《成正比例的量》教学课件1

合集下载

苏教版六年级下册数学《认识成正比例的量》正比例和反比例PPT教学课件

苏教版六年级下册数学《认识成正比例的量》正比例和反比例PPT教学课件

据国家统计局统计,全 国每月消耗26亿双一次 性筷子。
活动一:
20(下)100 1000 10000 100000 100000000 18(秒) 90 900 9000 90000 90000000
90000000÷60=1500000(分) 1500000 ÷60=25000(时)
25000 ÷24≈ 1042(天)
1042÷365≈ 2.9(天)
上海明珠电视塔的 高度为468米,一亿 枚硬币叠起来的高 度会有它高吗?
有的话有几个上海 明珠电视塔的高度?
活动一:
20(枚) 100 1000 10000 100000000
35(毫米1) 75 1750 17500 175000000 175000米
上海明珠电视塔的 高度为468米,一亿 枚硬币叠起来的高 度会有它高吗?有 的话有几个上海明 珠电视塔的高度.
上表中_米__数___和_时__间___是两种相关联的量,_米___数___随着 时间 的变
化而变化的, 每小时加工米数 —定,时间和米数是 成正比例 的量。
课堂练习
2.判断下面各题中的两种量是不是成正比例关系,并说理。 (1)长方形的长一定,宽和面积。
是,宽和面积的比值一定。
(2)总不是路,程它一们定的,比已值不经一行定了,的是路和程一定和。剩下的路程。
比例关系。
(2)如果用字母x和y分别表示两种相关联的量,用k表示它
=k(一定)
们的比值,正比例关系可以表示为(
)。
课后习题
3.判断下面每题中的两个量是否成正比例,成正比例的在括号
里画“√”。
(1)每天的用煤量一定,用煤的天数和用煤的总量。 ( √)
(2)圆的直径和周长。

冀教版六年级数学第3单元认识成正比例的量

冀教版六年级数学第3单元认识成正比例的量
班级
展示
2.自动笔的单价为1.6元,请完成下表。
数量(支)
2
3
4
5
6
7
8
总价(元)
3.2
4.8
6.4
1.买一支自动笔1.6元,请同学们算一算买2支、3支、5支、6支、7支、8支各花多少钱?
2.观察表中数据,你发现了什么规律?3.
写出一个式子表示总价、数量和单价之间的关系吗?试一试!
3.买自动笔的总价和买自动笔的数量这两种量成正比例吗?为什么?
自主
检测
1.判断下面各题中的两个量是否成正比例,并说明理由。
(1)一袋面粉的质量一定,面粉的总质量和袋数。
(2)一个人的身高和年龄。
(3)小麦每公顷的产量一定,小麦的公顷数和总产量。
(4)平行四边形的高一定,它的面积和底。
(5)书的总页数一定,已经看的页数和未看的页数。
2. 正方形的周长和边长成正比例吗?面积和边长呢?为什么?
4.分析一下上面的两个例子和数量关系式,你们发现它们有什么共同点?
5.谁来说一说判断两个量是不是成正比例关系需要具备哪几个条件?
在学生自主计算和观察的基础上,自主总结关系式,获得积极的学习经验判断是否成正比例的过程,既是对已有知识的进一步深化,又为认识正比例关系提供经验。分析归纳课例的共同点,是由个别到一般的概况过程。
课题
认识正比例
课型
新授
课时
主备人
责任人
审核人
学习
目标
1.结合具体实例,经历认识成正比例的量的过程。
2.知道正比例的意义,能判断两种量是否成正比例关系,能找出生活中成正比例的实例,并进行交流。
3.对显示生活中成正比例关系的事物有好奇心,在判断成正比例量的过程中,能进行有条理的思考。

