椭圆及其标准方程教学设计
《椭圆及其标准方程》教学设计一等奖3篇

4、《椭圆及其标准方程》教学设计一等奖一、教学内容解析1、地位与作用:本章是北师大版选修1—1的第二章《圆锥曲线与方程》,是高中数学解析几何的第二大部分。
解析几何是数学中一个重要的分支,它联系了数学中的数与形、代数与几何等最基本对象之间的联系。
在北师大版必修2中,学生已掌握了在平面直角坐标系下研究直线和圆的方法,本章教材进一步利用三种基本圆锥曲线深化代数与几何的关系。
本章教材内容的顺序是:椭圆→抛物线→双曲线→曲线与方程。
这样安排的用意是,先学圆锥曲线,再学曲线与方程,这样的顺序更有利于学生的学习,符合学生从特殊到一般,具体到抽象的认知规律。
在圆锥曲线的学习过程中,不断的渗透曲线与方程的思想,为学生理解并掌握“曲线与方程”这一概念奠定了基础。
本节是北师大版选修1—1的第二章《圆锥曲线与方程》第1节的内容,主要学习椭圆的定义、标准方程及其简单的应用,分为两课时,本节课是第1课时,主要学习椭圆的定义及其标准方程。
教材以椭圆为基础和重点说明了求方程并利用方程讨论几何性质的一般方法,然后在认知抛物线和双曲线中得到了巩固和应用,因此《椭圆及其标准方程》这一节课起到了承上启下的作用。
2、教材处理顺序教材在椭圆的定义这个内容的安排上是:先从直观上认识椭圆,再从画法中提炼出椭圆的几何特征,由此抽象概括出椭圆的定义,最后是椭圆定义的简单应用。
这样的安排不仅体现出《课程标准》中要求通过丰富的实例展开教学的理念,而且符合学生从具体到抽象的认知规律,有利于学生对概念的学习和理解。
教材在本节内容中只研究了中心在原点,焦点在轴上的椭圆的标准方程,让学生自己去归纳焦点在轴上的椭圆的标准方程。
这样的处理给学生提供了一次探究和交流的机会。
有利于学生对抛物线标准方程的理解,有利于学生思维能力的提高和学习兴趣的培养。
3、数学思想方法本节内容蕴含了:数形结合思想、转化化归思想等。
在推导椭圆标准方程过程中让学生体会移项再平方去根号的方法。
椭圆及其标准方程 (优质课说课稿)

《椭圆及其标准方程》说课稿尊敬的各位评委:大家好!我说课的内容是《椭圆及其标准方程》, 下面, 我将从教材分析, 学情分析, 教学目标, 教学方法, 教学过程设计, 教学设计说明几个方面来进行阐述.一、教材分析1.课标要求:《椭圆及其标准方程》是人教A版普通高中课程选修2-1第二章的第二节内容.课程标准对这部分内容的要求是:“经历从具体情境中抽象出椭圆模型的过程, 掌握椭圆的定义、标准方程及简单几何性质”.2.教材地位“椭圆及其标准方程”是《圆锥曲线》第一节的内容;在前面学生已经学习了运用坐标法研究了直线和圆的性质,及曲线与方程的关系,对椭圆概念与方程的研究是坐标法的深入,为后面研究双曲线、抛物线提供了基本模式和理论基础,因此, “椭圆及其标准方程”起到了承上启下的重要作用.二、学情分析(1)在学习本课之前学生已学习了直线和圆的方程及其性质, 曲线与方程的关系, 对解析几何有一定的了解, 已有一定的观察、分析、解决问题的能力.这为本节课的学习奠定了必要的知识基础.(2)在日常生活中, 学生对椭圆有了一定的认识, 但仍没有上升到成为“概念”的水平, 将感性认识理性化将会是对他们的一个挑战.含有两个根式的方程的化简也会使学生的探究受阻, 教师要适时加以点拨.三、教学目标分析根据教学内容的地位和作用, 结合学生的实际, 确定了以下教学目标:1.掌握椭圆的定义及其标准方程;通过对椭圆标准方程的探求, 熟悉求曲线方程的一般方法.2.在椭圆概念的形成过程及其标准方程的推导过程中,培养学生的归纳概括能力、动手实践能力、分析问题、解决问题的能力及运算能力.3.在教学中充分揭示“数”与“形”的内在联系, 体会数形美的统一, 激发学生学习数学的兴趣, 培养学生敢于探索, 勇于创新的精神.教学重点和难点:1.重点: 感受建立曲线方程的基本过程, 掌握椭圆的标准方程及其推导方法.为了突出重点, 让学生动手实践, 自主探索, 通过画图揭示椭圆上的点所要满足的条件, 由此得出定义, 推出方程.2.难点: 椭圆标准方程的推导.为了突破难点, 关键是抓住“怎样建立坐标系”和“怎样简化方程”两个环节来进行方程的推导.四、教学方法及准备(一)教学方法本节课采用让学生动手实践、自主探究、合作交流及教师启发引导的教学方法, 并以多媒体手段辅助教学, 使学生经历实践、观察、交流、分析、概括等理性思维的基本过程, 切实改进学生的学习方式, 使学生真正成为学习的主人.(二)教学准备教师准备:多媒体课件学生准备: 一支铅笔、两个图钉(或胶带)、一根细绳、一张硬纸板.五、教学过程设计按照“引入课题——形成概念——推导方程——对比分析——例题讲解——归纳小结——作业布置”这七个环节来组织教学, 层层推进, 实现教学目标.(一)创设情境, 引入课题本节课的开始由多媒体演示“神舟八号”无人飞船与“天宫一号”目标飞行器进行了空间交会对接, 绕地球旋转运行的画面.