2015国庆高一数学作业及答案集合三

合集下载

高一数学集合习题及答案详解

高一数学集合习题及答案详解

例用符号∈或填空1 ∉1________N , 0________N , -3________N ,0.5N N ,;21________Z , 0________Z , -3________Z ,0.5Z Z ,;21________Q , 0________Q , -3________Q ,0.5Q Q ,;21________R , 0________R , -3________R ,0.5R R ,;2分析元素在集合内用符号∈,而元素不在集合内时用符号. ∉ 解∈,∈,-,,;1N 0N 3N 0.5N N ∉∉∉2 1Z 0Z 3Z 0.5Z Z 1Q 0Q 3Q ∈,∈,-∈,,;∈,∈,-∈,∉∉20.5Q Q 1R 0R 3R 0.5R R ∈,;∈,∈,-∈,∈,;22∉∉说明:要注意符号的规范书写.例2 (1)用列举法表示不超过10的非负偶数的集合,并用另一种方法表示出来;(2)设集合A ={(x ,y)|x +y =6,x ∈N ,y ∈N},试用列举法表示集合A ; 分析 (1)中集合含的元素为0、2、4、6、8、10;(2)中集合所含的元素是点(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0).解 (1){0,2,4,6,8,10};用描述法表示为{不超过10的非负偶数},或|x|x =2n ,n ∈N ,n <6}.(2)A ={(0,6),(1,5),(2,4),(3,3),(4,2),(5,1),(6,0)}. 说明:注意(2)中集合A 的元素是点的坐标.例由实数,-,,及-所组成的集合,最多含有3 x x |x|x x 233[ ] A .2个元素B .3个元素C .4个元素D .5个元素分析 当x 等于零时只有一个元素,当x 不等于零时有两个元素.答 A .说明:问题转化为对具有相同结果的不同表达式的识别.例4 试用适当的方式表示:被3整除余1的自然数集合.分析 被3整除余1的自然数可以表示为3n +1(n 为自然数).解 集合可以表示为{x|x =3n +1,n ∈N}.说明:虽然这一集合是无限集,但也可以用列举法来表示:{1,4,7,…,3n +1,…}.例5 下列四个集合中,表示空集的是[ ]A .{0}B .{(x ,y)|y 2=-x 2,x ∈R ,y ∈R}C {x||x|5x Z x N}.=,∈,∉D .{x|2x 2+3x -2=0,x ∈N}分析 {0}是含有元素0蹬集合.{(x ,y)|y 2=-x 2,x ∈R ,y∈含有元素,.=,∈,含有元素-.虽然方R}(00){x||x|5x Z x N}5∉ 程2x 2+3x -2=0的解是和-2,但都不是自然数.答 选D .说明:注意集合元素的限制条件.例试用适当的符号把-++和+,∈连结6 {|a b 6a b R|}2323 起来.分析 这是元素与集合的关系问题,它们之间有从属或不从属的关系.注意到:(2323)(2)(2)2(2362-++=-+++-+=,3323)()根据所给集合的元素特征,该元素属于集合.解-++∈+,∈. 23{|a b 6a b R|}23说明:元素是否在集合内,有时需要仔细变形、验证.例年全国理改编题设,都是非零实数,=++7 (1990)a b y a a b b ab ab ||||||可能取的值组成的集合是 [ ] A .{3}B .{3,2,1}C .{3,1,-1}D .{3,-1}分析 根据两个字母的符号分类讨论.答 选D .说明:本题考查的是实数的符号运算、绝对值等。

高一数学国庆假期作业1

高一数学国庆假期作业1

国庆假期作业1一、选择题1.下列各项中,不可以组成集合的是( )A .所有的正数B .等于2的数C .接近于0的数D .不等于0的偶数 2.下列四个集合中,是空集的是( )A .}33|{=+x xB .},,|),{(22R y x x y y x ∈-= C .}0|{2≤x x D .},01|{2R x x x x ∈=+- 3.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或04.若集合{}{}22(,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈,则有( ) A .MN M = B . M N N = C . M N M = D .M N =∅5.已知集合{}2|10,A x x mx AR φ=++==若,则实数m 的取值范围是( )A .4<mB .4>mC .40<≤mD .40≤≤m 6.下列说法中,正确的是( )A . 任何一个集合必有两个子集;B . 若,AB φ=则,A B 中至少有一个为φC . 任何集合必有一个真子集;D . 若S 为全集,且,AB S =则,A B S ==7.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或8.设⎩⎨⎧<+≥-=)10()],6([)10(,2)(x x f f x x x f 则)5(f 的值为( )A .10B .11C .12D .139.已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )A .[]052, B. []-14, C. []-55, D. []-37, 10.函数224y x x =-+的值域是( )A .[2,2]-B .[1,2]C .[0,2]D .[2,2]- 11.下列函数中,在区间()0,1上是增函数的是( ) A .x y = B .x y -=3 C .xy 1= D .42+-=x y 12.函数)11()(+--=x x x x f 是( )A .是奇函数又是减函数B .是奇函数但不是减函数C .是减函数但不是奇函数D .不是奇函数也不是减函数二、填空题13.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 。

高一数学练习题及答案

高一数学练习题及答案

高一数学练习题及答案高一数学集合练习题及答案(通用5篇)导读:数学是一个要求大家严谨对待的科目,有时一不小心一个小小的小数点都会影响最后的结果。

下文应届毕业生店铺就为大家送上了高一数学集合练习题及答案,希望大家认真对待。

高一数学练习题及答案篇1一、填空题.(每小题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 如果集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满足{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,-1},B={2a-1,| a-2 |,3a2+4},A∩B={-1},则a的值是( )A.-1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则下列结论正确的是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有学生55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x-1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5- x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={-1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y2-1},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2-ax+a2-19=0},B={x|x2-5x+6=0},C={x|x2+2x-8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题满分10分)已知集合A={x|x2-3x+2=0},B={x|x2-ax+3a-5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx2-4x+m-1>0 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,-1} 1或-1或016、x=-1 y=-117、解:A={0,-4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={-4}时,把x=-4代入得a=1或a=7.当a=1时,B={0,-4}≠{-4},∴a≠1.当a=7时,B={-4,-12}≠{-4},∴a≠7.(4)若B={0,-4},则a=1 ,当a=1时,B={0,-4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,-4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2-ax+a2-19=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,-4 A,由3∈A,得32-3a+a2-19=0,解得a=5或a=-2?当a=5时,A={x|x2-5x+6=0}={2,3},与2 A矛盾;当a=-2时,A={x|x2+2x-15=0}={3,-5},符合题意.∴a=-2.19、解:A={x|x2-3x+2=0}={1,2},由x2-ax+3a-5=0,知Δ=a2-4(3a-5)=a2-12a+20=(a-2)(a-10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1-a+3a-5=0,得a=2,此时B={x|x2-2x+1=0}={1} A;若x=2,则4-2a+3a-5=0,得a=1,此时B={2,-1} A.综上所述,当2≤a<10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设矛盾.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x-1)(x+2)≤0}={x|-2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

高一数学国庆假期作业参考答案

高一数学国庆假期作业参考答案

高一数学国庆假期作业参考答案【选择题答案】1.C2.D3.C4.A5.D6.D7.D8.A9.A 10.D 注:其中第7题涉及函数奇偶性,可不做【填空题答案】11. {1,2,3} 12. (1)x x + 13. {|01}x x x <>或14. [2,7]- 15. 1,1x x -+(答案不唯一)注:其中第12、15题涉及函数奇偶性,可不做【解答题答案】16.(1)(){6,5,4,3,2,1,0}A B C A ==±±±±±±(2)(){6,5,4,3,2,1,0}A A C B C =------17.(1)根据211()211x f x x x -==+--,可判断函数在(1,)+∞上为减函数, 用单调性定义证明(此处略);(2)法一:直接解不等式2111x x ->-可得01x x <>或 法二:利用函数211()211x f x x x -==+--的图象,可直观得到01x x <>或 18. 集合2{|40,}{4,0}A x x x x R =+=∈=-根据A B B B A =⇔⊆ 可知,集合B 须分B =∅与B ≠∅两种情况考虑:①当B =∅时,即方程222(1)10x a x a +++-=无实根,因此0∆<,即 224(1)4(1)0a a +--<,所以1a <-;②当B ≠∅时,要使B A ⊆,则{4}{0}{4,0}B B B =-==-或或当0∆=即1a =-时{0}B =,符合;({4}B =-不可能)当{4,0}B =-时,根据2402(1)401a a -+=-+-⨯=-且,解得1a =;综上可知,11a a ≤-=或。

