B =2π3.5分 (2)∵A =π4,∴C =π-π4-2π3=π3-π4,6分 ∴sin C =sin ⎝ ⎛⎭⎪⎫π3-π4=sin π3cos π4-cos π3sin π4=6-24.8分 由正弦定理得c sin C =bsin B,9分 ∵b =3,B =2π3,∴c =b sin C sin B =6-22,12分∴△ABC 的面积S =12bc sin A =12×3×6-22×sin π4=3-34.14分10.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos B -2cos A 2a -b =cos Cc .(1)求ab的值;(2)若角A 是钝角,且c =3,求b 的取值范围.[解] (1)由题意及正弦定理得sin C cos B -2sin C cos A =2sin A cos C -sin B cos C ,1分∴sin C cos B +sin B cos C =2(sin C cos A +sin A ·cos C ), ∴sin(B +C )=2sin(A +C ). 3分 ∵A +B +C =π,4分 ∴sin A =2sin B ,∴a b=2.5分 (2)由余弦定理得cos A =b 2+9-a 22b ·3=b 2+9-4b 26b =9-3b 26b<0,8分 ∴b > 3.①10分 ∵b +c >a ,即b +3>2b ,∴b <3,②12分由①②得b 的取值范围是(3,3). 14分[B 组 名校冲刺]一、选择题1.(2017·温州第二次适应性测试)设角A ,B ,C 是△ABC 的三个内角,则“A +B <C ”是“△ABC 是钝角三角形”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件A [由A +B +C =π,A +B <C ,可得C >π2,故三角形ABC 为钝角三角形,反之不一定成立.故选A.]2.在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-31010C [法一:设△ABC 中角A ,B ,C 所对的边分别为a ,b ,c , 则由题意得S △ABC =12a ·13a =12ac sin B ,∴c =23a .由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+29a 2-2×a ×23a ×22=59a 2,∴b =53a .∴cos A =b 2+c 2-a22bc=59a 2+29a 2-a 22×53a ×23a =-1010.故选C. 法二:同法一得c =23a . 由正弦定理得sin C =23sin A, 又B =π4,∴sin C =sin ⎝ ⎛⎭⎪⎫3π4-A =23sin A ,即22cos A +22sin A =23sin A ,∴tan A =-3,∴A 为钝角. 又∵1+tan 2A =1cos 2A ,∴cos 2A =110,∴cos A =-1010.故选C.]3.(2017·台州市高三年级调考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知a =1,2b -3c =2a cos C ,sin C =32,则△ABC 的面积为( ) 【导学号:68334045】A.32 B.34C.32或34D.3或32C [根据正弦定理可得2sin B -3sin C =2sin A cos C ,而sin B =sin(A +C ),整理为2cos A sin C =3sin C ,因为在△ABC 中,sin C ≠0,所以cos A =32,所以A =30°,又asin A =c sin C ,解得c = 3.因为sin C =32,所以C =60°或C =120°,当C =60°时,B =90°,此时△ABC 的面积为S =12ac sin B =32;当C =120°时,B =30°,此时△ABC 的面积为S =12ac sin B =34,故选C.]4.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sinA +sinB 的最大值是( )A .1 B. 2 C .3D. 3D [∵c sin A =3a cos C ,∴sin C sin A =3sin A cos C . ∵sin A ≠0,∴tan C =3, ∵0<C <π,∴C =π3,∴sin A +sin B =sin A +sin ⎝⎛⎭⎪⎫2π3-A =32sin A +32cos A =3sin ⎝⎛⎭⎪⎫A +π6.∵0<A <2π3,∴π6<A +π6<5π6,∴32<3sin ⎝⎛⎭⎪⎫A +π6≤3,∴sin A +sin B 的最大值为 3.故选D.] 二、填空题5.已知在△ABC 中,B =2A ,∠ACB 的平分线CD 把三角形分成面积比为4∶3的两部分,则cos A =__________. 