《成正比例的量》讲义

《成正比例的量》讲义
能源利用
能源利用效率与能源资源的配置成正比例。通过优化能源 资源配置,能够提高能源利用效率,减少能源浪费和环境 污染。
促进经济发展
生产力提升
成正比例的量能够促进生产力提升。例如,科技进步与生产力成正比例,通过引进先进的 生产技术和设备,能够提高生产效率和产品质量,推动经济发展。
投资吸引力
成正比例的量能够增强投资吸引力。例如,良好的法治环境和政府服务与投资吸引力成正 比例,通过改善法治环境和政府服务,能够吸引更多的国内外投资。
实际案例分析
案例一:速度与时间的关系
• 在匀速运动中,速度等于距离除以时间。当速度恒定 时,距离与时间的比值保持不变,即距离随着时间的 增长而线性增长。
• 当投资固定时,收益与时间成正比。
• 当速度恒定时,距离与时间成正比。
案例二:投资与收益的关系
• 在金融领域,当投资者购买某种资产并持有一定时 间后,收益通常与投资成正比。例如,股票、基金 等资产的收益与持有时间成正比。
代数证明方法
定义变量
设两个量x和y,它们的比例系数为k。
建立方程
成正比例的量满足等式 x/y = k。
证明方法
通过对方程进行变换,验证x和y的比例关系。
几何证明方法
定义变量
设两个量的比值为k,一个量为x,另一个量为y。
建立关系
成正比例的量在图形中对应的线段长度之间满足k的比值。
证明方法
通过相似三角形、平行线等几何性质证明x和y的比例关系。
正比例关系可以用函数表达式表示为 y=kx,其中 k 是常数,x 表示第一个 量,y 表示第二个量。
成正比例的量的特点
01
02
03
方向相同
成正比例的两个量的变化 方向是相同的,即当一个 量增加时,另一个量也增 加,减少时也减少。

(苏教版)六年级数学下册《成正比例的量的图像》教学课件

(苏教版)六年级数学下册《成正比例的量的图像》教学课件
购买水笔 的支数和需 要的钱数成 正比例吗? 你是根据什 么来判断的?
判断下面每题中的两种量是 不是成正比例,并说明理由。
火车行驶的速度一定, 行驶的路程和时间。
判断下面每题中的两种量是 不是成正比例,并说明理由。
草莓的单价一定,购买草莓的数量和总价。
判断下面每题中的两种量是 不是成正比例,并说明理由。
一辆汽车在公路上行驶,行驶的 时间和路程如下表。
表中的数据,可以用图像表示。
● ● ● ● ● ●
B
A
图中A点表示什么?B点表示什么?其他各点呢?
图中所描的点在一条直线上吗? 正比例的图像是一条直线!
根据图像判断,这辆汽车2.5小时 行驶多少千米?
行驶440千米需要多少小时?
巩固练习 一种水笔每支售价3元,购买2支、 3支……各需要多少元? 1.把下表填写完整。
六年级数学下册第六单元
正比例的量的图像
第2课时
教学目标
1.初步认识正比例的图像,并借助直观的 图像加深对成正比例的量的变化规律的认 识。 2.能利用给出的具有正比例关系的数据在 方格纸上画出相应的直线,能根据具有正 比例关系的一个量的数值看图估计另一个 量的数值。
服装店卖出某种西服的情况如下表。
数量/件 1 2 3 4 5 6
总价/元 360
720 1080 1440 1800 2160
把上面的表格填 比较比值的大小。
服装店卖出某种西服的情况如下表。
数量/件 总价/元 1 360 2 720 3 4 5 6
1080 1440
1800 2160
这个比值表示的意义是什么?请用 式子表示总价和数量之间的关系。 西服的总价和数量成正比例吗?
稻谷每公顷的 产量一定,稻 谷的公顷数和 总产量。

成正比例的量(优质课课件)

成正比例的量(优质课课件)

总价) ( =( 单价 )(一定) (数量) 所以(总价)和(数量)是成正比
例的量。
我的收获
实验结果如何用图像表示
高度/cm 体积/cm 3 底面积/c㎡ 2 50 25 4 6 8 10 12
100 150 200 250 300 25
25
25
25
25
体积/cm
3
300
250 200 150 100 50
矿泉水瓶中喝掉的水和剩下的水。
回想一下:
我们是怎样学习成正比例的量。
怎样判断两种量是不是成正比例?
1.通过计算比较,理解反比例的 意义.能够正确判断两种量是不 是成反比例。 2.进一步认识事物之间的相互联 系和发展变化规律。
判断下面每题中的两种量是否成正比 例,并说明理由。 1、如果3x=8y,那么y与x成正比例。 2、每块地砖的面积一定,教室地板面 积和地砖块数。 3、圆锥的底面积一定,圆锥的体积和高。 4、正方形的周长和边长。 5、圆柱的体积一定,底面积和高。
全班人数一定,出勤人数与缺勤人数成反比例( × × ∨ (
、正方形的面积和边长成正比例
、如果X=7Y,X和Y成正比例
三、填空:
1、如果x和y是两种相关联的量,并且y=3x, 那么y和x成(正 )比例。
2、x÷12=y(x≠0),那么x与y成( )比例。 正 3、当a+b=5,那么a与b( )比例。 不成
随变化的量,而且比值是一定的,所以排 球的总价和数量是成正比例的量。
我的收获
判定方法:
判定两个量是不是成正比例,主
要是看它们的商是不是一定的。
如果用字母x和y表示两种相关联的量, 用k表示它们的比值(一定),正比例 关系可以用下面的式子表示:

成正比例的量(人教版)课件

成正比例的量(人教版)课件
多样性和丰富性
作为世界文化遗产,圆明 园不仅是中国的一张文化 名片,更是全人类共同的 财富。它所代表的不仅是 中国历史和文化的辉煌, 更是全人类对于保护和传 承历史文化遗产的共同责

在保护和传承圆明园的历 史文化遗产的过程中,需 要加强国际合作和交流, 借鉴其他国家和地区的成 功经验和方法。同时也要 加强对于世界文化遗产的 保护和管理,让更多的人 了解和认识世界文化遗产
西文化交流的见证
圆明园的艺术价值不仅体现 在其宏伟的建筑和精美的装 饰上,更体现在其文化内涵 上。园内的景点和建筑都寓 含着深刻的历史故事和文化 寓意,如大水法背后的"大禹 治水"故事,蓬岛瑶台背后的 "神仙境界"寓意等。这些历 史故事和文化寓意使得圆明 园具有了深刻的文化内涵和 独特的艺术价值
4
为主题
圆明园的建筑风格具有多层次、多角度的 特点,融合了中国传统园林的精华和欧洲 建筑的影响。在建筑布局上,圆明园采用 了中轴线对称的布局方式,以大水法为中 心,向四周扩散,形成了层次分明、错落 有致的建筑群。在建筑造型上,圆明园的 建筑形式多样,包括亭台楼阁、廊桥石舫、 假山水池等,每种形式都有其独特的风格
9
圆明园的未来展望
圆明园的未来展望
随着中国经济的持续发展和科技 的不断进步,圆明园的未来也充
满了无限的可能性
以下是对圆明园未来的几个展望
圆明园的未来展望
数字化重建
随着数字化技术的不断发展,对 圆明园进行数字化重建已经成为 可能。通过高清晰度扫描和3D打 印技术,可以还原圆明园的原貌 ,并制作成虚拟或实体的模型。 这不仅可以让更多的人欣赏到圆 明园的美丽和辉煌,还可以为研 究者和学者提供更加准确的历史 资料和数据

人教版六年级数学下册《成正比例的量与成反比例的量》PPT

人教版六年级数学下册《成正比例的量与成反比例的量》PPT
工作时间(天) 1 2 4 8 16
在表2中,相关联的量是 ____ 和 ____ ,____ 随着 ____ 的变化而变化,____ 与 ____ 的乘积 表示 ____ ,____ 是一定的。因此,工作效率和 工作时间成 ___ 比例关系。
正比例 相 同 点
不 同 点
反比例
正比例与反比例的相同点和不同点
才可以使表中的X和Y成正比例关系?
A=(
),B= (
);
C=(
),D= (
);
练习四:
(3)请认真观察表格数据:
X
20 50 B C
Y
5
A
2D
5
②当表格中A、B、C、D各等于多少时,
才可以使表中的X和Y成反比例关系?
A=(
),B= (
);
C=(
),D= (
);
你有什么收获?
(1)怎样能够准确快速地判断两个 量是否成比例,成什么比例?
练习二:
①每包书中册数一定,包数与总册数。 ②方阵队伍中的人数一定,每排人数与排数。 ③每公顷产量一定,总产量与公顷数。 ④买糖果的钱数一定,所买糖果的单价和数
要写量出。正确的关系式,必须找到一定的量
练习三:
练习四:
(3
5 A 2D
5
①当表格中A、B、C、D各等于多少时,
(2)怎样才能正确写出关系式?
①每包书中册数一定,包数与总册数。 ②方阵队伍中的人数一定,每排人数与排数。 ③每公顷产量一定,总产量与公顷数。 ④买糖果的钱数一定,所买糖果的单价和数 量。
练习二:
①每包书中册数一定,包数与总册数。 ②方阵队伍中的人数一定,每排人数与排数。 ③每公顷产量一定,总产量与公顷数。 ④买糖果的钱数一定,所买糖果的单价和数 量。