19.(1)函数1()f x x x =+的定义域为(,0)(0,)-∞+∞ ,且1()()()f x x f x x -=-+=-,故函数1()f x x x=+为奇函数; (2)21()[()1](1)1(0)F x x f x x x x x x x=-=+-=-+≠所以函数()y F x =的值域为333(,)[,1)(1,)[,)444+∞+∞=+∞【附加题答案】: (1)()()()2f x f x g x +-=是偶函数,()()()2f x f x h x --=是奇函数; (2)()()()()()()()22f x f x f x f x f xg xh x +---=+=+ (3)结论:任意一个定义域关于原点对称的函数()f x ,都可以表示为一个偶函数与一个奇函数的和,其中偶函数为()()()2f x f x g x +-=,奇函数为()()()2f x f x h x --=。

高一数学集合练习题及答案

高一数学集合练习题及答案

高一数学集合练习题及答案一、单选题1.集合{}22A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}1,1,2-B .{}2,1,0,1--C .{}1,0,1-D .{}2,1,0,1,2-- 2.已知集合(){}2{|14,},1,0,1M x x x R N =-<∈=-则M N =( )A .{}0,12,B .{}0,1C .{}1,0,2,3-D .{}0,123,, 3.集合,2k M x x k π⎧⎫==∈⎨⎬⎩⎭Z ,,2P x x k k ππ⎧⎫==+∈⎨⎬⎩⎭Z ,则M 、P 之间的关系为( )A .M P =B .M P ⊆C .P M ⊆D .M P ⋂=∅4.设集合{}1,0,2,3A =-,139x B x ⎧⎫⎪⎪⎛⎫=<⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,则A B =( ) A .{}2,3B .{}0,2C .{}0,2,3D .{}1,0,2,3- 5.设{|1},{|12}P x x Q x x ==-<≤≤,那么P Q =( )A .{|11}x x -<<B .{|12}x x -≤<C .{|12}x x ≤<D .{|11}x x -≤≤ 6.已知集合{}0,1,2,3,4,5A =,{}1,3,6,9B =,{}3,7,8C =,则 ()A B C ⋂⋃=( ) A .{}3 B .{}3,7,8 C .{}1,3,7,8 D .{}1,3,6,7,87.已知集合{}21A x x =<,{}02B x x =<<,则A B =( ) A .1,2 B .0,1 C .()0,2 D .1,28.已知集合{3,1,2}A =-,{}2|60B x N x x =∈--≤,则A B ⋃=( ) A .{}1,2B .{}3,0,1,2-C .{}3,1,2,3-D .{}3,0,1,2,3-9.下列命题说法错误的是( ) A .()2()lg 23f x x x =-++在(1,1)-上单调递增B .“1x =”是“2430x x -+=”的充分不必要条件C .若集合{}2440A x kx x =++=恰有两个子集,则1k =D .对于命题:p 存在0R x ∈,使得20010x x ++<,则¬p :任意R x ∈,均有210x x ++≥ 10.已知集合{}20A x x =-≤≤,{}21B x x =>,则A B ⋃=( ) A .[)2,1--B .[]()2,01,-⋃+∞C .(](),01,-∞⋃+∞D .[)2,1-11.已知集合2{|30}A x x x =-≥,集合{1234}B =,,,,则A B =( )A .{01234},,,,B .{123},,C .[0,4]D .[1,3]12.设全集U =R ,集合(){}ln 1|M x y x ==-,2{|4}N x y x ==-,则下面Venn 图中阴影部分表示的集合是( )A .()1,2B .(]1,2C .(2,)+∞D .[2,)+∞ 13.已知集合{1,5,},{2,}A a B b ==,若{2,5}A B ⋂=,则a b +的值是( )A .10B .9C .7D .4 14.已知集合{}2,3,4,5A =,{}1,B a =,若{}5A B =,则=a ( )A .2B .3C .4D .515.设集合{}260A x x x =--≤,{}15B x x =≤<,则A B =( ) A .{}23x x -<<B .{}13x x ≤≤C .{}13x x ≤<D .{}23x x -≤≤二、填空题16.已知集合{}|04A x x =<≤,集合{}|B x x a =<,若A B ⊆,则实数a 的取值范围是_____.17.已知集合[)[)2,6,1,4A B ==-,则A B ⋃=__________.18.全集U =R ,集合{}3A x x =≤-,则 U A =______.19.下列命题中正确的有________(写出全部正确的序号).①{2,4,6}⊆{2,3,4,5,6};②{菱形}⊆{矩形};③{x |x 2=0}⊆{0};④{(0,1)}⊆{0,1};⑤{1}∈{0,1,2};⑥{}|2x x ≥ {}|1x x >.20.已知集合{}2,1,2A =-,{}1,B a a =+,且B A ⊆,则实数a 的值是___________. 21.用适当的符号填空:(1){}0______()2,3-; (2){},,a c b ______{},,a b c ;(3)R______(],3-∞-; (4){}1,2,4______{}8x x 是的约数. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.已知集合{}1,3,5,6,8A =,{}2,3,4,6B =,则下图中阴影部分表示的集合为___________.24.若“x a >”是“39x >”的必要条件,则a 的取值范围是________.25.设{}|11A x x =-<<,{}|0B x x a =->若A B ⊆,则a 的取值范围是_____.三、解答题26.集合22,Z 33A x k x k k ππππ⎧⎫=-<<+∈⎨⎬⎩⎭,222,Z 3B x k x k k πππ⎧⎫=<<+∈⎨⎬⎩⎭,,Z 62C x k x k k ππππ⎧⎫=+<<+∈⎨⎬⎩⎭,[]10,10D =-,分别求A B ,A C ,A D .27.已知函数()()4log 526f x x x =-+-()g x x α=(α为常数),且()g x 的图象经过点(8,22P .(1)求()f x 的定义域和()g x 的解析式;(2)记()f x 的定义域为集合A ,()g x 的值域为集合B ,求()A B ⋂R .28.已知命题“{}11x x x ∃∈-≤≤,使等式220x x m --=成立”是真命题.(1)求实数m 的取值集合A ;(2)设关于x 的不等式()2242360x a x a a -+++<的解集为B ,若B A ,求实数a 的取值范围.29.设M 为100个连续正整数的集合,已知其中2的倍数有50个,3的倍数有33个,6的倍数有16个,如何利用这些数据求出M 中不能被3整除的奇数的个数?30.已知集合{}A x x =是平行四边形,{}B x x =是矩形,{}C x x =是正方形,{}D x x =是菱形,求集合A ,B ,C ,D 之间的关系.【参考答案】一、单选题1.C【解析】【分析】利用交集的定义,直接计算即可.【详解】根据题意,A B ={}1,0,1-.故选:C .2.B【解析】【分析】先化简集合M ,再利用集合的交集运算求解.【详解】解:因为已知集合(){}{}2|14,|13M x x x R x x =-<∈=-<<,{}1,0,1N =-,所以MN ={}0,1,故选:B3.C【解析】【分析】用列举法表示集合M 、P ,即可判断两集合的关系;解:因为335,,2,,,,0,,,,2,,222222k M x x k Z ππππππππππ⎧⎫⎧⎫==∈=----⎨⎬⎨⎬⎩⎭⎩⎭, 5335,,,,,,,,2222222P x x k k Z ππππππππ⎧⎫⎧⎫==+∈=---⎨⎬⎨⎬⎩⎭⎩⎭, 所以P M ⊆,故选:C4.C【解析】【分析】先解指数不等式得集合B ,然后由交集定义可得.【详解】由2139x x -=⎛⎪3⎫ ⎭<⎝,得12x >-,所以12B x x ⎧⎫=>-⎨⎬⎩⎭,所以{}0,2,3A B =. 故选:C .5.D【解析】【分析】 直接根据集合交集运算求解即可.【详解】解:因为{|1},{|12}P x x Q x x ==-<≤≤,所以{|11}Q x x P -≤≤=.故选:D6.C 【解析】【分析】先求A B ,再求()A B C ⋂⋃.【详解】{}1,3A B =,(){}1,3,7,8A B C ⋂⋃=. 故选:C7.B【解析】【分析】解一元二次不等号求集合A ,再由集合的交运算求A B .【详解】由题设,{|11}A x x =-<<,又{|02}B x x =<<所以{|01}A B x x =<<.故选:B8.D【分析】先求出集合B 的元素,进行并集运算即可.【详解】因为{}()(){}2|60|320B x N x x x N x x =∈--≤=∈-+≤ {}{}|230,1,2,3x N x =∈-≤≤=,所以{}3,0,1,2,3A B ⋃=-.故选:D.9.C【解析】【分析】A.利用复合函数的单调性判断;B.利用充分条件和必要条件的定义判断;C.由方程2440kx x ++=有一根判断;D.