提出问题: “神州八号”的轨道是什么形状?待学生回答后,请学生叙述生活中见到的椭圆形象, 并用课件展示我所搜集的椭圆形象, 让学生形成椭圆的感性认识, 引入课题.[设计意图] 这一过程充分调动学生的学习兴趣, 激发学生的探究心理,为引出新知做铺垫.通过举例和展示生活中椭圆形的图片, 让学生认识到椭圆和日常生活关系密切.使他们感受数学的应用价值, 同时培养学生学会用数学眼光去观察周围事物的能力.(二)实验探索, 形成概念有了对椭圆的感性认识,如何来研究椭圆呢?提出问题: 曲线可以看作适合某种条件的点的集合或轨迹.椭圆是满足什么条件的点的轨迹呢?这时借助于多媒体演示椭圆的画法, 请学生拿出准备的学具动手画图, 并思考问题.在学生思考的过程中我继续用问题引导: 圆是如何定义的,圆是满足什么条件的点的轨迹呢?学生回答后我继续追问: 在画图的过程中, 哪些量在变, 哪些量保持不变?学生根据自己的实验, 观察回答: “两定点间的距离没变, 绳子的长度没变, 点在运动.”我继续提问:你们能根据刚才画椭圆的过程, 类比圆的定义, 归纳概括出椭圆的定义吗?先让学生独立思考,尝试归纳,然后进行小组合作交流,教师重点关注学困生,适时给予点拨指导.几分钟后,大部分学生都能得到椭圆的定义:“平面内与两个定点的距离之和为常数的点的轨迹叫椭圆.”接着对得到的概念进行剖析, 提出问题: 这个常数是任意的吗?给学生两分钟时间进行思考、讨论、交流, 尝试找出答案, 若有困难, 教师借助于演示实验再次探索观察, 学生不难发现, 这个常数必须大于两定点间的距离.这样, 就得到了完整的椭圆定义:平面内与两个定点、的距离之和等于常数(大于|F F |)的点的轨迹叫做椭圆。
椭圆及其标准方程教学设计

椭圆及其标准方程教学设计
一、教学目标
1. 掌握椭圆的定义;
2. 了解椭圆的标准方程;
3. 掌握椭圆的性质;
4. 熟练求解椭圆的标准方程;
二、教学重点
1. 掌握椭圆的定义;
2. 熟练求解椭圆的标准方程;
三、教学难点
1. 理解椭圆的性质;
2. 掌握椭圆的标准方程;
3. 熟练求解椭圆的标准方程;
四、教学步骤
1. 导入:
(1)让学生从已知的椭圆的性质出发,讨论椭圆的定义;
(2)引出椭圆的标准方程,让学生分析椭圆的标准方程的性质。
2. 讲授:
(1)讲授椭圆的定义,让学生掌握椭圆的定义;
(2)讲授椭圆的标准方程,让学生掌握椭圆的标准方程;(3)讲授椭圆的性质,让学生理解椭圆的性质;
3. 练习:
(1)给出椭圆的标准方程,让学生求解椭圆的标准方程;(2)给出椭圆的性质,让学生求解椭圆的标准方程;
4. 总结:
(1)总结椭圆的定义;
(2)总结椭圆的标准方程;
(3)总结椭圆的性质;
五、教学反思
椭圆是数学中重要的概念,学生对椭圆的定义和标准方程的掌握程度不高,教师在讲授时要注重学生的理解,在练习时要注重学生的熟练掌握,以达到最佳的教学效果。
椭圆及其标准方程教学设计

椭圆及其标准方程教学设计椭圆及其标准方程教学设计1前言:新课程改革实施以来,教学模式发生了重大的改变,由以往的“一言堂”形式向多种“开放式”教学模式进行转变,在教育观念的不断转变下,对于我们的一线老师也提出了更高的要求,新形势下,要想成为一名合格的老师,就需要不断的加强自己的业务能力,使自己能够变成一名受学生尊重和喜爱的老师,从而更好的提高学生的教学成绩。
基于以上原因,本人尝试制定出椭圆及其标准方程第一课时的教学设计如下:一,教材分析本节课是《全日制普通高中课程标准实验教科书》(选修1-1)(人民教育出版社课程教材研究所中学数学教材实验研究组编著)第二章《圆锥曲线与方程》第一节《椭圆》的第一课时。
在学习本课之前,我们已经学习了直接和圆的相关内容,使学生对于曲线和方程的概念有了一定的了解,同时,对于利用坐标法来研究几何也有了一定的认识,对于数形结合思想也有了一定的了解,从根本上来讲,本节课也属于曲线方程的一个延伸,也是利用坐标法来研究几何图形的进一步加强,本节课的掌握情况的好坏,将直接影响后面双曲线和抛物线的学习。
对于学好圆锥曲线也有重要的意义。
椭圆这一节课体现出来的一些学习方法对于后面双曲线和抛物线的学习有一个重要的引导作用,但是本节课也难度较大,对于缺乏数形结合能力,不爱作图的学生来廛,学习起来是非常困难的,尤其是我所要教授的是一群普通高中的学生,更是难上加难的。
二,学习对象分析1.学习对象本节课重点讲解内容是椭圆,经过上一节课的学习,学生有了一些求点的轨迹问题的知识基础和能力,但是由于我们的学生作为普通高中的一名学生,在高中招走700名学生后,才进入到我们学校的学生来讲,他们的起点低,学习习惯不好,导致了我们的教学难度的加大,所以,从研究圆,跨越到椭圆,学生会存在一定学习上的障碍,教学过程中更要注意这方面的教学。
对于学生的抽象思维,分析能力都是一个较大的考验。
