高考物理力学压轴综合大题专题复习
2023年高考物理:力学综合复习卷(基础必刷)

2023年高考物理:力学综合复习卷(基础必刷)一、单项选择题(本题包含8小题,每小题4分,共32分。
在每小题给出的四个选项中,只有一项是符合题目要求的)(共8题)第(1)题如图所示,两端封闭的玻璃管在常温下竖直放置,管内充有理想气体,一段汞柱将气体封闭成上下两部分,两部分气体的长度分别为,,且,下列判断正确的是( )A.将玻璃管转至水平,稳定后两部分气体长度B.将玻璃管转至水平,稳定后两部分气体长度C.保持玻璃管竖直,使两部分气体升高相同温度,稳定后两部分气体长度D.保持玻璃管竖直,使两部分气体升高相同温度,稳定后两部分气体长度第(2)题某质点P从静止开始以加速度a1做匀加速直线运动,经t(s)立即以反向的加速度a2做匀减速直线运动,又经t(s)后恰好回到出发点,则( )A.a1=a2B.2a1=a2C.3a1=a2D.4a1=a2第(3)题如图所示,OA、OB是竖直面内两根固定的光滑细杆,O、A、B位于同一圆周上,OB为圆的直径。
每根杆上都套着一个小滑环(图中未画出),两个滑环都从O点无初速释放,用t1、t2分别表B示滑环到达A、B所用的时间,则()A.B.C.D.无法比较t1、t2的大小第(4)题如图所示,小钢球m以初速度v0在光滑水平面上运动,后受到磁极的侧向作用力而做图示的曲线运动到达D点,从图可知磁极的位置及极性可能是( )A.磁极在A位置,极性一定是N极B.磁极在B位置,极性一定是S极C.磁极在C位置,极性一定是N极D.磁极在B位置,极性无法确定第(5)题如图所示,绝缘水平面上,虚线左侧有垂直于水平面向上的匀强磁场、右侧有垂直于水平面向下的匀强磁场,磁感应强度大小均为,、、为绝缘水平面上的三个固定点,点在虚线上,、两点在左右两磁场中,两根直的硬导线连接和间,软导线连接在间,连线与垂直,、到的距离均为,,、、三段导线电阻相等,,。
通过、两点给线框通入大小为的恒定电流,待、间软导线形状稳定后线框受到的安培力大小为( )A.0B.C.D.第(6)题如图所示,山上一条输电导线架设在两支架间,M、N分别为导线在支架处的两点,P为导线最低点,则这三处导线中的张力、、大小关系是( )A.B.C.D.第(7)题足够长的光滑斜面上的三个相同的物块通过与斜面平行的细线相连,在沿斜面方向的拉力的作用下保持静止,如图甲所示,物块2的右侧固定有不计质量的力传感器。
高考物理复习资料高中物理综合题难题(三)高考物理压轴题

高考物理复习资料高中物理综合题难题(三)高考物理压轴题高考物理复习资料高考物理压轴题汇编高中物理综合题难题汇编(3)1. (17分)如图所示,两根足够长的光滑直金属导轨MN、PQ 平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。
一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。
整套装置处于匀强磁场中,磁场方向垂直于斜面向上。
导轨和金属杆的电阻可忽略。
让金属杆ab沿导轨由静止开始下滑,经过一段时间后,金属杆达到最大速度v m,在这个过程中,电阻R上产生的热量为Q。
导轨和金属杆接触良好,重力加速度为g。
求:(1)金属杆达到最大速度时安培力的大小;(2)磁感应强度的大小;(3)金属杆从静止开始至达到最大速度的过程中杆下降的高度。
2. (16分)如图所示,绝缘长方体B置于水平面上,两端固定一对平行带电极板,极板间形成匀强电场E。
长方体B的上表面光滑,下表面与水平面的动摩擦因数=0.05(设最大静摩擦力与滑动摩擦力相同)。
B与极板的总质量=1.0kg。
带正电的小滑块A质量=0.60kg,其受到的电场力大小F=1.2N。
假设A所带的电量不影响极板间的电场分布。
t=0时刻,小滑块A从B表面上的a点以相对地面的速度=1.6m/s 向左运动,同时,B (连同极板)以相对地面的速度=0.40m/s向右运动。
(g取10m/s2)问:(1)A和B刚开始运动时的加速度大小分别为多少?(2)若A最远能到达b点,a、b的距离L应为多少?从t=0时刻至A运动到b点时,摩擦力对B做的功为多少?3. (18分)如图所示,一个质量为的木块,在平行于斜面向上的推力作用下,沿着倾角为的斜面匀速向上运动,木块与斜面间的动摩擦因数为.()(1)求拉力的大小;(2)若将平行于斜面向上的推力改为水平推力作用在木块上,使木块能沿着斜面匀速运动,求水平推力的大小。