由命题p 的否定为全称量词命题判断.【详解】A.令223t x x =-++,由2230x x -++>,解得13x ,由二次函数的性质知:t 在(1,1)-上递增,在(1,3)上递减,又lg y t =在()0,∞+上递增,由复合函数的单调性知:()2lg(23)f x x x =-++在(1,1)-上递增,故正确;B. 当1x =时,2430x x -+=成立,故充分,当2430x x -+=成立时,解得1x =或3x =,故不必要,故正确;C.若集合{}2440A x kx x =++=中只有两个子集,则集合只有一个元素,即方程2440kx x ++=有一根,当0k =时,1x =-,当0k ≠时,16160k ∆=-=,解得1k =,所以0k =或1k =,故错误;D.因为命题:p .存在0R x ∈,使得20010x x ++<是存在量词命题,则其否定为全称量词命题,即:p ⌝任意R x ∈,均有210x x ++≥,故正确;故选:C.10.C【解析】【分析】解不等式求得集合B ,由此求得A B .【详解】()()21,110x x x >+->,解得1x <-或1x >,所以()(),11,B =-∞-⋃+∞,所以(](),01,A B ⋃=-∞⋃+∞.故选:C11.B【解析】【分析】先求得{|03}A x x =≤≤,再根据交集的运算可求解.【详解】由已知{|03}A x x =≤≤,所以{}1,2,3A B =.故选:B .12.A【解析】【分析】由对数函数性质,二次根式定义确定集合,M N ,然后确定Venn 图中阴影部分表示的集合并计算.【详解】由题意{|10}{|1}M x x x x =->=>,2{|4}{|2N x x x x =≥=≤-或2}x ≥,{|22}U N x x =-<<,Venn 图中阴影部分为(){|12}U MN x x =<<. 故选:A .13.C【解析】【分析】利用交集的运算求解.【详解】解:因为集合{1,5,},{2,}A a B b ==,且{2,5}A B ⋂=,所以a =2,b =5,所以a b +=7,故选:C14.D【解析】【分析】根据集合的交运算结果,即可求得参数值.【详解】因为{}5A B =,故可得{}51,a ∈,则5a =.故选:D.15.B【解析】【分析】先求出集合A 的解集,然后进行交集运算即可.【详解】 因为{}23A x x =-≤≤,{}15B x x =≤<,所以{}13A B x x ⋂=≤≤.故选:B.二、填空题16.4a >【分析】结合数轴图与集合包含关系,观察即可得到参数的范围.【详解】在数轴上表示出集合A ,B ,由于A B ⊆,如图所示,则4a >.17.[1-,6)【解析】【分析】直接利用并集运算得答案.【详解】[2A =,6),[1B =-,4),[2A B ∴=,6)[1-,4)[1=-,6).故答案为:[1-,6).18.{}3x x >-【解析】【分析】直接利用补集的定义求解【详解】因为全集U =R ,集合{}3A x x =≤-,所以 U A ={}3x x >-, 故答案为:{}3x x >-19.①③⑥【解析】【分析】根据集合间的基本关系中的子集、真子集的定义及元素与集合的关系即可求解.【详解】对于①,2,4,6}{2,3,4,5,6∈,则{2,4,6}⊆{2,3,4,5,6},故①正确; 对于②,菱形不属于矩形,则{菱形} {矩形},故②不正确;对于③,由20x =,解得0x =,则{x |x 2=0}⊆{0},故③正确;对于④,()}{0,10,1∉,则{(0,1)}⊆{0,1},故④不正确;对于⑤,集合与集合不能用属于与不属于关系表示,所以{1}∈{0,1,2}不正确; 对于⑥,{}|2x x ≥ {}|1x x >,故⑥正确.故答案为:①③⑥.20.1【分析】由子集定义分类讨论即可.【详解】因为B A ⊆,所以a A ∈1A ∈,当2a =-1无意义,不满足题意;当1a =12=,满足题意;当2a =11=,不满足题意.综上,实数a 的值1.故答案为:121. ⊆ = ⊇ ⊆【解析】【分析】根据集合子集的定义及集合相等的概念求解.【详解】由集合的子集、集合的相等可知(1)⊆,(2)=,(3)⊇,(4)⊆ 故答案为:⊆,=,⊇,⊆22.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃23.{}1,5,8【解析】【分析】 分析可知,阴影部分所表示的集合为{x x A ∈且}x B ∉,即可得解.【详解】 由图可知,阴影部分所表示的集合为{x x A ∈且}{}1,5,8x B ∉=. 故答案为:{}1,5,8.24.2a ≤【解析】【分析】根据题意39x >解得:2x >,得出()()2,,a +∞⊆+∞,由此可得出实数a 的取值范围.【详解】根据题意39x >解得:2x >,由于“x a >”是“39x >”的必要条件,则()()2,,a +∞⊆+∞,2a ∴≤. 因此,实数a 的取值范围是:2a ≤.故答案为:2a ≤.25.(],1-∞-【解析】【分析】由数轴法可得到A B ⊆,则只要1a ≤-即可.【详解】根据题意作图:由图可知,A B ⊆,则只要1a ≤-即可,即a 的取值范围是(],1-∞-. 故答案为:(],1-∞-.三、解答题26.2,2,3k k k πππ⎛⎫+∈ ⎪⎝⎭Z ;2,2,63k k k ππππ⎛⎫++∈ ⎪⎝⎭Z ;7557,,,333333ππππππ⎛⎫⎛⎫⎛⎫--⋃-⋃ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 【解析】【分析】根据任意角的弧度表示及交集的概念即可计算.【详解】22,22,22,2,3333A B k k k k k k k ππππππππππ⎛⎫⎛⎫⎛⎫⋂=-+⋂+=+∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Z ; 2,2,2,2,336263A C k k k k k k k ππππππππππππ⎛⎫⎛⎫⎛⎫⋂=-+⋂++=++∈ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭Z ; 分别令k =-1,0,1,即可得:[]75572,210,10,,,33333333A D k k ππππππππππ⎛⎫⎛⎫⎛⎫⎛⎫⋂=-+⋂-=--⋃-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 27.(1)()3,5;()12g x x =;(2)][)0,35,∞⎡⋃+⎣.【解析】【分析】 (1)根据f (x )解析式即可求其定义域,根据()g x x α=过P 求出α即可求出g (x )解析式;(2)根据幂函数的性质求g (x )值域即B ,根据集合的补集和交集的运算方法求解即可.(1)5052603x x x x ⎧-><⎧⇒⎨⎨->>⎩⎩, ∴f (x )定义域为()3,5;∵()g x x α=过(P ,则()3132218222g x x ααα==⇒=⇒=; (2)()3,5A =,[)0,B ∞=+,][(),35,A ∞∞=-⋃+R ,()][)0,35,A B ∞⎡⋂=⋃+⎣R. 28.(1){}13A m m =-≤≤ (2)113a -≤≤ 【解析】【分析】(1)分析可得()211m x =--,求出当11x -≤≤时,()211x --的取值范围,即可得解; (2)对3a 与2a +的大小进行分类讨论,求出集合B ,根据B A 可得出关于实数a 的不等式(组),综合可求得实数a 的取值范围.(1)解:由220x x m --=可得()22211m x x x =-=--,当11x -≤≤时,则210x -≤-≤,所以,()[]2111,3m x =--∈-,故{}13A m m =-≤≤. (2)解:()()()2242360320x a x a a x a x a -+++<⇔---<.当32a a >+,即1a >时,{}23B x a x a =+<<,因为B A ,则21331a a a +≥-⎧⎪≤⎨⎪>⎩,此时a 不存在; 当32a a =+,即1a =时,B =∅,满足题设条件;当32a a <+,即1a <时,{}32B x a x a =<<+,因为B A ,则31131a a a ≥-⎧⎪+≤⎨⎪<⎩,解得113a -≤<.综上可得,实数a 的取值范围为113a -≤≤. 29.33【解析】【分析】分析集合之间的关系,由()()()()card A B card A card B card A B ⋃=+-⋂可得.【详解】记{|2,,}A x x n x M n N ==∈∈,{|3,,}B x x n x M n N ==∈∈,则{|21,,}M A x x n x M n N ==-∈∈,{|3,,}M B x x n x M n N =≠∈∈, {|A B x x ⋂=是能被3整除的偶数,}x M ∈, ()(){|M M A B x x =是不能被3整除的奇数,}x M ∈由题知()50,()33,()16card A card B card A B ===,因为()()()M M M A B A B =,()()()()50331667card A B card A card B card A B =+-=+-=所以M 中不能被3整除的奇数有100-67=33个.30.答案见解析【解析】【分析】直接利用四边形的关系,判断即可.【详解】解:因为矩形、正方形、菱形都是特殊的平行四边形,所以B A ,C A ,D A ; 又正方形是特殊的矩形、特殊的菱形,所以C B ,C D ;。

