6、长方体和正方体体积的计算

合集下载

长方体和正方体的体积计算

长方体和正方体的体积计算

156学习版长方体和正方体的体积计算■文/易 娟教学内容:人教版五年级下册第三单元《长方体和正方体的体积计算》。

教学目标:1.知识与技能:理解并掌握长方体和正方体体积的计算方法,能正确计算长方体、正方体的体积,并能运用所学知识解决一些实际问题。

2.过程与方法:在观察、操作、探索的过程中,感知长方体的体积大小与它的长、宽、高有关,探索并掌握长方体、正方体体积的计算方法,培养迁移、类推能力和抽象概括能力,进一步发展学生的空间观念;3.情感态度价值观:在个人及小组的探究活动中,培养团队协作,勇于探索的品质,体会数学的应用价值。

教学重点:引导学生探索长方体体积的计算方法。

教学难点:体验公式的推导过程。

教具学具准备:多媒体教学课件,每组24个棱长为1厘米的小正方体、学案记录单。

教学方法:启发式教学法、探究法、类比迁移、抽象概括教学过程:一、回顾旧知,揭示主题。

师:同学们,大家好,欢迎进入易老师的云课堂,上节课我们学习了体积和体积单位,和老师共同回忆下什么是物体的体积?计量体积要用体积单位,常用的体积单位有哪些?:长方体和正方体的体积指的是什么呢?(预设:长方体和正方体所占空间的大小就是长方体和正方体的体积)我们该如何计量他们的体积呢?今天我们就来学习人教版小学数学五年级下册第三单元的内容《长方体和正方体的体积计算》。

二、回忆经验,促进迁移。

师:同学们,先想一想,我们以前计量过长度和面积。

(出示:一条线段图)请看这条线段长几米?(4米)你是怎样得到的?(预设:这条线段包含4个1米或如果要计量一条线段有多长,就要看它包含多少个相同的长度单位)师:(出示:一个长方形)同样如果我们用1平方厘米做计量单位,要量这个长方形的面积有多大,看什么?(预设:看这个长方形里有多少个相同的面积单位)仔细观察这个长方形的面积是多少平方厘米?(演示过程)(预设:6平方厘米,因为用面积1平方厘米的正方形去度量,需要度量6次)师:今天我们研究长方体和正方体的体积,你有什么想法?(出示:一个长方体)(预设:那就看这个长方体里有多少个体积单位)大家利用计量长度和面积的经验,联想到计量物体体积的办法,为我们进一步的研究和思考找到了方向,其实这种思考问题的方式就是我们经常说的迁移。

六年级上册苏教版小学数学《长方体、正方体体积计算》教案(区级公开课)

六年级上册苏教版小学数学《长方体、正方体体积计算》教案(区级公开课)

《长方体、正方体体积计算》教案教学目标:1.使学生经历观察、操作、归纳、猜想、验证和交流等数学活动的过程,探索并掌握长方体和正方体的体积计算公式,了解一个数的立方的含义与表示方法;能应用公式正确计算长方体和正方体的体积,并能解决一些相关的实际问题。

2.使学生在探索长主体、正方体体积计算公式中,进一步积累探索数学知识的经验,感受归纳的思想方法,增强空间观念。

3.使学生在参与数学活动过程中,逐步养成善于思考、勤于实践的学习品质,培养他人合作的意识,激发对数学学习的兴趣。

教学过程:一、导入师:最近我们学习了关于长方体与正方体的知识,老师也带来了生活中的2个物体。

目测谁的体积大一些?生:纯牛奶的包装盒体积大一些?师:什么叫体积呢?生:一个物体所占空间的大小叫作这个物体的体积。

师:那我们学过哪些体积单位呢?生:1立方厘米,1立方分米,1立方米。

师:这些单位都是计量物体体积时用的体积单位。

师:还记得我们之前学过的长度单位么? (出示PPT)师:怎么计量这条线段的长度的?生:这条线段长5厘米。

师:说说你的想法。

生:这条线段有5个1厘米。

师:这是一个面积单位,还记得怎样用这个面积单位来测量这个长方体的面积吗?师:怎么用这个面积单位来计量这个长方形的面积呢?生:摆一摆,看这个长方形里有多少个这样的面积单位。