4. (21分)如图所示,倾角为θ=30°的光滑斜面固定在水平地面上,斜面底端固定一垂直斜面的挡板。
高中物理压轴题之力学(高中题型整理,突破提升,有答案)

高中物理压轴题之力学(高中题型整理,突破提升,有答案)简介本篇文档汇总了高中物理力学部分的压轴题,旨在帮助学生突破提升。
以下是一些经典问题及其答案。
第一题问题:一个质量为2kg的物体在水平地面上,受到一个力120N的作用,加速度为多少?答案:根据牛顿第二定律,力等于质量乘以加速度,即 F = ma。
代入已知数据:120N = 2kg * a解得加速度 a = 60m/s²。
第二题问题:一个力为30N的物体在水平桌面上受到3N的摩擦力,求物体的加速度。
答案:首先,我们需要考虑摩擦力的方向。
根据题目描述,摩擦力的方向与物体运动的方向相反,所以摩擦力是阻碍运动的力。
根据牛顿第二定律,合力等于质量乘以加速度,即 F = ma。
考虑到摩擦力的影响,我们可以得到 F - f = ma,其中 F 是施在物体上的力,f 是摩擦力。
代入已知数据:30N - 3N = 3kg * a解得加速度 a = 9.0m/s²。
第三题问题:一个质量为10kg的物体处于自由下落状态,求它的重力加速度。
答案:根据牛顿第二定律,重力等于质量乘以重力加速度,即 F = mg。
根据题目的描述,物体处于自由下落状态,没有受到任何其他力的影响,所以重力就是唯一的力。
代入已知数据:F = 10kg * g解得重力加速度g ≈ 9.8m/s²。
......这里仅列举了几个例子,更多高中物理力学题目及其答案可以参考相关教材或习题集。
通过不断练习这些题目,你将能够更好地掌握物理力学知识,提升你的解题能力。
2024年高考物理压轴题

2024年高考物理压轴题一、在双缝干涉实验中,若增大双缝间距,同时保持光源和观察屏的位置不变,则干涉条纹的间距将如何变化?A. 增大B. 减小C. 不变D. 无法确定(答案:B)二、一质点以初速度v₀沿直线运动,先后经过A、B、C三点,已知AB段与BC段的距离相等,且质点在AB段的平均速度大小为3v₀/2,在BC段的平均速度大小为v₀/2,则质点在B 点的瞬时速度大小为?A. v₀B. (√3 + 1)v₀/2C. (3 + √3)v₀/4D. (3 - √3)v₀/4(答案:A,利用匀变速直线运动的中间时刻速度等于全程平均速度以及位移速度关系式求解)三、在电场中,一电荷q从A点移动到B点,电场力做功为W。
若将该电荷的电量增大为2q,再从A点移动到B点,则电场力做功为?A. W/2B. WC. 2WD. 4W(答案:C,电场力做功与电荷量的多少成正比)四、一均匀带电球体,其内部电场强度的大小与距离球心的距离r的关系是?A. 与r成正比B. 与r成反比C. 与r的平方成正比D. 在球内部,电场强度处处为零(答案:D,对于均匀带电球体,其内部电场强度处处为零,由高斯定理可证)五、在核反应过程中,质量数和电荷数守恒是基本规律。
下列哪个核反应方程是可能的?A. ²H + ³H →⁴He + n + 能量B. ²H + ²H →³H + p + 能量C. ²H + ²H →⁴He + 2p - 能量D. ³H + ³H →⁴He + ²H + 能量(答案:B,根据质量数和电荷数守恒判断)六、一弹簧振子在振动过程中,当其速度减小时,下列说法正确的是?A. 回复力增大B. 位移增大C. 加速度减小D. 动能增大(答案:A、B,弹簧振子速度减小时,正向平衡位置运动,回复力增大,位移增大,加速度增大,动能减小)七、在光电效应实验中,若入射光的频率增加,而光强保持不变,则单位时间内从金属表面逸出的光电子数将?A. 增加B. 减少C. 不变D. 无法确定(答案:B,光强不变意味着总的光子数不变,频率增加则单个光子能量增加,因此光子数减少,导致逸出的光电子数减少)八、在相对论中,关于时间和长度的变化,下列说法正确的是?A. 高速运动的物体,其内部的时间流逝会变慢B. 高速运动的物体,在其运动方向上测量得到的长度会变长C. 无论物体运动速度如何,时间和长度都是不变的D. 以上说法都不正确(答案:A,根据相对论的时间膨胀和长度收缩效应,高速运动的物体内部时间流逝会变慢,沿运动方向上的长度会变短)。
用力学三大观点处理多过程问题(学生版)-2024年高考物理压轴题专项训练