高一数学国庆假期整理题解析

高一数学国庆假期整理题解析

高一数学重点内容复习题型一 根据元素与集合的关系求参数1.已知集合,若,则实数a 的值为()A .B .C .或D .5【答案】B2.已知集合,,且,则______.【答案】3或题型二 根据集合包含关系(交并补运算)求参数3.已知集合,且,则实数m 的取值范围是________.【答案】.【解析】由集合,若时,可得,此时满足;若时,要是得到,则满足,解得,综上可得,实数的取值范围是.故答案为:.4.已知集合,.若,求实数的取值范围.【答案】或.【解析】由,则.,为方程的解集.①若,则,或或,当时有两个相等实根,即不合题意,同理,当时,符合题意;②若则,即,综上所述,实数的取值范围为或5.在①,②,③这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合,.{}22,4,10A a a a =-+3A -∈1-3-1-3-{}20,1,A a a =+{}3,1,4B a a =--()4A B ∈ =a 2-{|34},{|1}A x x B x x m =-≤≤=<<B A ⊆(,4]-∞{|1}B x x m =<<1m ≤B =∅B A ⊆1m >B A ⊆14m m >⎧⎨≤⎩14m <≤m (,4]-∞(,4]-∞{}2|560A x x x =-+={}2|50B x x x a =-+=B A ⊆a 6a =254a >{}2|560A x x x =-+={}2,3A ={}2|50B x x x a =-+= B ∴250x x a -+=B ≠∅B A ⊆{}2B ∴={}3B ={}2,3B ={}2B =250x x a -+=12122,45x x x x ==+=≠{}3B ≠{}2,3B =235,236,a +==⨯=,B =∅Δ2540a =-<254a >a 6a =25.4a >A B A = ()R A B A = ðA B ⋂=∅{}123A x a x a =-<<+{}2280B x x x =--<(1)当时,求;(2)若,求实数的取值范围.(3)若,求实数的取值范围.【答案】(1);(2)见解析【解析】(1)时,,,∴;(2),则,时,,解得;时,,解得:;(3),则:时,,解得;时,或者解得:或综上知,实数的取值范围是:.题型三 充分必要条件6.已知,,则是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A7.(多选)下列说法中正确的有( )A .“”是“”的充要条件B .“”是“”的充分不必要条件C .“或”是“”的充要条件D .“”是“”的必要不充分条件【答案】BC8.设,已知集合,.(1)当时,求实数的范围;(2)设;,若是的必要不充分条件,求实数的范围.【答案】(1);(2)2a =A B ⋃A B A = a A B ⋂=∅a {}27A B x x ⋃=-<<2a ={}17A x x =<<{}24B x x =-<<{}27A B x x ⋃=-<<A B A = A B ⊆A =∅123a a -≥+4a ≤-A ≠∅412234a a a >-⎧⎪-≥-⎨⎪+≤⎩112a -≤≤A B ⋂=∅A =∅123a a -≥+4a ≤-A ≠∅4232a a >-⎧⎨+≤-⎩414a a >-⎧⎨-≥⎩542a -<≤-5a ≥a [)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦ :02p x <<:13q x -<<p q 0ab =20a =1x >21x >2x =3x =-260x x +-=a b >22a b >U =R {}|25A x x =-≤≤{}|121B x m x m =+≤≤-4B ∈m :p x A ∈:q x B ∈p q m 532≤≤m 3m ≤【解析】(1)由题可得,则;(2)由题可得是的真子集,当,则;当,,则(等号不同时成立),解得综上:.题型四 根据命题的真假求参数9.已知命题“,”为假命题,则实数的取值范围是()A .B .C .D .【答案】A【解析】因为命题“,”为假命题,所以在上有解,所以,而一元二次函数在时取最大值,即解得,故选:A10.已知命题“,使”是假命题,则实数的取值范围是()A .B .C .D .【答案】C【解析】命题“,使”是假命题,命题“,使”是真命题,则判别式,解得.故选:C.题型五 求代数式的取值范围11.已知,,则的取值范围是 .【答案】12.若实数,满足,则的取值范围为 .【答案】【解析】,因为实数,满足,所以,即的取值范围为.故答案为:.1421m m +≤≤-532≤≤m B A B =∅1212m m m +>-⇒<B ≠∅2m ≥21512m m -≤⎧⎨+≥-⎩23m ≤≤3m ≤[]3,3x ∀∈-240x x a -++≤a (4,)-+∞()21,+∞(),21-∞()3,-+∞[]3,3x ∀∈-240x x a -++≤240x x a -++>[3,3]x ∈-2max (4)0x x a -++>24x x a -++422(1)x =-=⨯-22420a -+⨯+>4a >-x ∃∈R ()214204x a x +-+≤a ()0,2()0,1()0,4(),4-∞ R x ∃∈()214204x a x +-+≤∴R x ∀∈()214204x a x +-+>21Δ(2)4404a =--⨯⨯<04a <<11a -<<23b <<23a b -(11,4)--x y 1201x y x y <+<⎧⎨<-<⎩3x y +(2,5)32()()+=++-x y x y x y x y 1201x y x y <+<⎧⎨<-<⎩()()225x y x y <++-<3x y +(2,5)(2,5)题型六 利用基本不等式求最值13.已知正数,满足,则的最大值为( )A .2B .1C .D .【答案】C14.已知正实数m ,n 满足的最大值是( )A.2 BCD .【答案】B【解析】由于,所以,时等号成立.故选:B .15.已知,则取得最大值时x 的值为()A .B .C .D .【答案】D【解析】,则由基本不等式得,,当且仅当,即时,等号成立,故取得最大值时x 的值为故选:16.已知正实数满足,则的最小值为 .【答案】/【解析】因为正实数满足,所以,所以,当且仅当,即时取等号,所以的最小值为.17.已知,且,则的最小值为.【答案】10x y 22x y +=xy 12141m n +=12()2222222022422a b a b a b a b a b -++++⎛⎫⎛⎫-=-≤⇒≤⎪ ⎪⎝⎭⎝⎭212m n+≤=≤12m n ==302x <<()32x x -13122334302x << 320x ∴->()2232()2(32)9232228x x x x x x +---=≤=232x x =-34x =()32x x -3.4 D.,a b 418a b +=11a b+120.5,a b 418a b +=21918a b+=11112918a b a b a b ⎛⎫⎛⎫+=++ ⎪ ⎪⎝⎭⎝⎭221918918b a a b =+++51182≥+=2189b aa b =3,6a b ==11a b+120,0x y >>1x y +=28xx y +【解析】因为,所以,所以又因为,,所以,,由基本不等式得:当且仅当,即时等号成立.18.已知正数a ,b 满足,则的最小值为( )A .B .C .D .【答案】C【解析】因为,所以,所以,当且仅当,即,时,等号成立.故选:C19.