【导学号:68334046】23[由题意可知S △ACD ∶S △BCD =4∶3, ∴AD ∶DB =4∶3,AC ∶BC =4∶3,在△ABC 中,由正弦定理得 sin B =43sin A ,又B =2A ,∴sin 2A =43sin A ,∴cos A =23.]6.(2017·温州第一次适应性检测)已知钝角△ABC 的面积为12,AB =1,BC =2,则角B =________,AC =________. 3π45 [由题意可得12×1×2sin B =12,则sin B =22,当B =π4时,由余弦定理可得AC =1,此时△ABC 是直角三角形,不是钝角三角形,舍去,所以B =3π4,则AC 2=1+2+2=5,AC = 5.] 三、解答题7.已知a ,b ,c 为△ABC 的内角A ,B ,C 的对边,满足sin B +sin C sin A =2-cos B -cos Ccos A ,函数f (x )=sin ωx (ω>0)在区间⎣⎢⎡⎦⎥⎤0,π3上单调递增,在区间⎣⎢⎡⎦⎥⎤π3,π上单调递减. (1)证明:b +c =2a ;(2)若f ⎝ ⎛⎭⎪⎫π9=cos A ,证明:△ABC 为等边三角形.[证明] (1)∵sin B +sin C sin A =2-cos B -cos Ccos A,∴sin B cos A +sin C cos A =2sin A -cos B sin A -cos C sin A , 2分 ∴sin B cos A +cos B sin A +sin C cos A +cos C sin A =2sin A , 4分sin(A +B )+sin(A +C )=2sin A , sin C +sin B =2sin A , ∴b +c =2a .6分 (2)由题意知,2πω=4π3,解得ω=32,7分 ∵f ⎝ ⎛⎭⎪⎫π9=sin π6=12=cos A ,A ∈(0,π), ∴A =π3,8分由余弦定理知,cos A =b 2+c 2-a 22bc =12,∴b 2+c 2-a 2=bc .∵b +c =2a , ∴b 2+c 2-⎝⎛⎭⎪⎫b +c 22=bc ,即b 2+c 2-2bc =0,∴b =c . 10分 又A =π3,∴△ABC 为等边三角形.12分8.(2017·浙东北教学联盟高三一模考试)在△ABC 中,角A ,B ,C 对边的边长分别是a ,b ,c .已知cos(A -B )+cos C =3sin(A -B )+3sin C .【导学号:68334047】(1)求角B 的大小;(2)若b =2,求△ABC 面积的最大值. [解] (1)法一:在△ABC 中,A +B +C =π,则cos(A -B )-cos(A +B )=3sin(A -B )+3sin(A +B ), 化简得2sin A sin B =23sin A cos B , 5分由于0<A <π,0<B <π,sin A ≠0, 则tan B =3,解得B =π3.9分 法二:由于cos(A -B )-3sin(A -B )=3sin C -cos C , 则-2sin ⎝ ⎛⎭⎪⎫A -B -π6=2sin ⎝ ⎛⎭⎪⎫C -π6, 即sin ⎝ ⎛⎭⎪⎫A -B +5π6=sin ⎝⎛⎭⎪⎫C -π6, 从而A -B +5π6=C -π6或A -B +5π6+C -π6=π.若A -B +5π6=C -π6,则A -B -C =-π,又A +B +C =π,则A =0,舍去;5分若A -B +5π6+C -π6=π,则A -B +C =π3,又A +B +C =π,则B =π3.9分(2)由余弦定理,得4=c 2+a 2-ca ≥2ac -ca =ac , 从而S =12ca sin π3≤ 3.13分 当且仅当a =c 时,S 取最大值 3.15分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题限时集训(二)解三角形(对应学生用书第105页)[建议A、B组各用时:4 5分钟][A组高考达标]一、选择题1.(2016·烟台模拟)在△ABC中,角A,B,C所对的边分别为a,b,c,若b3cos B =asin A,则cos B=()A.-12 B.12C.-32 D.32B[由正弦定理,得b3cos B=asin A=bsin B,即sin B=3cos B,∴tan B= 3.又0<B<π,故B=π3,cos B=12.]2.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若b sin A-3a cos B=0,且b2=ac,则a+cb的值为()【导学号:73552014】A.22 B.2C.2D.4C[由正弦定理得sin B sin A-3sin A cos B=0. ∵sin A≠0,∴sin B-3cos B=0,∴tan B= 3.又0<B<π,∴B=π3.