压轴题用力学三大观点处理多过程问题1.用力学三大观点(动力学观点、能量观点和动量观点)处理多过程问题在高考物理中占据核心地位,是检验学生物理思维能力和综合运用知识解决实际问题能力的重要标准。
2.在命题方式上,高考通常会通过设计包含多个物理过程、涉及多个力学观点的复杂问题来考查学生的综合能力。
这些问题可能涉及物体的运动状态变化、能量转换和守恒、动量变化等多个方面,要求考生能够灵活运用力学三大观点进行分析和解答。
3.备考时,学生应首先深入理解力学三大观点的基本原理和应用方法,掌握相关的物理公式和定理。
其次,要通过大量的练习来提高自己分析和解决问题的能力,特别是要注重对多过程问题的训练,学会将复杂问题分解为多个简单过程进行分析和处理。
考向一:三大观点及相互联系考向二:三大观点的选用原则力学中首先考虑使用两个守恒定律。
从两个守恒定律的表达式看出多项都是状态量(如速度、位置),所以守恒定律能解决状态问题,不能解决过程(如位移x,时间t)问题,不能解决力(F)的问题。
(1)若是多个物体组成的系统,优先考虑使用两个守恒定律。
(2)若物体(或系统)涉及速度和时间,应考虑使用动量定理。
(3)若物体(或系统)涉及位移和时间,且受到恒力作用,应考虑使用牛顿运动定律。
(4)若物体(或系统)涉及位移和速度,应考虑使用动能定理,系统中摩擦力做功时应用摩擦力乘以相对路程,动能定理解决曲线运动和变加速运动特别方便。
考向三:用三大观点的解物理题要掌握的科学思维方法1.多体问题--要正确选取研究对象,善于寻找相互联系选取研究对象和寻找相互联系是求解多体问题的两个关键。
选取研究对象后需根据不同的条件采用隔离法,即把研究对象从其所在的系统中抽离出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体进行研究;或将隔离法与整体法交叉使用。
通常,符合守恒定律的系统或各部分运动状态相同的系统,宜采用整体法;在需讨论系统各部分间的相互作用时,宜采用隔离法;对于各部分运动状态不同的系统,应慎用整体法。
高中物理力学压轴题及解析

高中物理力学压轴题及解析高中物理力学是高中阶段物理课程的重要组成部分,压轴题往往考察学生对力学知识的综合运用能力。
本文将针对高中物理力学压轴题,给出详细的题目及解析,帮助同学们巩固力学知识,提高解题能力。
一、高中物理力学压轴题题目:一质量为m的小车,在水平地面上受到一恒力F作用,从静止开始加速运动。
已知小车所受阻力与速度成正比,比例系数为k。
求小车在力F作用下的加速度a与速度v的关系。
二、解析1.首先,根据题目描述,小车受到的合力F合= F - kv,其中F为恒力,kv为阻力。
2.根据牛顿第二定律,合力等于质量乘以加速度,即F合= ma。
3.将合力表达式代入牛顿第二定律,得到ma = F - kv。
4.整理得到加速度a的表达式:a = (F - kv) / m。
5.由于小车从静止开始加速,可以使用初速度为0的匀加速直线运动公式v = at,将加速度a代入,得到v = (F - kv)t / m。
6.进一步整理得到速度v与时间t的关系:v = (F/m)t - (k/m)t^2。
7.由于要求速度v与加速度a的关系,可以将v对a求导,得到dv/da = (F/m) - 2(k/m)t。
8.令dv/da = 0,求得极值点,即t = F / (2km)。
将此值代入v的表达式,得到v = F^2 / (4km)。
9.因此,小车在力F作用下的加速度a与速度v的关系为:a = F / m - 2k/m * v。
三、总结通过对本题的解析,我们可以发现,解决这类力学压轴题的关键在于熟练运用牛顿第二定律、运动学公式,以及掌握阻力与速度成正比的关系。
此外,同学们在解题过程中要注意合理运用数学知识,如求导、求极值等,以提高解题速度和准确度。
注意:本文所提供的题目及解析仅供参考,实际考试题目可能有所不同。
2022高考物理复习:力学大题专项训练

力学大题一、解答题1.如图所示,三个质量均为m 的小物块A 、B 、C ,放置在水平地面上,A 紧靠竖直墙壁,一劲度系数为k 的轻弹簧将A 、B 连接,C 紧靠B ,开始时弹簧处于原长,A 、B 、C 均静止。
现给C 施加一水平向左、大小为F 的恒力,使B 、C 一起向左运动,当速度为零时,立即撤去恒力,一段时间后A 离开墙壁,最终三物块都停止运动。