设,,则的最小值为( )A .0B .1C .2D .4【答案】A【解析】由,则,即,由,则,即,故,当且仅当,即时,等号成立,故选:A.20.若,,,则的最小值为( )A .1 BC .2D .3【答案】C【解析】因为,所以,即,解得或(舍).故,当且仅当时等号成立.所以的最小值为2.故选:C.题型七 一元二次不等式21.不等式的解集为( )A .B .C .D .1x y +=222x y +=28228282x x y x y xx y x y x y++=+=++0x >0y >20yx>80x y >282210y x x y ++≥+=28y x x y =12,33x y ==26a b +=1221a b +++781099108926a b +=22210a b +++=()1211419222521102221010a b a b a b ⎡⎛⎫+=++++≥+=⎢ ⎪++++⎝⎭⎢⎣()2222b a +=+43a =73b =0y >22xy y +=42z x y =+22xy y +=22y x =+()4442442822z x y x x x x =+=+=++-++0y >202x >+2x >-()44288802z x x =++-≥-=+()4422x x +=+=1x -0a >0b >3a b ab ++=a b +3a b ab ++=()232a b a b ab +⎛⎫-+=≤ ⎪⎝⎭()()21240b a a b +-+≥+2a b +≥6a b +≤-2a b +≥1a b ==a b +()()120x x --≤()1,2[)1,2(]1,2[]1,2【答案】D22.不等式的解集是____________【答案】 或,23.“”是“不等式对任意的恒成立”的( )条件A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【解析】当时,对任意的恒成立,当时,则,解得:,故的取值范围为.故“”是的充分不必要条件.故选:A24.解关于x 的不等式【答案】答案见解析【解析】原不等式可化为.当,即时,或;当,即时,;当,即时,或.综上,当时,解集为或;当时,解集为;当 时,解集为或.25.(多选)已知关于的不等式的解集为或,则下列说法正确的是( )A .B .的解集为C .D .的解集为【答案】ABD题型八 一元二次不等式恒成立与有解问题26.若命题“”为真命题,则实数a 的取值范围是( )A .B .C .D .【答案】A【解析】由命题“”为真命题,即不等式在上恒成立,设,302x x -≥-{2x x <}3x ≥31m -<<()()21110m x m x -+--<x ∈R 1m =()()21110m x m x -+--<x ∈R 1m ≠1Δ0m <⎧⎨<⎩31m -<<m 31m -<≤31m -<<31m -<≤()()2231220x a x a --+->[(1)][2(1)]0x a x a -+-->12(1)a a +>-3a <1x a >+2(1)x a <-12(1)a a +=-3a =4x ≠12(1)a a +<-3a >2(1)x a >-1x a <+3a <{1x x a >+∣2(1)}x a <-3a ={4}xx ≠∣3a >{2(1)xx a >-∣1}x a <+x 20ax bx c ++≤{|2x x ≤-}3x ≥a<00ax c +>{}|6x x <8430a b c ++<20cx bx a ++<11|23x x ⎧⎫-<<⎨⎬⎩⎭2(1,1),20x x x a ∀∈--->1a ≤-1a <-3a ≤3a <2(1,1),20x x x a ∀∈--->22a x x <-(1,1-()22,(1,1)f x x x x =-∈-根据二次函数的性质,可得,所以.故选:A.27.已知关于的不等式对任意恒成立,则的取值范围是.【答案】【解析】由题知,若,不等式为,符合题意;若,要使恒成立,则满足,解得.综上,的取值范围是.故答案为:28.若“”为真命题,则实数a 的取值范围是 .【答案】【解析】因为“”为真命题,所以不等式在上有解,所以,所以,故答案为:.题型九 对函数的定义的理解29.下列图象中,不是函数图象的是()A .B .C .D .【答案】D30.已知,,下列对应法则不可以作为从到的函数的是()A .B .C .D .【答案】C题型十 函数的定义域【答案】32.若函数的定义域为R ,则实数m 的取值范围是( )()min (1)1f x f <=-1a ≤-x 23210kx kx k -++≥x ∈R k []0,40k =10≥0k ≠23210kx kx k -++≥()()2034210k k k k >⎧⎪⎨--+≤⎪⎩04k <≤k []0,4[]0,42000R,20x x x a ∃∈--<(1,)-+∞2000R,20x x x a ∃∈--<220x x a --<R 440a ∆=+>1a >-(1,)-+∞{}12A x x =≤≤{}14B y y =≤≤A B :2f x y x →=2:f x y x →=1:f x y x→=:4f x y x →=-[)(]1001-⋃,,()f x =A .B .C .D .【答案】D【解析】当时,的定义域为,不符合题意;当时,依题意得在R 上恒成立,则,解得.故选:D 33.函数的定义域为,则实数的取值范围是( )A .B .C .D .【答案】B【解析】由题意得:无解,当时得3=0,无解;当时,,解得:;综上所述.故选:B.题型十一 求简单函数的值域34.函数,的值域为 ,函数,的值域为 .【答案】【解析】∵,,,∴函数的值域为.∵,∴,∴函数的值域为.故答案为:,.35.二次函数,,则函数在此区间上的值域为()A .B .C .D .【答案】A36.函数的值域为 【答案】【解析】,,,,()0,1()1,+∞[)0,∞+[)1,+∞0m =()f x =1,2⎛⎤-∞ ⎥⎝⎦0m ≠2210mx x -+≥0Δ440m m >⎧⎨=-≤⎩m 1≥()2143f x ax ax =++R a {}R a a ∈304a a ⎧⎫≤<⎨⎬⎩⎭34a a ⎧⎫>⎨⎬⎩⎭304a a ⎧⎫≤≤⎨⎬⎩⎭2430ax ax ++=0a =0a ≠216120a a ∆=-<304a <<304a ≤<()1f x x =+{1,0,1}x ∈-()1g x x =+[1,1]x ∈-{0,1,2}[0,2](1)0f -=(0)1f =(1)2f =()f x {0,1,2}11x -≤≤012x ≤+≤()g x [0,2]{0,1,2}[0,2]()22f x x x =-+-[]11x ∈-,()f x 744⎡⎤--⎢⎥⎣⎦,544⎡⎤--⎢⎥⎣⎦,[]42--,724⎡⎤--⎢⎥⎣⎦,5142x y x -=+55,,44⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭()()574251574242424242x x y x x x +--===-+++420x +≠ ()70242x ∴≠+()57542424y x =-≠+即的值域为.37.函数)A .B .C .D .【答案】A,则,且,则函数可化为,所以函数的值域为.故选:A.5142x y x -=+55,,44⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭2y x =+(,8]-∞(,8]-∞-[2,)+∞[4,)+∞t =0t ≥23x t =-2222(3)42462(1)88y t t t t t =⋅-+=-++=--+≤(,8]-∞。