由余弦定理得b2=a2+c2-2ac cos B=a2+c2-ac,即b2=(a+c)2-3ac.又b 2=ac ,∴4b 2=(a +c )2,解得a +cb =2.故选C.]3.(2016·临沂模拟)在△ABC 中,cos A =13,3sin B =2sin C ,且△ABC 的面积为22,则边BC 的长度为( )A .23B .3C .2D. 3B [由cos A =13得sin A =223,由S △ABC =12bc sin A =22, 得bc =6,又由3sin B =2sin C ,得3b =2c . 解方程组⎩⎨⎧ bc =6,3b =2c ,得⎩⎨⎧b =2,c =3.由余弦定理得a 2=b 2+c 2-2bc cos A =22+32-2×6×13=9,∴a =3,即BC =3.]4.(2016·河北武邑中学期中)在△ABC 中,c =3,b =1,∠B =π6,则△ABC 的形状为( )A .等腰直角三角形B .直角三角形C .等边三角形D .等腰三角形或直角三角形D [根据余弦定理有1=a 2+3-3a ,解得a =1或a =2,当a =1时,三角形ABC 为等腰三角形,当a =2时,三角形ABC 为直角三角形,故选D.]图2-25.(2016·海口调研)如图2-2,在△ABC 中,C =π3,BC =4,点D 在边AC上,AD =DB ,DE ⊥AB ,E 为垂足.若DE =22,则cos A =( )A.223 B.24 C.64D.63C [∵DE =22,∴BD =AD =DE sin A =22sin A .∵∠BDC =2∠A ,在△BCD 中,由正弦定理得BC sin ∠BDC =BD sin C ,∴4sin 2A =22sin A ×23=423sin A ,∴cos A =64,故选C.]二、填空题6.(2016·石家庄一模)已知△ABC 中,AC =4,BC =27,∠BAC =60°,AD ⊥BC 于点D ,则BDCD 的值为__________.【导学号:73552015】6 [在△ABC 中,由余弦定理可得BC 2=AC 2+AB 2-2AC ·AB cos ∠BAC ,即28=16+AB 2-4AB ,解得AB =6或AB =-2(舍),则cos ∠ABC =28+36-162×27×6=27,BD =AB ·cos ∠ABC =6×27=127,CD =BC -BD =27-127=27,所以BD CD =6.]图2-37.(2016·湖北七州联考)如图2-3,为了估测某塔的高度,在同一水平面的A ,B 两点处进行测量,在点A 处测得塔顶C 在西偏北20°的方向上,仰角为60°;在点B 处测得塔顶C 在东偏北40°的方向上,仰角为30°.若A ,B 两点相距130 m ,则塔的高度CD =__________m.1039 [分析题意可知,设CD =h ,则AD =h3,BD =3h ,在△ADB 中,∠ADB =180°-20°-40°=120°,由余弦定理AB 2=BD 2+AD 2-2BD ·AD ·cos 120°,可得1302=3h 2+h 23-2·3h ·h 3·⎝ ⎛⎭⎪⎫-12,解得h =1039,故塔的高度为1039 m .]8.(2016·合肥二模)如图2-4,△ABC 中,AB =4,BC =2,∠ABC =∠D =60°,若△ADC 是锐角三角形,则DA +DC 的取值范围是__________.图2-4(6,43] [在△ABC 中,由余弦定理得AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =12,即AC =2 3.设∠ACD =θ(30°<θ<90°),则在△ADC 中,由正弦定理得23sin 60°=DA sin θ=DC sin (120°-θ),则DA +DC =4[sin θ+sin(120°-θ)]=4⎣⎢⎡⎦⎥⎤32sin θ+32cos θ=43sin(θ+30°),而60°<θ+30°<120°,43sin 60°<DA +DC ≤43sin 90°,即6<DA +DC ≤4 3.]三、解答题9.(2016·烟台二模)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,b ≠c ,且sin 2C -sin 2B =3sin B cos B -3sin C ·cos C .(1)求角A 的大小;(2)若a =3,sin C =34,求△ABC 的面积.[解] (1)由题意得1-cos 2C 2-1-cos 2B 2=32sin 2B -32sin 2C ,2分 整理得32sin 2B -12cos 2B =32sin 2C -12cos 2C , 即sin ⎝ ⎛⎭⎪⎫2B -π6=sin ⎝ ⎛⎭⎪⎫2C -π6, 4分由b ≠c ,得B ≠C ,又B +C ∈(0,π),得2B -π6+2C -π6=π, 即B +C =23π,所以A =π3. 