已知A 、B 、C 与地面间的滑动摩擦力大小均为f ,最大静摩擦力等于滑动摩擦力,弹簧始终在弹性限度内。
(弹簧的弹性势能可表示为:2p 12E kx =,k 为弹簧的劲度系数,x 为弹簧的形变量) (1)求B 、C 向左移动的最大距离0x 和B 、C 分离时B 的动能k E ;(2)为保证A 能离开墙壁,求恒力的最小值min F ;(3)若三物块都停止时B 、C 间的距离为BC x ,从B 、C 分离到B 停止运动的整个过程,B 克服弹簧弹力做的功为W ,通过推导比较W 与BC fx 的大小;(4)若5F f =,请在所给坐标系中,画出C 向右运动过程中加速度a 随位移x 变化的图像,并在坐标轴上标出开始运动和停止运动时的a 、x 值(用f 、k 、m 表示),不要求推导过程。
以撤去F 时C 的位置为坐标原点,水平向右为正方向。
2.如图,一倾角为θ的光滑斜面上有50个减速带(图中未完全画出),相邻减速带间的距离均为d,减速带的宽度远小于d;一质量为m的无动力小车(可视为质点)从距第一个减速带L处由静止释放。
已知小车通过减速带损失的机械能与到达减速带时的速度有关。
观察发现,小车通过第30个减速带后,在相邻减速带间的平均速度均相同。
小车通过第50个减速带后立刻进入与斜面光滑连接的水平地面,继续滑行距离s后停下。
已知小车与地面间的动摩擦因数为μ,重力加速度大小为g。
(1)求小车通过第30个减速带后,经过每一个减速带时损失的机械能;(2)求小车通过前30个减速带的过程中在每一个减速带上平均损失的机械能;(3)若小车在前30个减速带上平均每一个损失的机械能大于之后每一个减速带上损失的机械能,则L应满足什么条件?3.如图,一竖直圆管质量为M,下端距水平地面的高度为H,顶端塞有一质量为m的小球。
近十年高考物理力学压轴题

力学理综(全国卷)34.(22分)一传送带装置示意如图,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,未画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切。
现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h 。
稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L 。
每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动)。
已知在一段相当长的时间T 内,共运送小货箱的数目为N 。
这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。
求电动机的平均抽出功率P 。
参考解答:以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有s =1/2at 2 ①v 0=at ②在这段时间内,传送带运动的路程为s 0=v 0t ③由以上可得s 0=2s ④用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为A =fs =1/2mv 02 ⑤传送带克服小箱对它的摩擦力做功A 0=fs 0=2·1/2mv 02 ⑥两者之差就是克服摩擦力做功发出的热量Q =1/2mv02 ⑦可见,在小箱加速运动过程中,小箱获得的动能与发热量相等。
T 时间内,电动机输出的功为W =P T ⑧此功用于增加小箱的动能、势能以及克服摩擦力发热,即W =1/2Nmv 02+Nmgh +NQ ⑨已知相邻两小箱的距离为L ,所以v 0T =NL ⑩联立⑦⑧⑨⑩,得P =T Nm [222T L N +gh]理综(四川、贵州、云南、陕西、甘肃)25.(20分)如图所示,一对杂技演员(都视为质点)乘秋千(秋千绳处于水平位置)从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考物理力学压轴综合大题专题复习
高考物理压轴综合大题专题复
1.一辆质量为M的平板车在光滑的水平地面上以速度v0向右做匀速直线运动。
现在将一个质量为m(M=4m)的沙袋轻轻地放到平板车的右端。
如果沙袋相对平板车滑动的最大距离等于车长的4倍,那么当沙袋以水平向左的速度扔到平板车上时,为了不使沙袋从车上滑出,沙袋的初速度最大是多少?