高一数学集合练习题及答案有详解

高一数学集合练习题及答案有详解1.已知A={x|3-3x>0},则下列各式正确的是( )A.3∈AB.1∈AC.0∈AD.-1A【解析】集合A表示不等式3-3x>0的解集.显然3,1不满足不等式,而0,-1满足不等式,故选C.【答案】C2.高考资源网下列四个集合中,不同于另外三个的是( )A.{y|y=2} B.{x=2}C.{2} D.{x|x2-4x+4=0}【解析】{x=2}表示的是由一个等式组成的集合.故选B.【答案】B3.下列关系中,正确的个数为________.①∈R;②Q;③|-3|N*;④|-|∈Q.【解析】本题考查常用数集及元素与集合的关系.显然∈R,①正确;Q,②正确;|-3|=3∈N*,|-|=Q,③、④不正确.【答案】24.已知集合A={1,x,x2-x},B={1,2,x},若集合A与集合B相等,求x的值.【解析】因为集合A与集合B相等,所以x2-x=2.∴x=2或x=-1.当x=2时,与集合元素的互异性矛盾.当x=-1时,符合题意.∴x=-1.一、选择题(每小题5分,共20分)1.下列命题中正确的( )①0与{0}表示同一个集合;②由1,2,3组成的集合可表示为{1,2,3}或{3,2,1};③方程(x-1)2(x-2)=0的所有解的集合可表示为{1,1,2};④集合{x|4<x<5}可以用列举法表示.A.只有①和④ B.只有②和③C.只有② D.以上语句都不对【解析】{0}表示元素为0的集合,而0只表示一个元素,故①错误;②符合集合中元素的无序性,正确;③不符合集合中元素的互异性,错误;④中元素有无穷多个,不能一一列举,故不能用列举法表示.故选C.【答案】C2.用列举法表示集合{x|x2-2x+1=0}为( )A.{1,1} B.{1}C.{x=1} D.{x2-2x+1=0}【解析】集合{x|x2-2x+1=0}实质是方程x2-2x+1=0的解集,此方程有两相等实根,为1,故可表示为{1}.故选B.【答案】B3.已知集合A={x∈N*|-≤x≤},则必有( )A.-1∈A B.0∈AC.∈A D.1∈A【解析】∵x∈N*,-≤x≤,∴x=1,2,即A={1,2},∴1∈A.故选D.【答案】D4.定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B 的所有元素之和为( )A.0 B.2C.3 D.6【解析】依题意,A*B={0,2,4},其所有元素之和为6,故选D.【答案】D二、填空题(每小题5分,共10分)5.已知集合A={1,a2},实数a不能取的值的集合是________.【解析】由互异性知a2≠1,即a≠±1,故实数a不能取的值的集合是{1,-1}.【答案】{1,-1}6.已知P={x|2<x<a,x∈N},已知集合P中恰有3个元素,则整数a=________.【解析】用数轴分析可知a=6时,集合P中恰有3个元素3,4,5.【答案】6三、解答题(每小题10分,共20分)7.选择适当的方法表示下列集合集.(1)由方程x(x2-2x-3)=0的所有实数根组成的集合;(2)大于2且小于6的有理数;(3)由直线y=-x+4上的横坐标和纵坐标都是自然数的点组成的集合.【解析】(1)方程的实数根为-1,0,3,故可以用列举法表示为{-1,0,3},当然也可以用描述法表示为{x|x(x2-2x-3)=0},有限集.(2)由于大于2且小于6的有理数有无数个,故不能用列举法表示该集合,但可以用描述法表示该集合为{x∈Q|2<x<6},无限集.(3)用描述法表示该集合为M={(x,y)|y=-x+4,x∈N,y∈N}或用列举法表示该集合为{(0,4),(1,3),(2,2),(3,1),(4,0)}.8.设A表示集合{a2+2a-3,2,3},B表示集合{2,|a+3|},已知5∈A且5B,求a的值.【解析】因为5∈A,所以a2+2a-3=5,解得a=2或a=-4.当a=2时,|a+3|=5,不符合题意,应舍去.当a=-4时,|a+3|=1,符合题意,所以a=-4.9.(10分)已知集合A={x|ax2-3x-4=0,x∈R}.(1)若A中有两个元素,求实数a的取值范围;(2)若Axx至多有一个元素,求实数a的取值范围.【解析】(1)∵A中有两个元素,∴方程ax2-3x-4=0有两个不等的实数根,∴即a>-.∴a>-,且a≠0.(2)当a=0时,A={-};当a≠0时,若关于x的方程ax2-3x-4=0有两个相等的实数根,Δ=9+16a=0,即a =-;若关于x的方程无实数根,则Δ=9+16a<0,即a<-;故所求的a的取值范围是a≤-或a=0.1.设集合A={x|2≤x<4},B={x|3x-7≥8-2x},则A∪B等于( )A.{x|x≥3}B.{x|x≥2}C.{x|2≤x<3} D.{x|x≥4}【解析】B={x|x≥3}.画数轴(如下图所示)可知选B.【答案】B2.高考资源网已知集合A={1,3,5,7,9},B={0,3,6,9,12},则A∩B=( )A.{3,5} B.{3,6}C.{3,7} D.{3,9}【解析】A={1,3,5,7,9},B={0,3,6,9,12},A和B中有相同的元素3,9,∴A∩B={3,9}.故选D.【答案】D3.50名学生参加甲、乙两项体育活动,每人至少参加了一项,参加甲项的学生有30名,参加乙项的学生有25名,则仅参加了一项活动的学生人数为________.【解析】设两项都参加的有x人,则只参加甲项的有(30-x)人,只参加乙项的有(25-x)人.(30-x)+x+(25-x)=50,∴x=5.∴只参加甲项的有25人,只参加乙项的有20人,∴仅参加一项的有45人.【答案】454.已知集合A={-4,2a-1,a2},B={a-5,1-a,9},若A∩B={9},求a的值.【解析】∵A∩B={9},∴9∈A,∴2a-1=9或a2=9,∴a=5或a=±3.当a=5时,A={-4,9,25},B={0,-4,9}.此时A∩B={-4,9}≠{9}.故a=5舍去.当a=3时,B={-2,-2,9},不符合要求,舍去.经检验可知a=-3符合题意.一、选择题(每小题5分,共20分)1.集合A={0,2,a},B={1,a2}.若A∪B={0,1,2,4,16},则a的值为( ) A.0 B.1C.2 D.4【解析】∵A∪B={0,1,2,a,a2},又A∪B={0,1,2,4,16},∴{a,a2}={4,16},∴a=4,故选D.【答案】D2.设S={x|2x+1>0},T={x|3x-5<0},则S∩T=( )A.Ø B.{x|x<-}C.{x|x>} D.{x|-<x<}【解析】S={x|2x+1>0}={x|x>-},T={x|3x-5<0}={x|x<},则S∩T={x|-<x<}.故选D.【答案】D3.已知集合A={x|x>0},B={x|-1≤x≤2},则A∪B=( )A.{x|x≥-1} B.{x|x≤2}C.{x|0<x≤2} D.{x|-1≤x≤2}【解析】集合A、B用数轴表示如图,A∪B={x|x≥-1}.故选A.【答案】A4.满足M⊆{a1,a2,a3,a4},且M∩{a1,a2,a3}={a1,a2}的集合M的个数是( ) A.1 B.2C.3 D.4【解析】集合M必须含有元素a1,a2,并且不能含有元素a3,故M={a1,a2}或M={a1,a2,a4}.故选B.【答案】B二、填空题(每小题5分,共10分)5.已知集合A={x|x≤1},B={x|x≥a},且A∪B=R,则实数a的取值范围是________.【解析】A=(-∞,1],B=[a,+∞),要使A∪B=R,只需a≤1.【答案】a≤16.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.【解析】由于{1,3}∪A={1,3,5},则A⊆{1,3,5},且Axx至少有一个元素为5,从而Axx其余元素可以是集合{1,3}的子集的元素,而{1,3}有4个子集,因此满足条件的A的个数是4.它们分别是{5},{1,5},{3,5},{1,3,5}.【答案】4三、解答题(每小题10分,共20分)7.已知集合A={1,3,5},B={1,2,x2-1},若A∪B={1,2,3,5},求x及A∩B.【解析】由A∪B={1,2,3,5},B={1,2,x2-1}得x2-1=3或x2-1=5.若x2-1=3则x=±2;若x2-1=5,则x=±;综上,x=±2或±.当x=±2时,B={1,2,3},此时A∩B={1,3};当x=±时,B={1,2,5},此时A∩B={1,5}.8.已知A={x|2a≤x≤a+3},B={x|x<-1或x>5},若A∩B=Ø,求a的取值范围.【解析】由A∩B=Ø,(1)若A=Ø,有2a>a+3,∴a>3.(2)若A≠Ø,如图:∴,解得≤a≤2.综上所述,a的取值范围是{a|≤a≤2或a>3}.9.(10分)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组.已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?【解析】设单独参加数学的同学为x人,参加数学化学的为y人,单独参加化学的为z 人.依题意解得∴同时参加数学化学的同学有8人,答:同时参加数学和化学小组的有8人.1.集合{a,b}的子集有( )A.1个B.2个C.3个D.4个【解析】集合{a,b}的子集有Ø,{a},{b},{a,b}共4个,故选D.【答案】D2.下列各式中,正确的是( )A.高考资源网2∈{x|x≤3} B.2{x|x≤3}C.2⊆{x|x≤3} D.{2}{x|x≤3}【解析】2表示一个元素,{x|x≤3}表示一个集合,但2不在集合中,故2∉{x|x≤3},A、C不正确,又集合{2}{x|x≤3},故D不正确.【答案】B3.集合B={a,b,c},C={a,b,d},集合A满足A⊆B,A⊆C.则集合A的个数是________.【解析】若A=Ø,则满足A⊆B,A⊆C;若A≠Ø,由A⊆B,A⊆C知A是由属于B且属于C的元素构成,此时集合A可能为{a},{b},{a,b}.【答案】44.已知集合A={x|1≤x<4},B={x|x<a},若A⊆B,求实数a的取值集合.【解析】将数集A表示在数轴上(如图所示),要满足A⊆B,表示数a的点必须在表示4的点处或在表示4的点的右边,所以所求a的集合为{a|a≥4}.一、选择题(每小题5分,共20分)1.集合A={x|0≤x<3且x∈Z}的真子集的个数是( )A.5 B.6C.7 D.8【解析】由题意知A={0,1,2},其真子集的个数为23-1=7个,故选C.【答案】C2.在下列各式中错误的个数是( )①1∈{0,1,2};②{1}∈{0,1,2};③{0,1,2}⊆{0,1,2};④{0,1,2}={2,0,1}A.1 B.2¥资%源~网C.3 D.4【解析】①正确;②错.因为集合与集合之间是包含关系而非属于关系;③正确;④正确.两个集合的元素完全一样.故选A.【答案】A3.已知集合A={x|-1<x<2},B={x|0<x<1},则( )A.A>B B.ABC.BA D.A⊆B【解析】如图所示,,由图可知,故选C.【答案】C4.下列说法:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若,则A≠Ø.其中正确的有( )A.0个 B.1个C.2个 D.3个【解析】①空集是它自身的子集;②当集合为空集时说法错误;③空集不是它自身的真子集;④空集是任何非空集合的真子集.因此,①②③错,④正确.故选B.【答案】B二、填空题(每小题5分,共10分)5.已知Ø{x|x2-x+a=0},则实数a的取值范围是________.【解析】∵Ø{x|x2-x+a=0},∴方程x2-x+a=0有实根,∴Δ=(-1)2-4a≥0,a≤.【答案】a≤6.已知集合A={-1,3,2m-1},集合B={3,m2},若B⊆A,则实数m=________.【解析】∵B⊆A,∴m2=2m-1,即(m-1)2=0∴m=1,当m=1时,A={-1,3,1},B ={3,1}满足B⊆A.【答案】1三、解答题(每小题10分,共20分)7.设集合A={x,y},B={0,x2},若A=B,求实数x,y.【解析】从集合相等的概念入手,寻找元素的关系,必须注意集合中元素的互异性.因为A=B,则x=0或y=0.(1)当x=0时,x2=0,则B={0,0},不满足集合中元素的互异性,故舍去.(2)当y=0时,x=x2,解得x=0或x=1.由(1)知x=0应舍去.综上知:x=1,y=0.8.若集合M={x|x2+x-6=0},N={x|(x-2)(x-a)=0},且N⊆M,求实数a的值.【解析】由x2+x-6=0,得x=2或x=-3.因此,M={2,-3}.若a=2,则N={2},此时NM;若a=-3,则N={2,-3},此时N=M;若a≠2且a≠-3,则N={2,a},此时N不是M的子集,故所求实数a的值为2或-3.9.(10分)已知集合M={x|x=m+,m∈Z},N={x|x=-,n∈Z},P={x|x=+,p∈Z},请探求集合M、N、P之间的关系.【解析】M={x|x=m+,m∈Z}={x|x=,m∈Z}.N={x|x=-,n∈Z}=P={x|x=+,p∈Z}={x|x=,p∈Z}.∵3n-2=3(n-1)+1,n∈Z.∴3n-2,3p+1都是3的整数倍加1,从而N=P.而6m+1=3×2m+1是3的偶数倍加1,∴MN=P.。