2.知识基础上课前,要对学生对于直线和圆的方程,以及曲线和方程部分知识点进行适当的回顾,将学生拉到利用坐标法来解决实际问题的过程中来。
椭圆及其标准方程教资面试教学设计

椭圆及其标准方程教资面试教学设计全文共四篇示例,供读者参考第一篇示例:椭圆是解析几何中一种重要的曲线,它具有许多独特的性质和特点。
在高中数学课程中,椭圆的讨论通常涉及到椭圆的定义、性质、标准方程等方面的内容。
在教学中,我们不仅要让学生掌握椭圆的基本概念和相关定理,还要帮助他们理解椭圆的几何意义和应用。
因此,设计一堂关于椭圆及其标准方程的教学课程显得至关重要。
一、教学目标:1. 知识与技能:通过本节课,学生将能够掌握椭圆的基本概念、性质、标准方程等内容,并能够运用所学知识解决与椭圆相关的问题。
2. 过程与方法:通过课堂讲解、示范、练习、讨论等多种方式,激发学生学习的兴趣,培养学生的逻辑思维和数学分析能力。
3. 情感态度与价值观:通过椭圆的教学,培养学生的数学审美和求知欲,引导学生积极探究,培养其解决问题的能力和勇气。
二、教学内容与重难点:1. 椭圆的定义与性质:介绍椭圆的定义、焦点、长轴、短轴等基本概念,讨论椭圆的性质和特点。
2. 椭圆的标准方程:介绍椭圆的标准方程及其推导过程,讨论标准方程的含义和几何意义。
3. 椭圆的应用:通过实例分析,引导学生探讨椭圆在现实生活中的应用,并培养学生的应用问题解决能力。
重点:椭圆的定义、性质,椭圆的标准方程及其几何意义。
难点:椭圆的应用及相关问题的解决。
三、教学过程设计:1. 导入(5分钟)教师引入椭圆的基本概念,通过引入一个生活中的场景或问题,引起学生的兴趣和好奇心,激发学生对椭圆的学习积极性。
2. 讲解椭圆的定义与性质(15分钟)教师讲解椭圆的定义、焦点、长轴、短轴等基本概念,讨论椭圆的性质和特点,示范相关例题并引导学生思考。
3. 推导椭圆的标准方程(15分钟)教师介绍椭圆的标准方程及其推导过程,讨论标准方程的含义和几何意义,示范推导过程并引导学生自主探索。
4. 解题练习(20分钟)教师设计一些与椭圆相关的题目,引导学生独立或小组合作解题,巩固所学知识,培养学生分析和解决问题的能力。
椭圆及其标准方程一优秀教学设计精选全文完整版

可编辑修改精选全文完整版教学设计(2)这里的常数有什么限制吗?教师边演示边提示学生注意:若常数=|F1F2|,则是线段F1F2;若常数<|F1F2|,则轨迹不存在;若要轨迹是椭圆,还必须加上限制条件:“此常数大于|F1F2|”.(二)椭圆标准方程的推导13分钟1.标准方程的推导.教师引导学生得出椭圆方程,由a、b的关系判定焦点在哪一个坐标轴上。
2.教师给出表格和学生一起总结椭圆的方让学生自己去推导椭圆的标准方程,给学生较多的思考问题的时间和空间,变“被动”为“主动”,变“灌输”为“发现”。
教师结合猜想加以引导由椭圆的定义,可以知道它的基本几何特征,但对椭圆还具有哪些性质,我们还一无所知,所以需要用坐标法先建立椭圆的方程.如何建立椭圆的方程?根据求曲线方程的一般步骤,可分:(1)建系设点;(2)点的集合;(3)代数方程;(4)化简方程等步骤.(1)建系设点以两定点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴,建立直角坐标系(如图2-14).设|F1F2|=2c(c>0),M(x,y)为椭圆上任意一点,则有F1(-1,0),F2(c,0).(2)点的集合由定义不难得出椭圆集合为:P={M||MF1|+|MF2|=2a}.(3)代数方程(4)化简方程整理后,再平方得(a2-c2)x2+a2y2=a2(a2-c2)椭圆的焦点在x轴上,焦点是F1(-c,0)、F2(c,0).这里c2=a2-b2.2.两种标准方程的比较(引导学生归纳)F1(-c,0)、F2(c,0),这里c2=a2-b2;F1(-c,0)、F2(0,c),这里c2=a2+b2,只须将(1)方程的x、y互换即可得到.教师指出:在两种标准方程中,∵a2>b2,∴可以根据分母的大小来判定焦点在哪一个坐标轴上.(三)例题与8分钟,练习12分钟例1求适合下列条件的椭圆的标准方程:1.教师引导学生得学生自己写解题过程 2.学生板演 3.学生讨论4.老师出示练习题(课件)学生做练习题(1)掌握椭圆方程a、b之间的关系 (2)掌握运用椭圆定义法、待定系数法求椭圆的标准方程。
《椭圆及其标准方程》教学设计
3.1.1《椭圆及其标准方程》一、教学内容分析本节课是高中新课程人教A版数学选择性必修第一册第三章3.1《椭圆》的第一节《椭圆及其标准方程》.继学习圆之后,继续采用坐标法,在探究圆锥曲线集合特征的基础上,建立它们的坐标,得到方程。