解:设平板车长为L,沙袋在车上受到的摩擦力为f。
沙袋轻轻放到车上时,设最终车与沙袋的速度为v′,则有:
Mv = (M+m)v′ - fL
2fL = mv/5
又因为M=4m,所以可得:
2fL = mv/5 = 8fL/5
fL = 0
因为沙袋不会从车上滑落,所以摩擦力f为0,即沙袋不受任何水平力,初速度最大为0.
2.在光滑的水平面上,有一块质量为M=2kg的木板A,其右端挡板上固定一根轻质弹簧,在靠近木板左端的P处有一大小忽略不计质量m=2kg的滑块B。
木板上Q处的左侧为粗糙面,右侧为光滑面,且PQ间距离L=2m。
某时刻,木板A以速度υA=1m/s的速度向左滑行,同时滑块B以速度
υB=5m/s的速度向右滑行。
当滑块B与P处相距时,二者刚好处于相对静止状态。
若在二者其共同运动方向的前方有一障碍物,木块A与障碍物碰后以原速率反弹(碰后立即撤去该障碍物)。
求B与A的粗糙面之间的动摩擦因数μ和滑块B最终停在木板A上的位置。
(g取10m/s2)
解:设M和m的共同速度为v,由动量守恒得
mvB - MυA = (m+M)v
代入数据得:v=2m/s
对AB组成的系统,由能量守恒得
umgL = 2MυA^2 + 2mυB^2 - 2(M+m)v^2
代入数据得:μ=0.6
木板A与障碍物发生碰撞后以原速度反弹。
假设B向右滑行,并与弹簧发生相互作用。
当AB再次处于相对静止时,共同速度为u。
由动量守恒得
mv - Mu = (m+M)u
设B相对A的路程为s,由能量守恒得
umgs = (m+M)υA^2 - (m+M)u^2
代入数据得:s=3m
因为s>L/4,所以滑块B最终停在木板A的左端。
3.一轻质弹簧连接两滑块A和B,已知mA=0.99kg,
mB=3kg,放在光滑水平桌面上,开始时弹簧处于原长。
现滑块A被水平飞来的质量为mc=10g,速度为400m/s的子弹击中,且没有穿出。
求:
1)子弹击中A的瞬间A和B的速度
2)以后运动过程中弹簧的最大弹性势能
3)B可获得的最大动能
解:(1)子弹击中滑块A的过程中,子弹与滑块A组成的系统动量守恒
mCv = (mC+mA)vA
vA = mCv/(mA+mC) = (0.01 kg)(400 m/s)/(0.99 kg+0.01 kg) ≈ 4.04 m/s
由动量守恒定律可得
vB = (mA vA + mC v)/mB = (0.99 kg)(4.04 m/s) + (0.01 kg)(400 m/s)/(3 kg) ≈ 1.36 m/s
所以A和B的速度分别为4.04 m/s和1.36 m/s。
2)对子弹滑块A、B和弹簧组成的系统,A、B速度相等时弹性势能最大。
根据动量守恒定律和能量守恒定律可得
mA+mC)vA = mBvB
1/2 k s^2 = 1/2 (mA+mC) vA^2 - 1/2 mB vB^2
其中k为弹簧劲度系数,s为弹簧伸长量。
代入数据计算可得弹簧的最大弹性势能为6 J。
3)设B动能最大时的速度为vB′,A的速度为vA′,则
2(mC+mA)vA′ = 2(mC+mA)vA - 2mBvB′
vB′ = (mA vA - mC vA′)/mB
B可获得的最大动能为
K = 1/2 mB vB′^2 = 1/2 mB [(mA vA - mC vA′)/mB]^2 = (mA vA - mC vA′)^2/(2mB)
因为动能守恒,所以K = 6 J,代入数据计算可得vA′ ≈
8.32 m/s,vB′ ≈ -2.79 m/s。
注意到vB′为负数,说明B的运动
方向与A和子弹的运动方向相反。
1.在碰撞前,小物体的动量为mV1,滑板的动量为4mV1,根据动量守恒定律,碰撞后小物体的动量为-mV1+4mV2,滑
板的动量为4mV1-mV1+4mV2=7mV1-4mV2.因为小物体反弹,所以小物体的速度为-V1,代入动量守恒式中,得到
V2=3V1/5.从第一次碰撞到第二次碰撞,物体和滑板的位移、
时间和平均速度均相等,因此第二次碰撞时小物体的速度为-
V1,滑板的速度为V2=3V1/5.