师:怎么摆?生:沿着长摆4个,沿着宽摆3个。

一共摆了12个,它的面积是12立方分米。

师:思路很清晰,说的真好。

师:这个是体积单位,摆出这个不规则物体体积是多少呢?生:6立方厘米。

师:你怎么想的?生:因为这个不规则物体里有6个1立方厘米的小正方体。

生:。

师:我可以稍微动一下,:这样看一下,一共有多少个小正方体更容易些。

师:要看这个物体体积有多大,就得看看它里面含有多少个体积单位。

师:由不规则的物体图形转化为规则物体图形更方方便圩我们的观察与研究。

但是我们生活中的大多数的物体是不好用数体积单位方法。

来得到物体的体积大小的,那怎么办呢?看来,我们得找到一些更好的方法来解决这样体积问题。

长方体和正方体的体积复习

长方体和正方体的体积复习

【知识点3】 体积单位及体积单位的互化 体积单位:立方厘米、立方分米和立米 1m3=1000dm3 1dm3=1000cm3 1m3=100 0000cm3 体积单位的互化: 把高级单位化成低级单位,用高级单位数乘 以进率;------大化小,乘了好
把低级单位聚成高级单位,用低级单位数 除以进率。-----------小化大,除了吧
五年级(下册)
【知识点1】 体积的概念和计算公式
体积:物体所占空间的大小叫做物体的体积。 长方体的体积= 长×宽×高 用字母表示:V=abh 正方体的体积= 棱长×棱长×棱长 用字母表示:V=a3
【知识点2】长方体和正方体的体积统一公式:
长方体或正方体的体积=底面积×高 用字母表示:V=Sh
长方体体积公式的推导过程: 你是如何推导出长方体的体积公式的?再说说你 在推导时用了什么数学方法? 答:我是用体积1立方厘米的小正方体摆不同的长 方体,并把摆成的不同形状的长方体的长、宽、 高的数据与各个长方体所含小正方体的个数作比 较,通过比较,观察发现长方体所含小正方体的 个数就是长方体的体积,它与它的长×宽×高的 积正好相等,从而推导出长方体的体积=长×宽× 高如果用V表示长方体的体积,用a、b、h分别表 示长方体的长、宽、高,那么长方体的体积公式 可以写成V=abh,我在推导时采用了实验、观察、 比较、归纳、推理等方法。
4.有一个底面积是正方形的长方体,高是20厘 米,侧面展开正好是一个正方形。求这个长方 体的体积。
5.家具厂订购500根方木,每根方木横截 面的面积是24平方分米,长是3米,这些 木料一共是多少方?
同学们,通过这节课的学 习你有怎样的收获呢?
1.正方体的棱长扩大到原来的6倍,体积也扩大到原 来的6倍。( ) 2.如果将一块长方体的橡皮泥捏成一个正方体,我 们看到它的形状变发,但是它所占的空间的大小没变。 ( ) 3.一个物体的体积是1立方分米,这个物体的形状 一定是正方体。( ) 4.1立方米比1平方米大。( ) 5.长方体和正方体的体积都等于底面积乘以高。 ( ) 6.一个长方体的体积扩大2倍,它的长、宽、高都 扩大2倍。( )