从知识上说,它是对前面所学的运用坐标法研究曲线的又一次实际演练,同时它也是进一步研究椭圆几何性质的基础;从方法上说,它为我们研究双曲线、抛物线这两种圆锥曲线提供了基本模式和理论基础. 因此,这节课有承前启后的作用,是本节乃至本章的重点. 课标要求:“经历从具体情境中抽象出椭圆模型的过程,掌握椭圆的定义及标准方程.”二、三维目标(1)知识与技能:①了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程;②理解椭圆的定义,掌握椭圆的标准方程及其推导过程.(2)过程与方法:①亲身经历椭圆定义和标准方程的获取过程,掌握求曲线方程的方法和数形结合的思想;②会用运动变化的观点研究问题,提高坐标法解决几何问题的能力.(3)情感态度与价值观:①通过主动探究、合作学习,感受探索的乐趣与成功的喜悦;培养认真参与、积极交流的主体意识和乐于探索创新的科学精神.②通过椭圆知识的学习,进一步体会到数学知识的和谐美,几何图形的对称美;提高学生的审美情趣.三、学习者特征分析从生活经验储备来看:高二学生对椭圆实物实例有所了解,但只限于感性认识,缺少理性分析;从知识储备来看:已经掌握曲线和方程的关系,求曲线方程的方法和步骤,具备一定的观察能力和分析问题的能力. 学生认识了椭圆的实物,却无法像“圆”一样,定性、定量分析,产生概念;从学习心理方面来看:已具备了对几何图形的一定水平层次的想象能力,已具备一定的逻辑推理能力和分析问题的能力。
这个阶段的学生还以抽象逻辑思维为主要发展趋势,他们的思维正从属于经验性的逻辑思维向抽象思维发展,仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。
从年龄特征上来看:高二学生身体和心理正趋于成熟,骨子里有一种敢创敢拼的冲劲,对新生事物敢于发表自己的见解和观点。
《椭圆及其标准方程》教学设计
“椭圆及其标准方程”的教学设计一、教材分析1.1、教学内容椭圆是常见的曲线,通过引言和日常生活的体验,学生对椭圆已有一定的认识. 并且学过求简单曲线方程和利用曲线方程来研究曲线几何性质的初步知识.为了使学生掌握椭圆的本质特征,得到椭圆的定义,教材介绍了一种画椭圆的方法,通过画图的过程揭示椭圆的几何特征.得到椭圆标准方程,首先要建立坐标系,曲线上同一点在不同的坐标系中的坐标不同,曲线的方程也不同,为了使方程简单,必须注意坐标系的选择恰当. 通过本节学习,学生一方面认识到椭圆与圆的区别和联系,另一方面也为利用方程研究椭圆的几何性质以及为学生类比椭圆的研究过程和方法,学习双曲线、抛物线奠定了基础.1.2、地位作用解析几何是数学一个重要的分支,它沟通了数学中数与形、代数与几何等最基本对象之间的联系.圆锥曲线是平面解析几何研究的主要对象.圆锥曲线的有关知识不仅在生产、日常生活和科学技术中有着广泛的应用,是今后进一步学习数学的基础.教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题.由于教材以椭圆为重点求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固,因此“椭圆及其标准方程”起到了承上启下的重要作用.二、学情分析本节课是学生已初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形,具备了学习本节课所需的知识.学生学习的困难是椭圆标准方程的推导与化简,带根式的方程的化简学生感到困难,也是教学的难点,特别是由M适合的条件所列出的方程为两个根式的和等于一个非0常数的形式,化简时要进行两次平方,方程中字母超过3个,且次数高、项数多,由于初中代数学习中这方面的知识准备不够充分,所以教学中要注意引导学生分析这类方程化简的方法.三、教学目标1、经历从具体情境中抽象出椭圆模型的过程,感受数学与生活的联系;掌握椭圆的定义、标准方程及标准方程的推导过程;在化简椭圆方程的过程中提高学生的运算能力.2、经历椭圆概念的产生过程,学习从具体实例中提炼数学概念的方法,由形象到抽象,从具体到一般,掌握数学概念的数学本质,提高学生的归纳概括能力;学会用坐标化的方法求动点轨迹方程;四、重点难点1、教学重点:椭圆的标准方程;坐标法的基本思想.2、教学难点:椭圆标准方程的推导与化简;坐标法的应用.五、教学过程实录5.1、创设情景 提出问题1.举出日常生活当中哪些图形给我们椭圆的感觉.(如眼睛的镜框、橄榄、鸭蛋……)设计意图:椭圆在生活中很常见,学生多数会举“固定”的椭圆,让学生感受直观的椭圆,感受数学与生活的联系.2.一些“会动”的椭圆.如:天体中行星的运动轨迹.其实我们身边也存在着一些“会动”的椭圆,只是我们平时不太关注而已.我们来看这一个圆柱形透明玻璃杯,当玻璃杯正常放着时,水面的边界线是一个圆如果倾斜放着时,水面的边界线是一个椭圆生:.*现在我们来看一般情况,一个圆柱竖直放着时,用一个平面去截,当平面呈水平状态时截面图形是圆,当平面略偏离水平状态时截面图形是边界线是椭圆.5.2、动手操作 构建概念我们一起探究38P 页上的问题(同桌的两位同学准备无弹性的细绳子一条(约10cm 长),两端各结一个套,图钉两个),教师准备无弹性细绳子一条(约60cm ,一端结个套,另一端是活动的,图钉两个).