2014—2015学年高一数学(苏教版)必修一午间小练及答案:03 集合的基本关系(2)

高一数学(苏教版)必修一午间小练:集合的基本关系(2)1.设集合A ={x|x =5-4a +a 2,a ∈R},B ={y|y =4b 2+4b +2,b ∈R},则A 、B 的关系是________.2.已知集合A ={m +2,2m 2+m},若3∈A,则m =________.3.已知定义在R 上的函数()f x ,那么集合{(,)|(),}{(,)|1}x y y f x x R x y x =∈⋂=的子集有____ 个.4.已知集合A =}12,52,2{2a a a +-,且-3∈A ,则a =_____ ___.5.设P 是一个数集,且至少含有两个数,若对任意a 、b ∈P ,都有a+b 、a-b 、ab 、ab ∈P (除数b ≠0)则称P 是一个数域,例如有理数集Q 是数域,有下列命题: ①数域必含有0,1两个数; ②整数集是数域;③若有理数集Q ⊆M,则数集M 必为数域; ④数域必为无限集.其中正确的命题的序号是 .(把你认为正确的命题的序号都填上)6.如果{x|x 2-3x +2=0}⊇{x|ax -2=0},那么所有a 值构成的集合是 .7.已知A ={a +2,(a +1)2,a 2+3a +3}且1∈A,求实数a 的值.8.集合A ={x|-2≤x≤5},集合B ={x|m +1≤x≤2m -1}.(1)若B ⊆A ,求实数m 的取值范围;(2)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.9.集合A =,,1b a a ⎧⎫⎨⎬⎩⎭,集合B ={a 2,a +b ,0},若A =B ,求a 2 013+b 2 014的值. 10.已知集合A ={x|(x -2)[x -(3a +1)]<0},B =201x a xx a ⎧⎫⎨⎬⎩⎭-<-(+). (1) 当a =2时,求A∩B;(2) 求使B 真包含于A 的实数a 的取值范围.参考答案1.A =B【解析】化简得A ={x|x≥1},B ={y|y≥1},所以A =B.2.-32【解析】因为3∈A,所以m +2=3或2m 2+m =3.当m +2=3,即m =1时,2m 2+m =3,此时集合A 中有重复元素3,所以m =1不合题意,舍去;当2m 2+m =3时,解得m =-32或m =1(舍去),此时当m =-32时,m +2=12≠3满足题意.所以m =-32. 3.2【解析】解:因为已知定义在R 上的函数()f x ,那么集合{(,)|(),}{(x y y f x x R x y x =∈⋂=的元素个数必然为一个,因此它的子集有2 4.-32【解析】解:因为集合A =}12,52,2{2a a a +-,且-3∈A ,所以有2a 23,2a 5a=-3-=-+或解得符合题意的a=-325.①④【解析】解:当a=b 时,a-b=0、a b =1∈P ,故可知①正确.当a=1,b=2,1 2 ∉Z 不满足条件,故可知②不正确.对③当M 中多一个元素i 则会出现1+i ∉M 所以它也不是一个数域;故可知③不正确. 根据数据的性质易得数域有无限多个元素,必为无限集,故可知④正确.故答案为:①④.6.{0,1,2}【解析】解:当a=0时,空集是任何集合的子集,当2/a=1,a=2,或2/a=2,a=1,也成立,故所有的集合为{0,1,2}7.a =0【解析】由题意知:a +2=1或(a +1)2=1或a 2+3a +3=1,∴ a =-1或-2或0,根据元素的互异性排除-1,-2,∴ a =0即为所求.8.(1)m≤3(2)m <2或m >4【解析】(1)当m +1>2m -1即m <2时,B =φ满足B ⊆A ;当m +1≤2m-1即m≥2时,要使B ⊆A 成立,则12215m m ≥⎧⎨≤⎩+-,-,解得2≤m≤3. 综上所述,当m≤3时有B ⊆A.(2)因为x ∈R ,且A ={x|-2≤x≤5},B ={x|m +1≤x≤2m-1},又没有元素x 使x ∈A 与x∈B同时成立,则①若B=φ,即m+1>2m-1,得m<2时满足条件;②若B≠φ,则要满足条件12115m mm≤⎧⎨⎩+-,+>,解得m>4.或121212m mm≤⎧⎨⎩+-,-<-,无解.综上所述,实数m的取值范围为m<2或m>4 9.-1【解析】由于a≠0,由ba=0,得b=0,则A={a,0,1},B={a2,a,0}.由A=B,可得a2=1.又a2≠a,则a≠1,则a=-1.所以a2 013+b2 014=-1.10.(1){x|2<x<5}(2)11,2⎡⎤--⎢⎥⎣⎦∪[2,3]【解析】(1) A∩B={x|2<x<5}.(2) B={x|a<x<a2+1}.①若a=13时,A=Æ,不存在a使BÍA;②若a>13时,2≤a≤3;③若a<13时,-1≤a≤-12.故a的取值范围是11,2⎡⎤--⎢⎥⎣⎦∪[2,3].。