《长方体和正方体的体积》精品PPT课件

《长方体和正方体的体积》精品PPT课件

课程目标
掌握长方体和正方体 的体积计算公式。
培养学生的空间观念 和几何直觉,提高解 决几何问题的能力。
能够运用公式解决实 际问题,如计算容积、 体积等。
02
长方体的体积
长方体的定义
总结词
长方体的定义
详细描述
长方体是一种三维图形,由六个矩形面组成,相对的两个面完全相同。它的三 个边分别是长度、宽度和高度。
06
总结与回顾
本节课的重点回顾
计算长方体和正方体的体积公式 掌握长方体和正方体的体积计算方法
理解体积的概念和意义 了解体积单位的应用
本节课的难点解析
如何理解体积的概念 如何正确应用长方体和正方体的体积公式进行计算
如何解决与体积相关的实际问题
下节课预告
学习圆柱体的体积计算方法 了解圆锥体的体积计算公式
《长方体和正方体的 体积》精品ppt课件
• 引言 • 长方体的体积 • 正方体的体积 • 体积的单位和换算 • 练习与巩固 • 总结与回顾
目录
01
引言
课程背景
01
长方体和正方体是生活中常见的 几何形状,了解其体积计算方法 对于解决实际问题具有重要意义 。
02
学生已经学习了长方形和正方形 的面积计算,在此基础上进一步 学习长方体和正方体的体积计算 有助于巩固几何知识体系。
学习如何解决与立体几何相关的实际问题
感谢观看
THANKS
体积计算公式
正方体的体积可以通过其 棱长的三次方来计算,即 V = a^3,其中a是正方体 的棱长。
公式推导
正方体的体积可以通过其 底面积和高的乘积来推导, 即 V = a^2 × a = a^3。
单位换算
正方体的体积单位通常是 立方单位,如立方米、立 方厘米等,根据需要可以 进行单位换算。

长方体正方体的表面积和体积公式

长方体正方体的表面积和体积公式
8、一个面的面积是36平方米的正方体,它所有的棱长的和是多少厘米?
建筑安全网 建筑安全网价格
OO4Ov8ZD4P1S
)平方厘米。
10、一个长方体长4分米,宽3分米,高2分米,它的表面积是(
)平方分米。
11、正方体的棱长之和是60分米,它的表面积是(
)平方分米。
二、判断题
1、把两个完全一样的正方体拼成一个长方体,体积和表面积都不变。( )
2、长方体的长、宽、高分别是3 cm、4 cm和4 cm,其中有两个相对的面是正方形。(
5、用一根铁丝刚好焊成一个棱长8厘米的正方体框架,如果用这根铁丝焊成一个长10厘米、 宽7厘米的长方体框架,它的高应该是多少厘米?
6、天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长 是1分米的正方形,那么至少需要这种瓷砖多少块?
7、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,如果商标纸的 接头处是4厘米,这张商标纸的面积是多少平方厘米?
c=πd =2πr Ѕ=πr S=ch
S=2πr +2πrh=2π(d÷2) +2π(d÷2)h=2π(C÷2÷π) +Ch 圆柱的体积=底面积×高 V=Sh
V=πr h=π(d÷2) h=π(C÷2÷π) h 圆锥的体积=底面积×高÷3
V=Sh÷3=πr h÷3=π(d÷2) h÷3=π(C÷2÷π) h÷3
A. 增加了
B .减少了
C. 没有变
10、如果把一个棱长是10厘米的正方体切成两个完全相同的长方体,这两个长方体的表面积
之和比原来的正方体表面积(
)。
A. 增加了
B. 减少了
C .没有变化

土方计算公式

土方计算公式

1,建筑土方开挖工程量计算公式:圆柱体:体积=底面积×高长方体:体积=长×宽×高正方体:体积=棱长×棱长×棱长.锥体: 底面面积×高÷3台体: V=[ S上+√(S上S下)+S下]h÷3球缺体积公式=πh²(3R-h)÷3球体积公式:V=4πR³/3棱柱体积公式:V=S底面×h=S直截面×l (l为侧棱长,h为高)棱台体积:V=〔S1+S2+开根号(S1*S2)〕/3*h注:V:体积;S1:上表面积;S2:下表面积;h:高。