当套上铅笔,拉紧绳子,移动笔尖,画出的图形是椭圆.在这一过程中,你能说出移动的笔尖(动点)满足的几何条件是什么?设计意图:在教师的引导下动手画图,可以促进学生形成良好的认知结构.几何画板呈现学生通过观察、思考、归纳出椭圆的定义:把平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆.其中这两个定点叫做椭圆的焦点,两定点间的距离叫做椭圆的焦距.即当动点设为M 时,椭圆即为点集P ={}12|2M MF MF a +=.5.3、建立椭圆标准方程5.3.1猜想椭圆的标准方程我们知道当圆柱形透明玻璃杯正常放着时,水面的边界线是一个圆,如果倾斜放着时,水面的边界线是一个椭圆,圆与椭圆有着密切的关系,把圆压扁就是椭圆一个圆按某个方向作伸缩变换可以得到椭圆,我们已经知道了圆的标准方程222x y r +=,那么椭圆的标准方程会是什么呢?(几何画板演示圆变成椭圆,同时把圆的标准方程写成22221x y r r +=)请猜猜看?我们可以用22,a b 分别来表示分母,即22221()x y a b a b+=≠ 设计意图:学生已经知道了圆的定义,圆的标准方程,对椭圆有了直观感性的认识,会把“扁的圆”叫做椭圆,运用类比推理,借由学生已有的认知来生成新知,是数学教学中常用的途径,由此我们类比猜想椭圆的标准方程. 5.3.2 推导椭圆的标准方程圆的标准方程我们是如何推导的?——建立坐标系、设点的坐标、列式、化简.师:尽可能利用对称轴或已有的互相垂直的线段所在的直线作为坐标轴,那么可以怎样建立?——取过焦点1F 、2F 的直线为x 轴,线段1F 2F 的垂直平分线为y 轴.建立直角坐标系(如图), 我们设(,)M x y 是曲线上的任意一点,焦距122F F c =,M 与1F 、2F 两点的距离之和为常数2a ,按椭圆的定义可得P ={}12|2M MF MF a +=,2222()()2x c y x c y a ++-+=(22a c >) ①我们能否把这方程化得简单些?师生共同分析讨论,再让同学板演其他同学笔记上演算。
椭圆及其标准方程》教学设计
椭圆及其标准方程》教学设计一、教学目标:1、知识与技能目标(1)掌握椭圆的定义及焦点、焦距的概念,能正确推导椭圆的标准方程.(2)掌握求椭圆标准方程的定义法和待定系数法.2、过程与方法目标(1)经历椭圆的形成过程,培养学生运动变化的观点,训练学生的动手的能力、合作学习能力和运用所学知识解决实际问题的能力.(2)通过联系曲线方程的求法,推导椭圆的标准方程,培养学生运用类比、分类讨论、数形结合思想解决问题的能力.3、情感态度与价值观目标(1)通过小组合作,培养学生的协作、友爱精神,体验成功的快乐.(2)激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.二、重点、难点:重点:掌握椭圆的定义及标准方程,理解坐标法的基本思想;难点:椭圆标准方程的推导与化简.三、教学方法:探究式教学法,即教师通过问题诱导f启发讨论f探索结果,引导学生直观观察f归纳抽象f总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.四、教具准备:多媒体课件和自制教具:绘图板、图钉、细绳.五、教学设计情景引入学习探究(一)材料2:地球围绕着太阳旋转;材料3:“嫦娥三号”升空录像.引入课题:椭圆及其标准方程.动手实验:(1)取一定长的细绳,把它的两个端点固定在黑板的同一点处,套上铅笔,拉紧绳子,旋转一周,会得到什么图形?(2)把绳子的两个端点拉开一段距离,再套上铅笔旋转,又会得到什么图形?(3)继续拉远两个端点的距离,直到把绳子拉直,又会得到什么图形?(4)动画演示椭圆的形成过程.师:引导学生观察:椭圆在实际生活中是很常见师:引导学生观察动画,地球运行轨道是椭圆;问“嫦娥三号”的运行轨道是什么?生:常娥三号着陆先是按椭圆轨道运行,再直线着陆.师:板书课题.请学生拿出课前准备的硬纸板、细线、铅笔实验(1)教师演示,学生观察思考.实验(2)、(3),各小组学生利用手中工具在图板上进行实验,一起合作画椭圆.利用学生熟知的地理规律:地球围绕太阳转引入,让学生感到亲切自然;通过“嫦娥三号”的升空录像,让学生感受现实,激发学生的兴趣,培养爱国思想.通过做实验,让学生动手实践,体验椭圆的形成过程,加深对椭圆定义的理解将学生分为四人一组,通过分组讨论、研究,增强学生的合作意识.学习探究(二)【学情预设】学生可能会建系如下几种情况:方案一:把匚、F2建在X轴上,以FF的中点为原点;12方案二:把匚、F2建在X轴上,以匚为原点;方案三:把匚、F2建在x轴上,以F原点;2方案四:把匚、F2建在X轴上,以.F2与x轴的左交点为原点;方案五:把匚、F2建在x轴上,以FF与x轴的右交点为原点;12经过比较确定方案一.