6分(2)因为a =3,sin C =34,由正弦定理a sin A =c sin C ,得c =32. 由c <a ,得C <A ,从而cos C =74, 8分 故sin B =sin(A +C )=sin A cos C +cos A sin C =32×74+12×34=3+218, 10分所以△ABC 的面积为S =12ac sin B =12×32×3×3+218=932(3+7). 12分10.(2016·东北三省四市联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知cos B -2cos A 2a -b=cos Cc .(1)求ab 的值;(2)若角A 是钝角,且c =3,求b 的取值范围.[解] (1)由题意及正弦定理得sin C cos B -2sin C cos A =2sin A cos C -sin B cos C ,1分∴sin C cos B +sin B cos C =2(sin C cos A +sin A cos C ), ∴sin(B +C )=2sin(A +C ). 3分 ∵A +B +C =π, 4分 ∴sin A =2sin B ,∴ab =2. 5分(2)由余弦定理得cos A =b 2+9-a 22b ·3=b 2+9-4b 26b =9-3b 26b <0,∴b > 3.① 8分∵b +c >a ,即b +3>2b ,∴b <3,② 10分 由①②得b 的取值范围是(3,3). 12分[B 组 名校冲刺]一、选择题1.(2016·潍坊模拟)已知△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且a cos B+b cos A=3c cos C,则cos C的值为()A.12 B.13C.14 D.23B[由a cos B+b cos A=3c cos C得sin A cos B+cos A sin B=3sin C cos C,即sin(A+B)=3sin C cos C,即sin C=3sin C cos C,所以cos C=1 3.]2.(2016·全国丙卷)在△ABC中,B=π4,BC边上的高等于13BC,则cos A=()A.31010 B.1010C.-1010D.-31010C[法一:设△ABC中角A,B,C所对的边分别为a,b,c,则由题意得S△ABC =12a·13a=12ac sin B,∴c=23a.由余弦定理得b2=a2+c2-2ac cos B=a2+29a2-2×a×23a×22=59a2,∴b=53a.∴cos A=b2+c2-a22bc=59a2+29a2-a22×53a×23a=-1010.故选C.法二:同法一得c=23a.由正弦定理得sin C=23sin A, 又B=π4,∴sin C=sin⎝⎛⎭⎪⎫3π4-A=23sin A,即22cos A+22sin A=23sin A,∴tan A=-3,∴A为钝角.又∵1+tan2A=1cos2A,∴cos2A=110,∴cos A =-1010.故选C.]3.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若三边的长为连续的三个正整数,且A >B >C,3b =20a cos A ,则sin A ∶sin B ∶sin C =( )A .4∶3∶2B .5∶6∶7C .5∶4∶3D .6∶5∶4D [∵A >B >C ,∴a >b >c .又∵a ,b ,c 为连续的三个正整数,∴设a =n +1,b =n ,c =n -1(n ≥2,n ∈N *). ∵3b =20a cos A ,∴3b20a =cos A ,∴3b 20a =b 2+c 2-a 22bc ,3n20(n +1)=n 2+(n -1)2-(n +1)22n (n -1),即3n20(n +1)=n (n -4)2n (n -1),化简得7n 2-27n -40=0,(n -5)(7n +8)=0, ∴n =5⎝ ⎛⎭⎪⎫n =-87舍.又∵a sin A =b sin B =csin C ,∴sin A ∶sin B ∶sin C =a ∶b ∶c =6∶5∶4. 故选D.]4.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c ,且满足c sin A =3a cos C ,则sin A +sin B 的最大值是( )A .1 B. 2 C .3D. 3D [∵c sin A =3a cos C ,∴sin C sin A =3sin A cos C . ∵sin A ≠0,∴tan C =3, ∵0<C <π,∴C =π3,∴sin A +sin B =sin A +sin ⎝ ⎛⎭⎪⎫2π3-A =32sin A +32cos A =3sin ⎝ ⎛⎭⎪⎫A +π6.∵0<A <2π3,∴π6<A +π6<5π6, ∴32<3sin ⎝ ⎛⎭⎪⎫A +π6≤3, ∴sin A +sin B 的最大值为 3.