高一数学集合练习题一及答案3篇

高一数学集合练习题一及答案第一篇:集合初步概念及运算1. 下列说法中正确的是:()A.空集是任何集合的子集B.空集是任何集合的真子集C.单集是有限集D.全集的子集个数是1答案:A2. 若集合A={1,2,4},B={1,2,3},C={2,3},则A∩B∪C的结果为()A. {1,3}B. {1,2}C. {2,3,4}D. {1,2,3,4}答案:D3. 若A∪B={-2,-1,0,3,4},则A∩B的结果为()A. {-2,-1}B. {0,3,4}C. {-2,-1,0,3,4}D. 无法确定答案:D4. 已知A={x|0≤x<5},B={x|x²-4x+3<0},则A∪B 的结果为()A. {1,2,3,4,5}B. {x|x²-4x+3≥0}C. [3,5)D. [1,5)答案:A5. 下列说法中正确的是:()A. A={0,1,2},|A|=2B. A={0,x,2},x为实数,|A|=2C. A={0,1,2},P(A)的元素个数是3D. A={0},P(A)的元素个数是2答案:D6. 下列说法中正确的是:()A. A∩B=∅,则A=BB. A∩B=A,则A包含于BC. A∪B=B,则A包含于BD. 若A=B,则A∩B=A答案:B7. 下列说法中正确的是:()A. A×B的元素个数是|A||B|B. A×∅=∅C. |P(A)|=2^|A|D. A∩B=A∪B答案:C8. 下列说法中正确的是:()A. 不交集的交集是空集B. 空集和任何集合的并集是空集C. 任何集合和全集的交集是原集合D. 全集和空集的交集是全集9. 集合A、B的笛卡尔积为{(x,y)|x∈A,y∈B},则A×B 的结果为()A. {AB}B. A+BC. {(x,y)|x∈A,y∈B}D. AB答案:C10. 下列说法中正确的是:()A. A⊂B,B⊂C,则A⊂CB. A⊂B,B∩C=∅,则A⊂CC. A∩B=A,A⊂C,则B⊂CD. A∩B=A,A⊂C,则B包含于C答案:D第二篇:复合函数与反函数1. 函数f(x)=x²,g(x)=3-x,则复合函数(f∘g)(x)的结果为()A. x²-3x+9B. 3x²-x+9C. 9-6x+x²D. x²-6x+9答案:D2. 已知函数f(x)=x³,则函数f的反函数为()A. f⁻¹(x)=x³B. f⁻¹(x)=∛xC. f⁻¹(x)=x²D. f⁻¹(x)=x³/33. 函数y=2x-1,它的反函数为()A. y=2x+1B. y=(x+1)/2C. y=(x-1)/2D. y=2(x+1)答案:C4. 函数f(x)=log₃(x+2),则它的反函数为()A. f⁻¹(x)=3ⁿ-2B. f⁻¹(x)=log₃(x)-2C. f⁻¹(x)=3ⁿ+2D. f⁻¹(x)=log₃(x+2)-2答案:B5. 已知函数f(x)=2x+1,g(x)是f(x)的反函数,则g(-2)的值为()A. -1/2B. -3/2C. 0D. 3答案:B6. 设函数f(x)=x³,g(x)是函数f(x)在[0,+∞)上的反函数,则g(8)的值为()A. 0B. 2C. 3D. 4答案:B7. 函数f(x)=(x-1)/(x+2),则f(f(x))的分母为()A. x²B. (x-1)²C. (x+2)²D. (x²+1)答案:C8. 函数f(x)=log₃x,则它的反函数f⁻¹(x)为()A. f⁻¹(x)=3ⁿB. f⁻¹(x)=3/xC. f⁻¹(x)=3log(x)D. f⁻¹(x)=log₃(x)答案:D9. 函数f(x)=log₃x,g(x)=x-2,则(f∘g)(x)的结果为()A. log₃(x-2)B. log₃(x-2)/3C. log₃x-2D. log₃(x+2)答案:C10. 已知函数f(x)=3x²-4,函数g(x)为f(x)的反函数,则g(5)的值为()A. 1B. 2C. 3D. 4答案:C第三篇:不等式和函数的性质1. 若a>b,则a²≤3a+b+2的条件是()A. b≤a-2B. b≥a-2C. b≤-a-2D. b≥-a-2答案:B2. 若x>0,x+1/x≥2,则x的取值范围为()A. [0,1)B. [1,∞)C. (0,1)D. (1,∞)答案:B3. 已知函数f(x)的值域为[1,2],则方程f(x)=1/2的解集为()A. {1}B. (0,1)C. ∅D. (1,2)答案:C4. 已知函数f(x)=3x-1,g(x)=2x-3,则fg(x)和gf(x)的符号相反,x的取值范围是()A. (-∞,1)B. (1,∞)C. [1,3/5]D. (3/5,1)答案:A5. 若函数f(x)在区间[a,b]上单调递减,则f(x)在区间[a,b]上的最大值出现在()A. x=aB. x=bC. x=(a+b)/2D. x未知答案:A6. 若函数f(x)=3x+c的解析式是f(x)的导函数,则常数c为()A. -2B. -1C. 0D. 1答案:B7. 函数f(x)=x/(5-x),则函数f(x)在[0,5)上的值域是()A. (-∞,1/5)B. (-∞,-1/5)C. (1/5,∞)D. (-∞,∞)答案:C8. 若函数f(x)的值域为[1,2),则函数g(x)为f(x)的反函数的值域为()A. [1,2)B. (-∞,2)C. (1,∞)D. ∅答案:B9. 函数f(x)=2x(1-x)的最大值为()A. 1B. 1/4C. 1/2D. 1/8答案:B10. 若函数f(x)满足f(x)+f(1-x)=x,则f(1/2)的值为()A. 1/2B. 1/4C. -1/4D. -1/2答案:B。

高一课本集合练习题答案

高一课本集合练习题答案高一数学课本集合练习题答案一、选择题1. 集合A={x|x<5},B={x|x>3},求A∪B。

答案:A∪B={x|x<5或x>3}。

2. 若A={1,2,3},B={2,3,4},求A∩B。

答案:A∩B={2,3}。

3. 已知集合A={x|0≤x≤10},判断x=11是否属于A。

答案:x=11不属于A。

4. 若集合M={x|x^2-4=0},求M的元素。

答案:M={-2,2}。

5. 对于集合N={y|y=x^2, x∈R},判断y=-1是否属于N。

答案:y=-1不属于N。

二、填空题1. 集合P={1,2,3},Q={3,4,5},P∩Q=______。

答案:{3}2. 若集合R={x|x^2-9=0},求R的补集。

答案:补集为{x|x≠-3且x≠3}3. 集合S={x|x>0},T={x|x<0},S∪T=______。

答案:R(实数集)4. 若集合U={x|x是自然数},求U中最小的元素。

答案:最小的元素是1。

5. 集合V={y|y=2x, x∈N},求V中的元素。

答案:V中的元素为所有偶数。

三、解答题1. 已知集合W={x|x^2-4x+3=0},求W的元素,并判断x=1是否属于W。

答案:W的元素为{1,3},x=1属于W。

2. 集合X={y|y=x^2, x∈Z},求X中的元素,并判断y=3.5是否属于X。

答案:X中的元素为所有非负整数的平方,y=3.5不属于X。

3. 集合Y={x|x是奇数},Z={x|x是偶数},求Y∩Z。

答案:Y∩Z为空集。

4. 集合K={x|x是小于10的质数},求K的元素。

答案:K的元素为{2,3,5,7}。

5. 集合L={x|x^2+2x+1=0},求L的元素。

答案:L的元素为{-1},因为方程x^2+2x+1=0的判别式Δ=2^2-4<0,无实数解,但根据代数解法,x=-1是方程的根。

四、应用题1. 在一次数学竞赛中,共有10名学生参加,其中5名学生获得了一等奖,3名学生获得了二等奖,2名学生同时获得了一等奖和二等奖。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集合练习题三
1.设全集U ={x ∈N *
|x <6},集合A ={1,3},B ={3,5},则∁U (A ∪B )=( A .{1,4} B .{1,5} C .{2,4}
D .{2,5}
2.已知U ={1,3},A ={1,3},则∁U A =( ) A .{1,3} B .{1} C .{3}
D .∅
3.设全集U ={1,2,3,4,5},集合A ={1,2,3},集合B ={3,4,5},则(∁U A )∪(∁U B )=( ) A .{1,2,3,4,5} B .{3} C .{1,2,4,5}
D .{1,5}
4.若集合A ={x |-1≤x ≤2},B ={x |x <1},则A ∩(∁R B )= ( ) A .{x |x >1} B .{x |x ≥1} C .{x |1<x ≤2}
D .{x |1≤x ≤2}
5.设P ={x ︱x <4},Q ={x ︱x 2
<4},则( ) A .P ⊆Q B .Q ⊆P C .P ⊆∁R Q
D .Q ⊆∁R P
6.已知全集U =Z ,集合A ={x |x =k 3,k ∈Z },B ={x |x =k
6,k ∈Z },则( )
A .∁U A ∁U
B B .A B
C .A =B
D .A 与B 中无公共元素
7.设全集U ={2,3,5},A ={2,|a -5|},∁U A ={5},则a 的值为( ) A .2 B .8 C .2或8
D .-2或8
8.设全集U =Z ,A ={x ∈Z |x <5},B ={x ∈Z |x ≤2},则∁U A 与∁U B 的关系是( ) A .∁U A ∁U B B .∁U A ∁U B C .∁U A =∁U B
D .∁U A ∁U B
9.设A ={x ||x |<2},B ={x |x >a },全集U =R ,若A ⊆∁R B ,则有( ) A .a =0 B .a ≤2 C .a ≥2
D .a <2
10.已知全集U ={1,2,3,4,5},S U ,T U ,若S ∩T ={2},(∁U S )∩T ={4},(∁U S )∩(∁
U
T )={1,5},则有( )
A .3∈S ∩T
B .3∉S 但3∈T
C .3∈S ∩(∁U T )
D .3∈(∁U S )∩(∁U T )
11.
如图所示,U是全集,M,P,S是U的三个子集,则阴影部分所表示的集合是( ) A.(P∩M)∩S
B.(M∩P)∪S
C.(M∩P)∩∁U S
D.(M∩P)∪∁U S
12.设集合I={1,2,3},A是I的子集,如果把满足M∪A=I的集合M叫做集合A的“配集”,则当A={1,2}时,A的配集的个数是( )
A.1 B.2
C.3 D.4
13.设全集U=Z,M={x|x=2k,k∈Z},P={x|x=2k+1,k∈Z},则下列关系式中正确的有________.
①M⊆P;②∁U M=∁U P;③∁U M=P;④∁U P=M.
14.已知集合A={1,3,5,7,9},∁U A={2,4,6,8},∁U B={1,4,6,8,9},则集合B=________.
15.集合A含有10个元素,集合B含有8个元素,集合A∩B含有3个元素,则集合A ∪B有________个元素.
16.已知S={a,b},A⊆S,则A与∁S A的所有有序组对共有________组.
17.设集合U={1,2,3,4},且A={x∈U|x2-5x+m=0},若∁U A={2,3},求m的值.
集合练习题三答案
1.C D C D B A C A C C C D
13.③④ 14. {2,3,5,7} 15.15 16. 4 17.m=4.。

相关文档
最新文档