下面我们来建立椭圆的方程建系:以F,F所在的直线为x轴,以12线段F]F2的垂直平分线为y轴建立直角坐标系xOy.设点:设点M(x,y)是椭圆上的任意一点,点M到F,F的距离和为2a,焦距12为2c(c〉0),则.(—c,0),F2(C,0)列式:由定义:|M「1+叫=2a,即(2)如何设点?(3)怎样列式?⑷如何化简?建立椭圆的方程是本节课的难点,为降低难度,让学生回顾求曲线方程的步骤,以已有的知识来探求新的知识,温故知新,教师再加以正确的引导,新知会自然形成.生:回顾求曲线方程的步骤:⑴建系,⑵设点,⑶列式,⑷化简.师:引导学生按求曲线方程的步骤建立椭圆的方程.生:思考,回答:(1)怎样建立适当的坐标系生:分析化简的方法,在J(x+c)2+y2+J(x-c)2+y2=2a练习本上完成化简.化简:整理,得(a2一c2)x2+a2y2=a2(a2一c2)•.•a〉0,c〉0,2a〉2c a2(a2—c2)>0.方程的两边都除以a2(a2—c2),得教学环节教学过程师生互动设计思想学习探究(二)OF=OF=c12则|MO|=、.;a2-c2,令b=\;'a2-c2,则b2=a2-c2,那么方程变为:=1(a>b>0).多媒体展示动画:将椭圆的焦点放在y轴上结论:当焦点在y轴是时,椭圆的方程为:y2x2—+一=1(a>b>0).a2b2多媒体展示图表:让学生对照图形、方程理解记忆.师:请同学们在图中找出长度等于a,c的线段,则师:引导学生推出椭圆的标准方程.师:指出其焦点在x轴上,坐标为F](―c,0),F2(C,0)生:观察图像,识记方程.活动过程:点拨-----板演-----点评师:若焦点放在y轴上,方程又怎样?生:小组讨论椭圆的方程,相互交流、补充,得出结论.生:分析方程、图形,识记椭圆的标准方程.师:引导学生如何根据方程判断焦点的位置?实践体验1、你能判断下列椭圆的焦点位置生:根据所学椭圆的标吗?并写出焦点坐标.⑵25x2+16y2=400.准方程,思考后回答.师生共同矫正.生:总结如何判断焦点的位置?椭圆的标准方程的导出,放手给学生有很大的难度,这里采取有意义的接受学习的方式,教师对照图形,加以引导,让学生明白方程中字母的几何意义,对方程的理解有很大的作用.展示动画,通过类比的方法,让学生对照焦点在x轴的情形,写出焦点在y轴上时,椭圆的标准方程.通过图表便于对比,加深学生对两个方程及几何意义的认识.尝试练习,加深对方程及几何意义的理解.六、板书设计:七、布置作业:。
《椭圆及其标准方程》教学设计(精选3篇)
《椭圆及其标准方程》教学设计(精选3篇)《椭圆及其标准方程》教学设计篇1一、教材内容分析本节是整个解析几何部分的重要基础学问。
这一节课是在《直线和圆的方程》的基础上,将讨论曲线的方法拓展到椭圆,又是连续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好预备。
它的学习方法对整个这一章具有导向和引领作用,所以椭圆是同学学习解析几何由浅入深的一个台阶,它在整章中具有承前起后的作用。
二、学情分析高中二班级同学正值身心进展的鼎盛时期,思维活跃,又有了相应学问基础,所以他们乐于探究、敢于探究。
但高中生的规律思维力量尚属阅历型,运算力量不是很强,有待于训练。
基于上述分析,我实行的是“创设问题情景-----自主探究讨论-----结论应用巩固”的一种讨论性教学方法,教学中采纳激发爱好、主动参加、乐观体验、自主探究的学习,形成师生互动的教学氛围。
使同学真正成为课堂的主体。
三、设计思想1、把章头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的有用性;2、进行分组试验,让同学亲自动手,体验学问的发生过程,并培育团队协作精神;3、利用《几何画板》进行动态演示,增加直观性;四、教学目标1、学问与技能目标:理解椭圆定义、把握标准方程及其推导。
2、过程与方法目标:注意数形结合,把握解析法讨论几何问题的一般方法,注意探究力量的培育。
3、情感、态度和价值观目标:(1)探究方法激发同学的求知欲,培育深厚的学习爱好。
(2)进行数学美育的渗透,用哲学的观点指导学习。
五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。
教学难点:标准方程的推导。
四、说教学过程(一)、创设情景,导入新课。
(3分钟)1、利用微机放映“彗星运行”资料片,引入课题——椭圆及其标准方程。
2、提问:同学们在日常生活中都见过哪些带有椭圆外形的物体?对同学的回答进行筛选,并利用微机放映几个例子的图片。
设计意图:通过观看影音资料,一方面使同学简洁了解椭圆的实际应用,另一方面产生问题意识,对讨论椭圆产生心理期盼。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