《成正比例的量》教学案例

《成正比例的量》教学案例

《成正比例的量》教学案例一、教学说明:这部分内容是在教学过比和比例的知识的基础上进行教学的,着重使学生理解正比例的意义。

这节课的教学目的是1、结合具体事例,经历认识和判断成正比例的量的过程。

2、知道正比例的意义,能判断两种量是否成正比例,能找出生活中成正比例的实例,并进行交流。

3、对现实生活中成正比例的事物有好奇心,在判断成正比例的量的过程中,能进行有条理的思考。

教学重点:判断两种相关联的量是不是成正比例。

教学难点:判断两种相关联的量是不是成正比例。

本课在于关注学生已有的生活经验和兴趣,首先让学生从已有知识中寻找相关联的两个量,然后通过呈现现实生活中的三个素材路程、速度,总价、数量,工作总量、工作时间这两个相关联的量引入新课,使抽象的数学知识具有丰富的现实背景,为学生的数学学习提供了生动活泼、主动的材料与环境。

同时,充分运用导学题组的导向功能,让学生思考,让学生在寻找规律的同时感受正比例在实际生活中的存在。

二、教学设计:(一)复习准备:联系学生以前学过的数量关系引入课题,激发学生学习兴趣。

(二)导学:1、认识成正比例的量和正比例关系。

2、分组讨论:小组合作:议一议:在速度一定的情况下,路程和时间有什么关系?让学生通过观察汽车的里程表,使学生知道汽车1小时行驶多少千米,体会数学与生活的紧密联系。

4、学生汇报。

(1)一种量变化,另一种量也随着变化,并且两种量的变化相同。

(2)两个相关联的量的比值一定也就是速度一定。

让学生在分组合作学习的方式中,学生相互交流,引发思维碰撞,进而使得不同层次学生的新知得到不断更正与整合。

4、教师说明:在上面的问题中,路程和时间是两种相关联的量,路程随着时间的变化而变化,而且,路程和时间的比值一定(速度一定)我们说路程和时间这两种量成正比例。

通过分析数量关系,使学生进一步领会正比例的意义,能判断两个量是否成正比例。

5、教师质疑:根据正比例的意义想一想:上面例子中的路程和时间是不是成正比例的量?为什么?构成正比例关系的两种量必须具备哪些条件?让学生通过刚学知识进行判断,现学现用让学生以此去体现出构成正比例的必要条件。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量, 用k表示它们的比值(一定),正比例 关系可以用下面的式子表示:
y x =k (一定)
判定方法:
判定两个量是不是成正比例,主
要是看它们的商是不是一定的。
1、判定两个量是否成正比例, 主要看它们的(比值 )是否一定。 2、苹果的单价一定,苹果的数量 和总价。( 总价 )和( 数量 )是相 关联的量。
1
2
3
4
5
6
7

路程/千米 80 160 240 320 400 480 560 …
(1) 写出几组路程和相对应的时间的比,并比 较比值的大小。说一说这个比值表示什么。 (2) 表中的路程和时间成正比例吗?为什么? (3) 在图中描出表示路程和相应时间的点,然后 把它们按顺序连起来。并估计下行驶120km 大约要用多长时间。
总价) ( =( 单价 )(一定) (数量) 所以(总价)和(数量)是成正比
例的量。
我的收获
实验结果如何用图像表示
高度/cm 体积/cm 3 底面积/c㎡ 2 50 25 4 6 8 10 12
100 150 200 250 300 25
25
25
25
25
体积/cm
3
300
250 200 150 100 50
0
2
4
6
8
10
12
14
高度/cm
体积/cm3 300 250 200 150 100 50
0
2
4
6
8
10
12 14 高度/cm
数据在一条直线上
一辆汽车行驶的时间和所行路程如下表。
时间/时 1 2 3 4 5 6 7 …
路程/千米 80 160 240 320 400 480 560 …
时间/时
体积随着高的变化而变化。像这样的 两个量我们把它叫做相关联的量。
体积和高的比值: 50 = 25 2 100 = 25 4 150 … = 25 6
体积 =底面积 (一定) 高
体积 =底面积 (一定) 高
两种量,一种量变化,另一种量也 随着变化,而且这两种量的比值(也就
是商)一定,这两种量就叫做成正比例
路程/km
480 400
320
240 160
80
0
1
2
3
4
5
6
7

思 考 苹果的单价一定,购买苹 果的数量和总价。
思 考
小新跳高的高 度和他的身高。
思 考
圆的半径和它的面积。
r
成正比例的量
杯子都是相同的
高度/cm
2
3
4
6
8
10
12
体积/cm
50
100 150 200 250 300
25 25 25 25 25
底面积/c㎡ 25
高是2,体积是50;
高增加, 体积随着 扩大。
高是4,体积是100; 高是6,体积是150; 高是8,体积是200;
高减少, 体积随着 缩小。
相关文档
最新文档