------几何体的表面积计算公式圆柱体:表面积:2πRr+2πRh 体积:πRRh (R为圆柱体上下底圆半径,h为圆柱体高) 圆锥体:表面积:πRR+πR[(hh+RR)的平方根] 体积: πRRh/3 (r为圆锥体低圆半径,h为其高, 平面图形名称符号周长C和面积S正方形a—边长C=4a S=a2 长方形a和b-边长C=2(a+b) S=ab 三角形a,b,c-三边长h-a边上的高s-周长的一半A,B,C-内角其中s=(a+b+c)/2 S=ah/2=ab/2•sinC =[s(s-a)(s-b)(s-c)]1/2=a2sinBsinC/(2sinA) 四边形d,D-对角线长α-对角线夹角S=dD/2•sinα 平行四边形a,b-边长h-a边的高α-两边夹角S =ah=absinα 菱形a-边长α-夹角D-长对角线长d-短对角线长S=Dd/2=a2sinα 梯形a和b-上、下底长h-高m-中位线长S=(a+b)h/2=mh 圆r-半径d-直径C=πd=2πr S=πr2=πd2/4 扇形r—扇形半径a—圆心角度数C=2r+2πr×(a/360) S=πr2×(a/360) 弓形l-弧长S=r2/2•(πα/180-sinα)b-弦长=r2arccos[(r-h)/r] - (r-h)(2rh-h2)1/2h-矢高=παr2/360 - b/2•[r2-(b/2)2]1/2r-半径=r(l-b)/2 + bh/2α-圆心角的度数≈2bh/3 圆环R-外圆半径S=π(R2-r2)r-内圆半径=π(D2-d2)/4D-外圆直径d-内圆直径椭圆D-长轴S=πDd/4d-短轴2,建筑工程量计算公式:计算挖土方的体积:土方体积=挖土方的底面积*挖土深度。

长方体正方体所有公式

长方体正方体所有公式

1、长方体的棱长和=长×4+宽×4+高×42、长方体的棱长和=(长+宽+高)×43、长方体的长=棱长和÷4—宽—高4、长方体的宽=棱长和÷4—长—高5、长方体的高=棱长和÷4—长—宽6、长方体的表面积=长×宽×2+长×高×2+宽×高×27、长方体的表面积=(长×宽+长×高+宽×高)×28、长方体的体积=长×宽×高9、正方体的棱长和=棱长×1210、正方体的棱长=棱长和÷1211、正方体的表面积=棱长×棱长×612、正方体的体积=棱长×棱长×棱长13、长(正)方体的体积=底面积×高14、长(正)方体的体积=横截面面积×长1、长方体的棱长和=长×4+宽×4+高×42、长方体的棱长和=(长+宽+高)×43、长方体的长=棱长和÷4—宽—高4、长方体的宽=棱长和÷4—长—高5、长方体的高=棱长和÷4—长—宽6、长方体的表面积=长×宽×2+长×高×2+宽×高×27、长方体的表面积=(长×宽+长×高+宽×高)×28、长方体的体积=长×宽×高9、正方体的棱长和=棱长×1210、正方体的棱长=棱长和÷1211、正方体的表面积=棱长×棱长×612、正方体的体积=棱长×棱长×棱长13、长(正)方体的体积=底面积×高14、长(正)方体的体积=横截面面积×长。

长方体、正方体体积的计算方法

长方体、正方体体积的计算方法

长方体、正方体体积的计算方法知识点回顾1、长方体正方体的特征:⑴长方体有 6 个面,都是长方形,也可能有两个相对的面是正方形,相对的面的面积相等;长方体有12 条棱,相对的棱长度相等;长方体有8 个顶点。

⑵正方体有 6 个面,6 个面的面积相等;正方体有12 条棱,12 条棱长度相等;正方体有8 个顶点。

⑶长方体和正方体两个面相交的线叫做棱,三条棱相交的点叫做顶点。

长方体相交于同一顶点的三条棱的长度,分别叫做它的长、宽、高。

⑷正方体是长、宽、高都相等的长方体。

正方体是特殊的长方体。

⑸长方体(或正方体) 6 个面的总面积,叫做它的表面积。

⑹长方体的表面积=(长×宽+长×高+宽×高)× 2 用字母表示S=2(ab+ah+bh)或长方体的表面积=长×宽×2+长×高×2+宽×高×2 用字母表示S=2ab+2ah+2bh2正方体的表面积=棱长×棱长×6 用字母表示S=6a⑺解决有关长方体和正方体表面积的实际问题时,我们要注意有时只求长方体、正方体的4 个面(如:烟囱、通风管等)或 5 个面。