情感教育与椭圆及其标准方程教学设计宜兴市丁蜀高级中学朱熙照教学理念:数学教学是思维过程的教学,如何引导学生参与到教学过程中来,尤其是在思维上深层次的参与,是促进学生良好的认知结构,培养能力,全面提高素质的关键。
数学教学中的探究式对培养和提高学生的自主性、能动性和创造性有着非常重要的意义。
设计思想:本节借助多媒体辅助手段,创设问题的情境,让探究式教学走进课堂,保障学生的主体地位,唤醒学生的主体意识,发展学生的主体能力,塑造学生的主体人格,让学生在参与中学会学习、学会合作、学会创新。
一、教材分析:1、教学内容:高中教材第二册上第八章第一节,椭圆及其标准方程,本节研究椭圆的定义、图形及标准方程的推导,借助生活中丰富的典型实例,让学生通过分析、推理、归纳等活动过程,从中了解和体验椭圆的定义和标准方程。
2、教学地位:本节是第八章的基础,为以后学习双曲线、抛物线奠定基础,是本章的重点内容。
在高考中也是重点考察内容之一。
3、教学重点:①重点:椭圆定义、标准方程②解决策略:用模型演示椭圆,在给出椭圆定义最后加以强调,对椭圆的方程单独列出加以比较。
4、教学难点:①难点:椭圆标准方程的推导②解决策略:推导分4步,每步重点讲解,关键步加以补充说明。
5、教学疑点①疑点:椭圆定义中常数加以限制的原因。
②解决策略:分情况说明动点的轨迹。
二、学习者分析:1、年龄、认知特特点:高二年级的学生,已具备了对几何图形的一定水平层次的想象能力,已具备一定的逻辑推理能力和分析问题的能力。
这个阶段的学生还以抽象逻辑思维为主要发展趋势,他们的思维正从属于经验性的逻辑思维向抽象思维发展,仍需要依赖一定的具体形象的经验材料来理解抽象的逻辑关系。
2、应具备的知识和技能:133应熟练掌握曲线和方程的关系,求曲线方程的方法和步骤,具备一定的观察能力和分析能力。
3、本课应获得能力训练:通过本节的学习强化探索能力、几何图形构造能力的训练,了解数形结合思想。
三、教学目标:1、知识目标:①掌握椭圆定义。
②掌握椭圆标准方程的推导及标准方程。
2、能力目标:通过椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法解决几何问题的能力。
3、情感目标:①通过学生个性化的学习增强学生的自信心和意志力。
②通过师生、生生的合作学习,增强学生团队协作能力的培养,增强主动与他人合作交流的意识。
③通过神州五号的引入对学生进行爱国主义教育,增强民族自豪感。
4、学科渗透:通过对椭圆的图形认识、定义的引入、标准方程的推导提高对各科知识的综合运用能力体现了数学是基础学科,是工具学科。
在各个领域内有广泛的应用。
四、教法和学法的分析:1、通过探究式教学方法充分利用现实情景,尽可能的增加教学过程的趣味性、实践性。
利用多媒体课件和实物模型等丰富学生的学习资源,生动活泼的展示图形,强调学生动手操作试验和主动参与。
2、教师是学生的学习的组织者、促进着、合作者,在本节课的备课和教学过程中,为学生的动手实践,自主探索与合作交流的机会搭建平台,鼓励学生提出自己的见解,学会提出问题解决问题,通过恰当的教学方式已到学生学会自我调适,自我选择。
五、教学媒体和教学技术的选用本次教学需要教具和多媒体课件的辅助,教具包括:直尺、细绳、钉子等几何画板制作的课件。
它们的使用可以更好的帮助学生认识图形,丰富直观,使学生的学习资源更为丰富。
六、板书设计:椭圆的定义及标准方程1、椭圆的图形 3、例1 解题过程1342、标准方程的推导 4、例2解题过程①焦点在x轴上的椭圆方程。
②焦点在y轴上的椭圆方程七、教学过程说明:学生虽然对椭圆图形有所了解,但只限于感性认识,缺少理性的思考、探索和创新,这与缺乏必要的数学思想和方法密切相关。
而这一点,恰恰是现代社会对人的基本要求,也是目前以德育为核心,以培养创新精神和实践能力为重点的素质教育所提倡的。
所以,本节课力图从圆的定义和圆的方程的联系出发,借助类比的思想对动点有规律的运动作一些理性的探索和研究。
同时,在学习运用过程中,对数形结合思想、分类讨论思想和化归思想加深认识。
八、教学过程:环节教学内容教师活动学生活动设计意图教学准备直尺、细绳、钉子、笔、纸板、录像1、为教学实验作准备2、让学生更直观、形象的掌握椭圆图形。
回顾知识重温与问题有关的知识圆的定义、求轨迹方程的一般思想方法等。
教师提问式实施学生回答:1、圆的定义2、坐标法求轨迹为本节课作铺垫135创设情境“神州”五号飞船2003年10月15日9 时升空10月15日9 时6 时23分返回。
中国航天第一人杨利伟历时21小时,旅行行程约六十万公里。
据新华社北京2003年10月10日电:“神州”五号飞船按计划运行在轨道倾角42.2度,近地点高度200公里,远地点高度350公里的椭圆轨道上,实施变轨后进入343公的圆轨道。
飞船环绕地球72圈后在预定地点着陆。