2.根据木块和平木板间的动摩擦因数为μ,可以得到水平
恒力F=μmg。
在木块与平木板相对滑动的过程中,摩擦力对
平木板做功,使得平木板的动能增加,但由于平木板保持匀速不变,因此水平恒力所做的功恰好抵消了摩擦力所做的功,即水平XXX对平木板做的功为0.
3.在A球和弹簧分离前,弹簧受到的压缩力始终等于A
球施加的拉力,因此弹簧的弹性势能最大值为1/2kx^2,其中
k为弹簧的弹性系数,x为弹簧的最大压缩量。
根据能量守恒
定律,弹性势能的最大值等于A球的动能,即1/2mv0^2.因此,弹簧的最大弹性势能为1/2mv0^2,弹性势能最大值的范围为
0到1/2mv0^2.在B球和挡板碰撞后,B球的速度大小不变但
方向相反,因此B球的动能减小,弹簧的弹性势能增加。
由
于碰撞时间极短,可以近似认为碰撞过程中弹簧的弹性势能不变,因此弹簧的最大弹性势能仍为1/2mv0^2,范围不变。
当A球与弹簧接触时,弹力作用下A球减速运动,而B
球加速运动,导致弹簧势能增加。
当A、B速度相同时,弹簧
的势能最大。
设A、B的共同速度为v,弹簧的最大势能为E,
则由系统动量守恒和机械能守恒可得:mv=(m+2m)v,
2mv=(m+2m)v^2+E=mv^2/3+E,联立两式得:E=2mv^2/3.
设B球与挡板碰撞前瞬间的速度为vB,此时A的速度为vA。
根据系统动量守恒可得:mvA+2mvB=mv共,其中共为A、B速度相同的共同速度。
B与挡板碰后,以vB向左运动,压缩弹簧,当A、B速度相同时,弹簧势能最大,为Em。
根
据机械能守恒和以上的式子,可以推导出Em的表达式。
当弹
簧恢复原长时相碰,vB有最大值vBm,则可以得到vBm的取值范围,同时可以推导出Em的最大值和最小值。
通过将一个动力传感器连接到计算机上,可以测量快速变化的力。
如图所示,可以通过测量小滑块在半球形碗内的竖直平面内来回滑动时,对碗的压力随时间变化的曲线,来推断小滑块本身及其运动的特性。
根据牛顿第二定律在平衡位置和最大偏角处建立方程,可以推导出小滑块的质量和最大偏角的表达式。
具体地,可以得到小滑块的质量为m=(3gF)/(F+A),最
大偏角的余弦值为cosθA=3F/(F+2A)。
根据图线可知,小滑块在t=0.1s时到达平衡位置,对碗的压力为F0=1.6N;在t=0.6s时到达最大偏角位置,对碗的压力
为FA=0.1N。
根据④⑤式可得小球质量m为60g,cosθA为
1/6.
综上分析可得结论:(1)小球质量为60g;(2)由于摆
幅很大,小球在碗中来回滑动,虽然近似为周期运动,但不是简谐运动。
在图中,粗糙斜面和光滑水平面通过光滑小圆弧平滑连接。
斜面倾角为α=37°,A和B是两个质量均为m=1kg的小滑块(可视为质点),C是左端附有胶泥的质量不计的薄板,D为
连接B和C的轻质弹簧。
当滑块A置于斜面上且受到大小为
F=4N,方向垂直斜面向下的XXX作用时,恰能向下匀速运动。
现撤去F,让滑块A从斜面上距斜面底端L=1m处由静止下滑。
其中,g取10m/s²,sin37°=0.6,cos37°=0.8.
1)求滑块A到达斜面底端时的速度大小v1.
滑块A匀速下滑时,共受四个力的作用,如图4所示。
根据平衡条件可得:
mgsin37°=μN。
(①)
N=mgcos37°+F。
(②)
代入式(①)和(②)中,化简得:
μ=0.5
滑块A撤去F后,受到三个力的匀加速度下滑,如图5所示。
根据动能定理可得:
1/2(mgsin37°-μmgcos37°)L=mv1²/2
代入数据可得:
v1=2m/s
2)滑块A与C接触后粘连在一起,求此后两滑块和弹簧构成的系统在相互作用过程中,弹簧的最大弹性势能Ep。
两滑块和弹簧构成的系统在相互作用过程中动量守恒,当它们速度相等时,弹簧具有最大弹性势能。
设共同速度为v2,根据动量守恒和能量守恒定律可得:
mv1=(m+m)v2.(⑤)
1/2mv1²=1/2(m+2m)v2²+Ep。
(⑥)
代入数据可得:
v2=1m/s
Ep=1J。