本节内容⑻物体所占空间的大小叫做物体的体积。

容器所能容纳物体的体积,叫做这个容器的容积。

3)、立方分米(dm3)、立方米(m3)。

常用的容积单⑼常用的体积单位有立方厘米(cm位有升(L)、毫升(ml)。

⑽1 立方米=1000 立方分米 1 立方分米=1000 立方厘米1 立方分米=1 升 1 立方厘米=1 毫升相邻体积单位的进率是1000。

⑾长方体的体积=长×宽×高V=abh长方体的长=体积÷宽÷高3⑿正方体的体积=棱长×棱长×棱长V= a⒀长方体(或正方体)的体积=底面积×高V=sh长方形的高=体积÷底面积长方体的体积=横截面积×长长方体的长=体积÷横截面积⒁长方体的棱长和=(长+宽+高)× 4 C=4(a+b+h)长方体的棱长和=长×4+宽×4+高×4 C=4a+4b+4h长方体的高=棱长和÷4-长-宽正方体的棱长和=棱长×12 C=12a正方体的棱长=棱长和÷12例题1.填空(1)( )叫做物体的体积。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例1:一个长方体,长7cm、宽4cm、高3cm,它的体积是多少?
计算过程:
答:它的体积是cm3。
导学三:正方体体积公式的应用。(教材第42页例2)
例2:一块正方体的石料,棱长是6dm,这块石料的体积是多少立方分米?
计算过程:
答:这块石料的体积是dm3。
四、整理检测
计算下列图形的体积。(单位:厘米)
8
12
5 12
15 12
(2)的提示:看拼成的长方体的长、宽、高各由几个小正方体组成,长、宽、高就各是几厘米。
注意:
长方体或正方体底面的面积叫做底面积。
代入长方体体积公式进行计算。
代入正方体体积公式进行计算。
(4)每一个小正方体的体积是1立方厘米,拼成的长方体是由个小正方体组成的,而每一个小正方体的体积是1立方厘米,因此,我们计量出长方体的体积是。
(5)把(2)~(4)中的答案填入下表,多次拼出不同的长方体,填写下表。



小正方体的数量
长方体的体积
(6)观察上表,你发现了什么?
①我发现:长方体所含体积单位的数量,就是长方体的;
4、探究长方体(或正方体)的体积的另外一种表示法。(对照教材第43页长方体、正方体的图片学习)
我们发现:长方体体积的公式中,长×宽的积表示长方体的底面积,正方体体积的公式中,棱长×棱长也可以表示正方体的底面积,因此,
长方体(或正方体)的体积=
如果用大写字母S表示底面积,上面的公式可以写成:V=
导学二:长方体体积公式的应用。(教材第42页例1)
6、长方体和正方体体积的计算
主备:周畅审核:学习小组:姓名:
内容
P41~43
课型
预习+展示
课时
1课时
学习目标
1、知道长方体体积公式的推导过程。
2、能够解决实际生活中有关长方体和正方体体积的计算问题。
学习过程
导学策略
一、课前热身
(1)长方形的面积是怎样计算的的?
(2)一个长方形的长是5厘米,宽是3厘米,它的面积是多少?
(三、小组学习,合作探究
导学一:长方体和正方体体积的计算。
1、长方体公式的推导过程。
(1)用小正方体拼成一个长方体。(棱长是1cm的小正方体。)
(2)观察并写下这个长方体的长、宽、高各是多少。
长:cm,宽:cm,高:cm。
(3)拆开你拼好的长方体,数一数它是由多少个小正方体组成的?
②我发现:长方体的体积正好等于长×宽×高的。
2、总结长方体的体积公式。
长方体的体积=
如果用大写字母V表示体积,用小写字母a,b,h分别表示长方体的长、宽、高,那么长方体的体积公式可以写成:V=
3、总结正方体的体积公式。
正方体可以看成长、宽、高都相同的长方体。
因此,正方体的体积=
如果用大写字母V表示体积,用小写字母a表示正方体的棱长,那么正方体的体积公式可以写成:V=
相关文档
最新文档