问题:求“神州”六号飞船飞行轨道椭圆方程教师:1、2003年10月15日是每一个中国人值得骄傲的日子,大家还记得这一天吗?2、放一段“神州”五号升空和着陆的录像。
3、我们印象英雄学习他实现了几代中国人的梦想。
4、几何画板演示飞行船绕地球运行模拟图。
5、设问:我们怎么能求出民族英雄飞行轨迹的方程呢?学生回答:1、神州五号发射成功。
2、学生鼓掌向英雄意。
3、认真观察图形4一起思考通过录像激发学生的爱国情绪,调动起好奇心,激发起学生的学习本课的兴趣。
让学生感到数学无处不在。
引入课题画出民族英雄飞行的轨迹椭圆的图形教师:1、通过新闻报道我们已经知道神州五号飞行的轨道是椭圆,我们怎样画出给飞行的轨迹呢?2、指导学生用教具画椭圆图形。
3、用几何画板展示图形学生分组合作动手实践把细绳拴在钉子上,再把钉子固定在纸版上,用笔筒把绳子拉紧使笔尖在板上慢慢移动,画出椭圆的图形。
通过学生自己动手操作,培养他们动手能力,合作精神。
让他们从实践中得到快乐。
136提出问题椭圆上的点满足:|P F1|+ |P F2|=|A1A2|=2a求椭圆的方程教师:1、我们充分利用定义这个信息点寻找类似图形?2、圆上点具有什么特点,满足什么关系?3、思考:椭圆上的点具有什么特点?满足什么关系?4、怎样依据这些条件去求出方程?1、学生分组讨论每组代表回答:圆是我们学过得最接近的图形。
2、到定点距离之和是定长3、一起观察图形,寻找问题的答案。
通过问题得到入,让学生思考探索、得出结论。
分析解决问题y2a2+x2b2= 1x2a2+y2b2= 1a>b>o教师:1、指导学生怎样化简方程2、写出椭圆的标准方程3、找代表到黑板板书4、板书比较全面工整地给以全组表扬,不完整地给以补充说明并加以鼓励。
1、学生动手列关系式推到方程。
2、分组探讨怎样化简3、推选代表到黑板板演。
通过观察推导建立数学模型,使学生构建知识的一个过程。
在轻松愉快的环境中获得了知识。
知识应用例1、:求适合条件的椭圆方程1两个焦点的坐标分别是(-4,0)(4,0)椭圆上一点到两个焦点的距离的何等于102两个焦点的坐标是(0,-2)(0,2)并且椭圆经过电(3/2,5/2)教师读题给学生思考时间教师板书解题过程严格规范学生思考独立解决写出完整的解题过程运用所学的知识解决问题,激发学生的兴趣,使学生会主动运用所学知识解决问题。
137知识拓展例2、已知B 、C是两个定点|BC|=6切△ABC的周长等于16,求定点A的轨迹方程.。
练习课本95页第4、5题例3、已知一个圆的圆心在坐标原点,半径为2从这个圆上任意一点p向x轴作垂线求垂线pp中点M的轨迹方程1、引导学生建立坐标系,坐标系建立的越简单越好。
2、谁研究出来了,那个小组说说3、多种情况正确地给予肯定4、引导寻求最简单的5、利用多媒体显示图像。
6、例3鼓励学生自己解决1学生思考怎样坐标系简单。
2、小组讨论3、讨论结果:X轴经过BC原点O与BC的中点重合将课本的内容少做变化,通过具体的情境让学生去探索和发现,让学生学会探讨学会思考。
情感与收获情感教学丰富成功体验,激发对图形研究的兴趣形成合作交流的意识。
1获得成功的体验。
2掌握了一些学习方法。
通过本节的学习让学生学会合作交流的意识,激发爱国、爱集体的意识。
小结1、知识总结:椭圆的定义,标准方程2、思想方法总结:教师引导学生进行小节1椭圆的定义:动点到俩定点的距离之和是定长的点的轨迹2椭圆中字母的范围。
3椭圆定义的应用。
让学生通过这堂课的学习过程经历,给出相应的总结。
作业课本96页4、5、6题第7题选作研究性作业:有余力的同学:查找资料、搜集数据,求神州五号飞行的轨迹方程。
学生有学选择完成作业的机会,鼓励学生进一步探索七、教后反思1将教学科研融入教学中,改变学生的学习方式138探究体验式创新教学方法是我们一中所研究的课题的一个子课题,本节就是以这一理论为指导,让探究式教学走进课堂为学生的学习提供了多样化的活动方式,激发学生的兴趣,让学生积极参与。
学生通过观察、猜想、推理等丰富多彩的活动达到了知识的主动构建与理解。
2、渗透数学思想方法中在平时学了这些年数学我们给孩子们留下了什么?我想应该是学生遇到具体问题时那种思考问题的方式,和解决问题的方法。
本节课在探究解决问题的途径,引导学生观察图形后研究方程,即数形结合思想。
华罗庚先生曾说:“数缺形时少直观,形缺数时难入微。
”因此在平时教学时,要注意渗透数学思想方法的教学。
3、信息技术走进课堂充分利用多媒体手段,以轻松愉快的动画演示,化抽象为形象,创设了直观的课堂教学效果,化解了知识的难点。
4、课堂上教师怎样引导学生是值得我们深思的一个问题,在完成知识拓展时,课堂上开始还不能很好的完成题目的变化,经教师的指导,学生逐渐地掌握了方法。
5、作业的可选择性使学生能根据自己的能力选择完成。
感悟:轻松愉快的课堂是学生思维发展的天地,讨论、合作交流的主阵地,思想品德教育的好场所,因此新教育理念、新课改下的新课堂需要教师和学生一起来培育,一起来创造,一起来开拓。
139。