故选D.] 二、填空题5.(2016·忻州联考)已知在△ABC 中,B =2A ,∠ACB 的平分线CD 把三角形分成面积比为4∶3的两部分,则cos A =__________.23[由题意可知S △ACD ∶S △BCD =4∶3, ∴AD ∶DB =4∶3,AC ∶BC =4∶3,在△ABC 中,由正弦定理得 sin B =43sin A ,又B =2A ,∴sin 2A =43sin A ,∴cos A =23.]6.(2016·太原二模)在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若∠B =∠C ,且7a 2+b 2+c 2=43,则△ABC 面积的最大值为__________.【导学号:73552016】55[法一:由∠B =∠C 得b =c ,代入7a 2+b 2+c 2=43,得7a 2+2b 2=43,则2b 2=43-7a 2,由余弦定理得cos C =a 2+b 2-c 22ab =a2b ,所以sin C =1-cos 2C =4b 2-a 22b =83-15a 22b ,则△ABC 的面积为S =12ab sin C =12ab ×83-15a 22b =14a 2(83-15a 2)=141515a 2(83-15a 2)≤1415×15a 2+(83-15a 2)2=1415×43=55,当且仅当a 2=8330时取等号,则△ABC的面积的最大值为55.法二:由∠B =∠C 得b =c ,所以7a 2+b 2+c 2=43,即为7a 2+2c 2=43,则△ABC 面积为12a c 2-a 24=1415·15a 2(4c 2-a 2)≤1415×832=55,所以最大值为55.]三、解答题7.(2016·威海二模)已知f (x )=cos x (λsin x -cos x )+cos 2⎝ ⎛⎭⎪⎫π2-x +1(λ>0)的最大值为3.(1)求函数f (x )的对称轴;(2)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且cos A cos B =a2c -b ,若不等式f (B )<m 恒成立,求实数m 的取值范围.[解] (1)f (x )=cos x (λsin x -cos x )+cos 2⎝ ⎛⎭⎪⎫π2-x +1=λsin x cos x -cos 2x +sin 2x +1=12λsin 2x -cos 2x +1 ≤λ24+1+1. 2分由题意知:λ24+1+1=3,λ2=12. ∵λ>0,∴λ=23, 4分∴f (x )=3sin 2x -cos 2x +1=2sin ⎝ ⎛⎭⎪⎫2x -π6+1. 5分令2x -π6=π2+k π,解得x =k π2+π3(k ∈Z ), ∴函数f (x )的对称轴为x =k π2+π3(k ∈Z ). 6分(2)∵cos A cos B =a 2c -b ,由正弦定理得,cos A cos B =sin A 2sin C -sin B ,可变形得,sin(A+B )=2cos A sin C ,即sin C =2cos A sin C . 8分∵sin C ≠0,∴cos A =12,又0<A <π,∴A =π3, 9分 ∴f (B )=2sin ⎝ ⎛⎭⎪⎫2B -π6+1,只需f (B )max <m .∵0<B <2π3,∴-π6<2B -π6<7π6, 10分∴-12<sin ⎝ ⎛⎭⎪⎫2B -π6≤1,即0<f (B )≤3,11分∴m >3. 12分8.(2016·福州模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,满足(2b -c )cos A =a cos C .(1)求角A 的大小;(2)若a =3,求△ABC 周长的最大值. [解] (1)由(2b -c )cos A =a cos C 及正弦定理, 得(2sin B -sin C )cos A =sin A cos C , 3分 ∴2sin B cos A =sin C cos A +sin A cos C , ∴2sin B cos A =sin(C +A )=sin B. ∵B ∈(0,π),∴sin B ≠0.∵A ∈(0,π),cos A =12,∴A =π3. 6分(2)由(1)得A =π3,由正弦定理得b sin B =c sin C =a sin A =332=23,∴b =23sinB ,c =23sinC .△ABC 的周长l =3+23sin B +23sin ⎝ ⎛⎭⎪⎫B +π3 9分=3+23sin B +23⎝ ⎛⎭⎪⎫sin B cos π3+cos B sin π3 =3+33sin B +3cos B =3+6sin ⎝ ⎛⎭⎪⎫B +π6. ∵B ∈⎝ ⎛⎭⎪⎫0,2π3,∴当B =π3时,△ABC 的周长取得最大值为9. 12分。

相关文档
最新文档